AVAGO AMMC-6425 18-28 ghz 1w power amplifi er mmic Datasheet

AMMC-6425
18-28 GHz 1W Power Amplifier MMIC
Data Sheet
Description
Features
The AMMC-6425 is an MMIC power amplifier designed for
use in wireless transmitters that operate within an 18GHz
to 28GHz range. At 28GHz, it provides 30dBm of output
power (P1dB) and 24dB of small-signal gain from a small
easy-to-use device. This MMIC is optimized for linear operation with an output third order intercept point (OIP3)
of 38dBm. The device has input and output matching
circuitry for use in 50Ω environments. The AMMC-6425
also has integrated, temperature compensated, RF power
detection circuitry that enables power detection of 0.3V/
Watt at 28GHz.
 High Gain: 24dB
 1-watt output power (P-1)
 50 Ω match on input and output
 Integrated RF power detector
 ESD protection (50V MM, and 250V HBM)
Specifications (Vd=5V, Idsq=0.65A)
 Frequency range 18 to 28 GHz
 Small signal Gain of 24dB
 Output power @P-1 of 29dBm (Typ.)
 Input/Output return-loss of -13dB/-13dB
Applications
 Microwave Radio systems
 Satellite VSAT, Up/Down Link
 LMDS & Pt-Pt mmW Long Haul
 Broadband Wireless Access
(including 802.16 and 802.20 WiMax)
 WLL and MMDS loops
 Commercial grade military
Chip Size: 2500 x 1870μm (100 x 74ils)
Chip Size Tolerance: ± 10μm (±0.4 mils)
Chip Thickness: 100 ± 10μm (4 ± 0.4 mils)
Pad Dimensions: 100 x 100μm (4 x 4 ±0.4 )mils)
RoHS - Exemption
Please refer to Hazardous substances table on page 9
Note:
1. This MMIC uses depletion mode pHEMT devices. Negative supply is
used for DC gate biasing.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A): 50V
ESD Human Body Model (Class 0): 250V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Absolute Maximum Ratings [1,2,3,4, 5]
Symbol
Parameters
Unit
Max
Notes
Vd
Positive Supply Voltage[2]
V
6
2/
Vg
Gate Supply Voltage
V
-3 to 0.5
PD
Power Dissipation[2,3]
W
5.5
2/3/
Pin
CW Input Power[2]
dBm
23
2/
Tch
Operating Channel Temp.[4,5]
C
+150
4/5/
Tstg
Storage Case Temp.
C
-65 to +155
Maximum Assembly Temp (30 sec max)
+320
Tmax
C
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
2. Combinations of supply voltage, drain current, input power, and output power shall not exceed PD.
3. When operate at this condition with a base plate temperature of 85C, the median time to failure (MTTF) is significantly reduced.
4. These ratings apply to each individual FET
5. The operating channel temperature will directly affect the device MTTF. For maximum life, it is recommended that junction temperatures be
maintained at the lowest possible levels
DC Specifications/ Physical Properties [1]
Symbol
Parameters and Test Conditions
Units
Id
Drain Supply Current(Vd=5 V, Vg set for Id Typical)
mA
650
Vg
Gate Supply Operating Voltage(Id(Q) = 650 (mA))
V
-1.0
Rjc
Thermal Resistance[1](Channel-to-Backside)
C/W
C
17.8
Typical
Channel Temperature
Tch
132
Note:
1. Assume AuSn soldering to an evaluation RF board at 85 °C base plate temperatures. Worst case is at saturated output power when DC power
consumption rises to 5.5W with 1.57W RF power delivered to load. Power dissipation is 3.93W and the temperature rise in the channel is 57 °C. In
this condition, the base plate temperature must be remained below 93 °C to maintain maximum operating channel temperature below 150°C.
RF Specifications [1,2, 3] (TA= 25C, Vd=5, Id(Q)=650 mA, Zo=50 
Symbol
Parameters and Test Conditions
Units
Minimum
Freq
Operational Frequency
GHz
18
Gain
Small-signal Gain [3, 4]
dB
22
24
dBm
27.5
29
[3]
Gain Compression
P-1dB
Output Power at 1dB
OIP3
Output Third Order Intercept Point
dBm
38
RLin
Input Return Loss
dB
13
RLout
Output Return Loss
dB
13
Isolation
Reverse Isolation
dB
50
Notes:
1. Small/Large -signal data measured in on-wafer environment at TA = 25C.
2. This die part performance is verified by a functional test correlated to actual performance at one or more frequencies
3. Pre-assembly into package performance verified 100% on-wafer published specifications at Frequencies=18, 23, and 28GHz
4. The Gain and P1dB tested at 23GHz guaranteed with measurement accuracy ± 1.5 dB for gain and ±1.6dB for P1dB.
2
Maximum
28
Typical Performances (Data obtained from on-wafer environment. TA = 25C, Vd =5 V, Id(q) =650 mA, Zin = Zout =50 )
-40
0
-5
20
-10
15
S21[dB]
S12[dB]
10
Return Loss [dB]
25
S12 [dB]
S21[dB]
30
5
0
S11[dB]
S22[dB]
-15
-20
-25
15
20
25
Frequency [GHz]
30
35
-60
-30
Figure 1. AMMC-6425 Typical Gain and Reverse Isolation
15
20
25
Frequency [GHz]
30
35
Figure 2. AMMC-6425 Typical Return Loss (Input and Output)
15
35
Noise Figure [dB]
25
20
18
20
22
24
Frequency [GHz]
26
28
0
16
30
Figure 3. AMMC-6425 Typical Output Power (P-1) and PAE at 1dB gain
compression
18
20
22
24
Frequency [GHz]
Pout [dBm], PAE [%]
45
40
35
30
18
20
Figure 5. AMMC-6425 Typical IP3
3
22
Freq [GHz]
24
26
28
35
1200
30
1000
25
800
20
600
15
400
10
30
28
0
-20
200
Pout
PAE
Id
5
16
26
Figure 4. AMMC-6425 Typical Noise Figure
50
OIP3 [dBm]
5
P-1
PAE
15
10
16
10
Id [mA]
P-1 [dBm], PAE [%]
30
0
-200
-15
-10
-5
0
Pin [dBm]
5
10
15
Figure 6. AMMC-6425 Typical Output Power, PAE, and Total Drain Current
versus Input Power at 25GHz
Typical over temperature dependencies (TA = 25C, Vd =5 V, Id(q) = 650 mA, Zin = Zout = 50 )
0.000
0.000
S11_20
S22_20
-5.000
S11_-40
S11_85
-10.000
S22[dB]
S11[dB]
-5.000
-15.000
15
10
20
25
Frequency[GHz]
30
35
-15.000
-25.000
30
34
25
32
P-1 [dBm]
S21[dB]
20
25
Frequency[GHz]
15
30
35
30
20
15
S21_20
10
5
15
28
26
S21_-40
24
S21_85
22
20
25
Frequency[GHz]
Figure 9. AMMC-6425 Typical Gain over temperature
4
10
Figure 8. AMMC-6425 Typical S22 over temperature
Figure 7. AMMC-6425 Typical S11 over temperature
0
10
S22_85
-10.000
-20.000
-20.000
-25.000
S22_-40
30
35
20
P-1_85deg
P-1_20deg
P-1_-40deg
16
18
20
22
24
Frequency [GHz]
Figure 10. AMMC-6425 Typical P-1 over temperature
26
28
30
Typical Scattering Parameters [1] (TA = 25C, Vd =5 V, ID = 650 mA, Zin = Zout = 50 )
Freq
S11
S21
S12
S22
[GHz]
dB
Mag
Phase
dB
Mag
Phase
dB
Mag
Phase
dB
Mag
Phase
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
-0.18
-0.50
-0.89
-1.35
-1.86
-2.44
-3.06
-3.82
-4.71
-5.84
-7.34
-9.18
-11.85
-14.61
-17.29
-18.59
-18.18
-19.99
-25.56
-28.70
-24.85
-21.69
-22.36
-21.48
-23.59
-24.27
-29.23
-26.07
-22.54
-23.20
-23.96
-28.29
-25.07
-22.55
-42.73
-23.68
-14.11
-11.27
-8.96
-8.29
-10.18
-13.20
-19.84
-15.75
-17.20
0.98
0.94
0.90
0.86
0.81
0.76
0.70
0.64
0.58
0.51
0.43
0.35
0.26
0.19
0.14
0.12
0.12
0.10
0.05
0.04
0.06
0.08
0.08
0.08
0.07
0.06
0.03
0.05
0.07
0.07
0.06
0.04
0.06
0.07
0.01
0.07
0.20
0.27
0.36
0.39
0.31
0.22
0.10
0.16
0.14
-31.00
-60.57
-88.63
-115.64
-140.94
-165.06
171.33
148.56
125.47
102.90
79.40
57.15
36.72
18.79
11.16
-3.90
-21.68
-62.71
-111.19
-72.75
-112.17
-133.66
-172.96
163.66
146.36
126.41
165.25
150.75
140.36
133.08
97.50
142.55
123.16
102.78
167.89
-128.70
179.93
157.39
117.64
91.80
51.89
38.89
36.35
50.47
60.92
-50.91
-46.71
-45.77
-43.43
-47.59
-52.20
-62.73
-61.78
-64.62
-54.25
-42.17
-27.52
-14.09
-1.42
11.13
19.39
22.36
25.12
26.50
26.07
25.60
25.28
24.93
24.49
24.34
24.61
24.62
22.38
18.42
14.45
10.68
6.86
2.75
-1.52
-5.81
-10.14
-14.68
-19.33
-24.11
-29.14
-33.41
-40.03
-44.99
-48.14
-48.85
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.04
0.20
0.85
3.60
9.32
13.12
18.04
21.14
20.11
19.06
18.36
17.63
16.76
16.49
17.01
17.03
13.15
8.33
5.28
3.42
2.20
1.37
0.84
0.51
0.31
0.18
0.11
0.06
0.03
0.02
0.01
0.01
0.00
0.00
172.26
-119.81
133.49
80.97
-36.53
-83.32
-112.45
-159.19
102.00
12.77
-16.36
-49.47
-100.12
-162.63
114.96
0.47
-97.26
174.40
83.81
2.80
-69.33
-138.46
153.57
87.35
21.96
-46.70
-125.11
150.42
75.77
9.65
-53.32
-115.03
-174.97
127.51
72.35
18.88
-33.49
-83.71
-139.37
163.76
105.70
47.72
-12.88
-47.19
-78.91
-80.52
-74.86
-74.75
-72.03
-74.43
-78.78
-70.47
-70.96
-66.03
-63.10
-63.11
-64.29
-66.04
-66.27
-62.22
-57.32
-56.62
-58.17
-59.81
-65.66
-62.29
-61.95
-63.22
-65.75
-63.00
-61.05
-60.13
-63.02
-65.92
-74.10
-73.92
-79.54
-66.14
-65.92
-74.96
-70.18
-66.20
-60.89
-57.08
-55.47
-54.94
-54.39
-53.97
-55.93
-61.91
9.42E-05
1.81E-04
1.83E-04
2.50E-04
1.90E-04
1.15E-04
3.00E-04
2.83E-04
5.00E-04
7.00E-04
6.99E-04
6.10E-04
4.99E-04
4.86E-04
7.74E-04
1.36E-03
1.48E-03
1.23E-03
1.02E-03
5.21E-04
7.68E-04
7.99E-04
6.90E-04
5.16E-04
7.08E-04
8.87E-04
9.85E-04
7.07E-04
5.06E-04
1.97E-04
2.01E-04
1.05E-04
4.93E-04
5.06E-04
1.79E-04
3.10E-04
4.90E-04
9.03E-04
1.40E-03
1.69E-03
1.79E-03
1.91E-03
2.00E-03
1.60E-03
8.03E-04
161.39
-20.97
-151.39
101.75
-61.03
-162.35
-177.29
142.99
137.46
110.85
83.54
51.91
51.77
61.73
80.54
43.30
5.66
-22.91
-58.29
-58.26
-51.21
-78.62
-96.75
-142.75
-167.89
107.89
45.28
-23.51
-89.51
119.51
84.14
72.59
96.41
80.40
-176.00
98.04
177.04
118.94
94.41
64.07
33.20
-9.11
-23.02
-51.98
-77.54
-0.14
-0.42
-0.66
-1.10
-1.44
-1.81
-2.29
-2.84
-3.43
-4.14
-5.08
-6.40
-8.57
-11.83
-17.73
-20.07
-23.13
-35.25
-32.08
-24.22
-20.28
-18.47
-17.01
-17.42
-18.48
-21.50
-27.76
-19.90
-18.54
-20.64
-19.81
-23.10
-20.62
-20.14
-21.03
-19.75
-20.77
-22.27
-22.14
-27.90
-24.29
-25.85
-32.40
-18.76
-20.68
0.98
0.95
0.93
0.88
0.85
0.81
0.77
0.72
0.67
0.62
0.56
0.48
0.37
0.26
0.13
0.10
0.07
0.02
0.02
0.06
0.10
0.12
0.14
0.13
0.12
0.08
0.04
0.10
0.12
0.09
0.10
0.07
0.09
0.10
0.09
0.10
0.09
0.08
0.08
0.04
0.06
0.05
0.02
0.12
0.09
-27.36
-53.39
-78.93
-103.74
-125.74
-149.44
-172.28
165.52
142.63
118.72
91.98
62.37
26.29
-19.97
-96.22
114.52
2.66
-81.56
-4.28
-64.07
-120.87
-148.19
173.91
152.07
122.77
104.97
-178.20
147.42
127.22
111.91
105.34
108.32
90.40
97.27
84.93
80.65
92.20
60.59
69.96
56.87
51.59
131.67
120.99
127.25
126.54
Note:
1. Data obtained from on-wafer measurement.
5
Application and Usage
Biasing and Operation
Assembly Techniques
The recommended quiescent DC bias condition for optimum efficiency, performance, and reliability is Vd=5 volts
with Vg set for Id=650mA. Minor improvements in performance are possible depending on the application. The
drain bias voltage range is 3 to 5V. A single DC gate supply connected to Vg will bias all gain stages. Muting can
be accomplished by setting Vg and /or Vg to the pinch-off
voltage Vp.
The chip should be attached directly to the ground plane
using either a flux less AuSn solder perform or electrically
conductive epoxy[1]. For conductive epoxy, the amount
should be just enough to provide a thin fillet around the
bottom perimeter of the die. The ground plane should
be free of any residue that may jeopardize electrical or
mechanical attachment. Caution should be taken to not
exceed the Absolute Maximum Rating for assembly temperature and time.
An optional output power detector network is also provided. The differential voltage between the Det-Ref and
Det-Out pads can be correlated with the RF power emerging from the RF output port. The detected voltage is given
by :
V = (Vref - Vdet) - Vofs
where Vref is the voltage at the DET_R port, Vdet is a voltage
at the DET_O port, and Vofs is the zero-input-power offset
voltage. There are three methods to calculate : Vofs
1) Vofs can be measured before each detector measurement
(by removing or switching off the power source and
measuring Vref - Vdet). This method gives an error due to
temperature drift of less than 0.01dB/50C.
2) Vofs can be measured at a single reference temperature.
The drift error will be less than 0.25dB.
3) Vofs can either be characterized over temprature and
stored in a lookup table, or it can be measured at two
temperatures and a linear fit used to calculate Vofs at
any temperature. This method gives an error close to
the method #1.
The RF ports are AC coupled at the RF input to the first
stage and the RF output of the final stage. No ground
wired are needed since ground connections are made
with plated through-holes to the backside of the device.
6
Thermo-sonic wedge bonding is the preferred method
for wire attachment to the bond pads. The RF connections
should be kept as short as possible to minimize inductance.
Gold mesh[2] or double-bonding with 0.7mil gold wire is
recommended. Mesh can be attached using a 2mil round
tracking tool and a too force of approximately 22grams
with an ultrasonic power of roughly 55dB for a duration of
76±8mS. A guided wedge at an ultrasonic power level of
64dB can be used for the 0.7mil wire. The recommended
wire bonding stage temperature is 150±2˚C.
The chip is 100μm thick and should be handled with care.
This MMIC has exposed air bridges on the top surface.
Handle at the edges or with a custom collet (do not pick
up die with vacuum on die center).
This MMIC is also static sensitive and ESD handling precautions should be taken.
For more detailed information, see Avago Application
Note 54 “GaAs MMIC ESD, Die Attach and Bonding Guide
lines.”
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824
Figure 11. AMMC-6425 Schematic
Figure 12. AMMC6425 Die dimension
7
Notes
1. 1uF capacitors not shown on gate and drain
lines are required.
2. Vd connection is required on both sides.
3. Vg can be biased from either side.
Figure 13. AMMC-6425 Assembly examples
1
0.50
0.1
0.30
0.20
0.01
(DET_R)-(DET_O)
[V]]
(DET_R)-(DET_O) [V]
0.40
0.10
0.00
0.001
0
5
10
15
20
RF Output Power [dBm]
25
Figure 14. Typical Detector Voltage and Output Power, Freq=25GHz
8
30
Ordering Information:
AMMC-6425-W10 = 10 devices per tray
AMMC-6425-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies Limited. All rights reserved.
AV02-0884EN - July 25, 2012
Similar pages