TOSHIBA TMP91CY22IFG

TOSHIBA Original CMOS 16-Bit Microcontroller
TLCS-900/L1 Series
TMP91CY22IFG
Preface
Thank you very much for making use of Toshiba microcomputer LSIs.
Before use this LSI, refer the section, “Points of Note and Restrictions”.
Especially, take care below cautions.
**CAUTION**
How to release the HALT mode
Usually, interrupts can release all halts status. However, the interrupts = ( NMI ,
INT0 to 4, INTRTC) which can release the HALT mode may not be able to do so if
they are input during the period CPU is shifting to the HALT mode (for about 5
clocks of fFPH) with IDLE1 or STOP mode (IDLE2 is not applicable to this case).
(In this case, an interrupt request is kept on hold internally.)
If another interrupt is generated after it has shifted to HALT mode completely,
halt status can be released without difficultly. The priority of this interrupt is
compare with that of the interrupt kept on hold internally, and the interrupt with
higher priority is handled first followed by the other interrupt.
TMP91CY22I
CMOS 16-Bit Microcontrollers
TMP91CY22IFG
1.
Outline and Features
TMP91CY22I is a high-speed 16-bit microcontroller designed for the control of various mid- to
large-scale equipment.
TMP91CY22I comes in a 100-pin flat package.
Listed below are the features.
(1) High-speed 16-bit CPU (900/L1 CPU)
•
Instruction mnemonics are upward-compatible with TLCS-90/900
•
16 Mbytes of linear address space
•
General-purpose registers and register banks
•
16-bit multiplication and division instructions; bit transfer and arithmetic instructions
•
Micro DMA: 4-channels (593 ns/2 bytes at 27 MHz)
(2) Minimum instruction execution time: 148 ns (at 27 MHz)
(3) Built-in RAM: 16 Kbytes
Built-in ROM: 256 Kbytes
RESTRICTIONS ON PRODUCT USE
030619EBP
• The information contained herein is subject to change without notice.
• The information contained herein is presented only as a guide for the applications of our products. No responsibility
is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily
injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical
instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall
be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and
sold, under any law and regulations.
• For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter
entitled Quality and Reliability Assurance/Handling Precautions.
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use
these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips.
91CY22I-1
2005-06-21
TMP91CY22I
(4) External memory expansion
•
Expandable up to 16 Mbytes (shared program/data area)
•
Can simultaneously support 8-/16-bit width external data bus
… Dynamic data bus sizing
(5) 8-bit timers: 8 channels
(6) 16-bit timer/event counter: 2 channels
(7) General-purpose serial interface: 2 channels
UART/ Synchronous mode: 2 channels
IrDA ver1.0 (115.2 kbps) supported
(8) Serial bus interface: 1 channel
•
I2C bus mode/clock synchronous Select mode
(9) 10-bit AD converter: 8 channels
(10) Watchdog timer
(11) Special timer for CLOCK
(12) Chip Select/Wait controller: 4 channels
(13) Interrupts: 45 interrupts
•
9 CPU interrupts: Software interrupt instruction and illegal instruction
•
26 internal interrupts:
•
10 external interrupts:
Seven selectable priority levels
(14) Input/Output ports: 81 pins
(15) Standby function
Three HALT modes: IDLE2 (programmable), IDLE1, STOP
(16) Triple-clock controller
•
Clock Doubler (DFM)
•
Clock Gear (fc to fc/16)
•
SLOW mode (fs = 32.768 kHz)
(17) Operating voltage
•
VCC = 2.7 V to 3.6 V (fc max = 27 MHz)
•
VCC = 1.8 V to 3.6 V (fc max = 10 MHz)
(18) Package
•
100-pin QFP: P-LQFP100-1414-0.50F
91CY22I-2
2005-06-21
TMP91CY22I
A D T R G (P 53 )
A N 0 to A N 7
(P 50 to P 57)
AVCC, AVSS
V RE FH, V RE FL
T XD 0 (P 9 0)
R XD 0 (P 9 1)
10 -B it 8C H
AD
C on ve rter
S IO /U A R T /IrD A
(S IO 0)
S C LK 0/ C T S 0 (P 92 )
T XD 1 (P 93)
R XD 1 (P 94)
S C LK 1/ C T S 1 (P 95 )
XW A
XB C
XDE
XHL
XIX
XIY
XIZ
XS P
W
B
D
H
A
C
E
L
IX
IY
IZ
SP
32 bits
SR
F
PC
S eria l B us
In terfac e
(S B I)
T A 0 IN (P 70)
8-B it T im er
(T M R A 0 )
S pec ial tim er
for C LO C K
T A 1O U T (P 71)
8-B it T im er
(T M R A 1 )
8-B it T im er
(T M R A 2 )
8-B it T im er
(T M R A 3 )
T A 5O U T (P 74)
8-B it T im er
(T M R A 5 )
8 -B it Tim er
(T M R A 6 )
T A 7O U T (P 75)
L-O S C
R ESET
P ort 2
P ort 3
8-B it T im er
(T M R A 7 )
(P 00 to P 0 7)
A D 0 to A D 7
(P 10 to P 17 )
A D 8/A 8 to A D 15/A 15
(P 20 to P 27 )
A 0 /A 1 6 to A 7/A 23
R D (P 30)
W R (P 31)
H W R (P 32)
B U S R Q (P 3 4)
B U S A K (P 3 5)
R / W (P 36)
P37
P ort 6
(P 64 ) S C O U T , P 65, P 6 6
P o rt A
P A 4 to P A 7
C o n tro lle r
(4-B L O C K )
Inte rru pt
C o n tro lle r
25 6-K B R O M
EMU0
EMU1
XT 1 (P 9 6)
XT 2 (P 9 7)
AM0
AM1
ALE
C S /W A IT
16 -K B R A M
8-B it T im er
(T M R A 4 )
C lo c k G e a r
C loc k d o u b le r
P ort 1
S C K (P 6 0)
S O /S D A (P 6 1)
S I / S C L (P 6 2)
T A 4 IN (P 73)
H -O S C
P ort 0
S IO /U A R T
(S IO 1)
W atc h dog
T im e r (W D T )
T A 3O U T (P 72)
D V C C [3]
D V S S [3]
X1
X2
C P U (T L C S -9 0 0 /L 1 )
16 -B it T im er
(T M R B 0 )
16 -B it T im er
(T M R B 1 )
(
(P 40 to P 43 )
C S 0 to
W A IT
CS3
(P 33)
NMI
IN T 0 (P 6 4)
IN T 1 to 4 (P A 0 to 3 )
T B 0 IN 0 /IN T 5 (P 8 0)
T B 0 IN 1 /IN T 6 (P 8 1)
T B 0 O U T 0 (P 82)
T B 0 O U T 1 (P 83)
T B 1 IN 0 /IN T 7 (P 8 4)
T B 1 IN 1 /IN T 8 (P 8 5)
T B 1 O U T 0 (P 86)
T B 1 O U T 1 (P 87)
): Initial func tion afte r re s et
Figure 1.1 TMP91CY22I Block Diagram
91CY22I-3
2005-06-21
TMP91CY22I
2.
Pin Assignment and Pin Functions
The assignment of input/output pins for the TMP91CY22I, their names and functions are as
follows:
2.1
Pin Assignment Diagram
Figure 2.1.1 shows the pin assignment of the TMP91CY22I.
88 P65
DVCC
89
87 P64/SCOUT
P66
90
86 P63/INT0
DVSS
91
85 P62/SI/SCL
P50/AN0
92
84 P61/SO/SDA
P51/AN1
93
83 P60/SCK
P52/AN2
94
82 P43/CS3
P53/AN3/ADTRG
95
81 P42/CS2
P54/AN4
96
80 P41/CS1
P55/AN5
97
79 P40/CS0
P56/AN6
98
78 P37
P57/AN7
99
VREFH
100
77 P36/R/W
76 P35/BUSAK
VREFL
1
75 P34/BUSRQ
AVSS
2
74 P33/WAIT
AVCC
3
73 P32/HWR
P70/TA0IN
4
72 P31/WR
P71/TA1OUT
5
71 P30/RD
P72/TA3OUT
6
P73/TA4IN
7
70 P27/A7/A23
69 P26/A6/A22
P74/TA5OUT
8
68 P25/A5/A21
P75/TA7OUT
9
67 P24/A4/A20
P80/TB0IN0/INT5
10
P81/TB0IN1/INT6
11
66 P23/A3/A19
65 P22/A2/A18
P82/TB0OUT0
12
P83/TB0OUT1
13
P84/TB1IN0/INT7
14
P85/TB1IN1/INT8
15
P86/TB1OUT0
16
61 P21/A1/A17
60 P20/A0/A16
P87/TB1OUT1
17
59 P17/AD15/A15
P90/TXD0
18
58 P16/AD14/A14
P91/RXD0
19
57 P15/AD13/A13
P92/SCLK0/CTS0
20
56 P14/AD12/A12
P93/TXD1
21
55 P13/AD11/A11
P94/RX1
22
54 P12/AD10/A10
P95/SCLK1/CTS1
23
AM0
24
53 P11/AD9/A9
52 P10/AD8/A8
DVCC
25
51 P07/AD7
X2
26
50 P06/AD6
DVSS
27
49 P05/AD5
X1
28
48 P04/AD4
AM1
29
47 P03/AD3
RESET
P96/XT1
30
31
46 P02/AD2
P97/XT2
32
44 P00/AD0
EMU0
33
43 ALE
EMU1
34
PA0/INT1
35
42 PA7
41 PA6
PA1/INT2
36
40 PA5
PA2/INT3
37
39 PA4
LQFP100
64 DVCC
63 NMI
Top View
62 DVSS
45 P01/AD1
38 PA3/INT4
Figure 2.1.1 Pin assignment diagram (100-pin LQFP)
91CY22I-4
2005-06-21
TMP91CY22I
2.2
Pin Names and Functions
The names of the input/output pins and their functions are described below.
Table 2.2.1 Pin names and functions.
Table 2.2.1 Pin names and functions (1/4)
Pin Name
Number
of Pins
I/O
Functions
P00 to P07
AD0 to AD7
8
I/O
Tri-state
Port 0: I/O port that allows I/O to be selected at the bit level
Address and data (lower): Bits 0 to 7 of address and data bus
P10 to P17
AD8 to AD15
A8 to A15
8
I/O
Tri-state
Output
Port 1: I/O port that allows I/O to be selected at the bit level
Address and data (upper): Bits 8 to 15 for address and data bus
Address: Bits 8 to 15 of address bus
P20 to P27
8
I/O
A0 to A7
A16 to A23
P30
Port 2: I/O port that allows I/O to be selected at the bit level
Output
Output
Address: Bits 0 to 7 of address bus
Address: Bits 16 to 23 of address bus
1
Output
Output
Port 30: Output port
Read: Strobe signal for reading external memory
RD is outputted by setting P3 <P30> = 0 and P3FC < P30F> = 1, when reading
1
Output
Output
Port 31: Output port
Write: Strobe signal for writing data to pins AD0 to AD7
1
I/O
Output
Port 32: I/O port (with pull-up resistor)
High Write: Strobe signal for writing data to pins AD8 to AD15
1
I/O
Input
Port 33: I/O port (with pull-up resistor)
Wait: Pin used to request CPU bus wait ((1 + N) wait mode)
1
I/O
Input
Port 34: I/O port (with pull-up resistor)
Bus Request: Signal used to request that set AD0∼15, A0∼23, RD , WR , HWR ,
1
I/O
Output
Port 35: I/O port (with pull-up resistor)
Bus Acknowledge: Signal used to acknowledge that AD0∼15, A0∼23, RD , WR ,
HWR , R / W , CS0 ∼ CS3 pins are set to High impedance by receiving BUSRQ . (For
1
I/O
Output
Port 36: I/O port (with pull-up resistor)
Read/Write: 1 represents Read or Dummy cycle; 0 represents Write cycle.
RD
internal area.
P31
WR
P32
HWR
P33
WAIT
P34
BUSRQ
R/W
P35
BUSAK
, CS0 ∼ CS3 pins to High impedance. (For external DMAC)
external DMAC)
P36
R/W
P37
1
I/O
P40
1
I/O
Output
Port 40: I/O port (with pull-up resistor)
Chip Select 0: Outputs 0 when address is within specified address area
1
I/O
Output
Port 41: I/O port (with pull-up resistor)
Chip Select 1: Outputs 0 if address is within specified address area
1
I/O
Output
Port 42: I/O port (with pull-up resistor)
Chip Select 2: Outputs 0 if address is within specified address area
1
I/O
Output
Port 43: I/O port (with pull-up resistor)
Chip Select 3: Outputs 0 if address is within specified address area
CS0
P41
CS1
P42
CS2
P43
CS3
Port 37: I/O port (with pull-up resistor)
91CY22I-5
2005-06-21
TMP91CY22I
Table 2.2.1 Pin names and functions (2/4)
Pin Name
P50 to P57
AN0 to AN7
Number
of Pins
8
ADTRG
P60
SCK
P61
SO
SDA
P62
SI
SCL
1
1
1
I/O
Input
Input
Input
I/O
I/O
I/O
Output
I/O
Functions
Port 5: Pin used to input port
Analog input: Pin used to input to AD converter
AD Trigger: Signal used to request start of AD converter (Shared with P53)
Port 60: I/O port
Serial bus interface clock in SIO Mode
Port 61: I/O port
Serial bus interface output data in SIO Mode
Serial bus interface data in I2C bus Mode. (programmable open-drain)
I/O
Input
I/O
Port 62: I/O port
Serial bus interface input data in SIO Mode
Serial bus interface clock in I2C bus Mode. (programmable open-drain)
Port 63: I/O port
Interrupt Request Pin 0: Interrupt request pin with programmable
level / rising edge / falling edge
P63
INT0
1
I/O
Input
P64
SCOUT
1
I/O
Output
P65
1
I/O
Port 65: I/O port
P66
1
I/O
Port 66: I/O port
P70
TA0IN
1
I/O
Input
P71
TA1OUT
1
I/O
Output
Port 71: I/O port
8-bit timer 1 output:Timer A1 Output
P72
TA3OUT
1
I/O
Output
Port 72: I/O port
8-bit timer 3 output: Timer A3 Output
P73
TA4IN
1
I/O
Input
P74
TA5OUT
1
I/O
Output
Port 74: I/O port
8-bit timer 5 output:Timer A5 Output
P75
TA7OUT
1
I/O
Output
Port 75: I/O port
8-bit timer 7 output:Timer A7 Output
P80
TB0IN0
INT5
1
I/O
Input
Input
Port 80: I/O port
16-bit timer 0 input0:Timer B0 count/capture trigger Input 0
Interrupt Request Pin 5: Interrupt request pin with programmable rising edge / falling
edge.
P81
TB0IN1
INT6
1
I/O
Input
Input
Port 81: I/O port
16-bit timer 0 input1: Timer B0 count/capture trigger Input 1
Interrupt Request Pin 6: Interrupt request on rising edge
P82
TB0OUT0
1
I/O
Output
Port 82: I/O port
16-bit timer 0 output 0: Timer B0 Output 0
P83
TB0OUT1
1
I/O
Output
Port 83: I/O port
16-bit timer 0 output 1: Timer B0 Output 1
P84
TB1IN0
INT7
1
I/O
Input
Input
Port 84: I/O port
16-bit timer 1 input0: Timer B1 count/capture trigger Input 0
Interrupt Request Pin 7: Interrupt request pin with programmable rising edge / falling
edge.
P85
TB1IN1
INT8
1
I/O
Input
Input
Port 85: I/O port
16-bit timer 1 input 1: Timer B1 count/capture trigger Input 1
Interrupt Request Pin 8: Interrupt request on rising edge
P86
TB1OUT0
1
I/O
Output
Port 86: I/O port
16-bit timer 1 output 0: Timer B1 Output 0
P87
TB1OUT1
1
I/O
Output
Port 87: I/O port
16-bit timer 1 output 1: Timer B1 Output 1
Port 64: I/O port
System Clock Output: Outputs fFPH or fs clock.
Port 70: I/O port
8-bit timer 0 input: Timer A0 Input
Port 73: I/O port
8-bit timer 4 input:Timer A4 Input
91CY22I-6
2005-06-21
TMP91CY22I
Table 2.2.1 Pin names and functions (3/4)
Pin Name
Number
of Pins
I/O
Functions
P90
TXD0
1
I/O
Output
P91
RXD0
1
I/O
Input
P92
SCLK0
1
I/O
Port 92: I/O port
I/O
Serial Clock I/O 0
Input
CTS0
P93
1
TXD1
P94
Output
1
RXD1
P95
1
1
Port 91: I/O port
Serial Receive Data 0
Serial Data Send Enable 0 (Clear to Send)
Port 93: I/O port
Serial Send Data 1 (programmable open-drain)
Port 94: I/O port
Serial Receive Data 1
I/O
Port 95: I/O port
I/O
Serial Clock I/O 1
Input
CTS1
XT1
I/O
Input
SCLK1
P96
I/O
Port 90: I/O port
Serial Send Data 0 (programmable open-drain)
I/O
Input
Serial Data Send Enable 1 (Clear to Send)
Port 96: I/O port (open-drain output)
Low-frequency oscillator connection pin
91CY22I-7
2005-06-21
TMP91CY22I
Table 2.2.1 Pin names and functions (4/4)
Pin Name
P97
Number
of Pins
1
XT2
I/O
I/O
Output
PA0 to PA3
4
INT1 to INT4
I/O
Input
Functions
Port 97: I/O port (open-drain output)
Low-frequency oscillator connection pin
Ports A0 to A3: I/O ports
Interrupt Request Pins 1 to 4: Interrupt request pins with programmable rising edge /
falling edge.
PA4 to PA7
4
I/O
ALE
1
Output
Ports A4 to A7: I/O ports
NMI
1
Input
Non-Maskable Interrupt Request Pin: Interrupt request pin with programmable falling
AM0 to AM1
2
Input
Operation mode:
Fixed to AM1 = “1”, AM0 = “1”.
EMU0/EMU1
1
Output
RESET
1
Input
VREFH
1
Input
Pin for reference voltage input to AD converter (H)
VREFL
1
Input
Pin for reference voltage input to AD converter (L)
Address Latch Enable
(Can be disabled to reduce noise.)
edge or both edge.
Set to Open pins
Reset: initializes TMP91CY22. (with pull-up resistor)
AVCC
1
Power supply pin for AD converter
AVSS
1
Power GND pin for AD converter (0 V)
X1/X2
2
DVCC
3
Power supply pins (All DVCC pins should be connected with the power supply pin.)
DVSS
3
GND pins (0 V) (All DVSS pins should be connected with the GND (0V) pin.)
Note:
I/O
High frequency oscillator connection pins
An external DMA controller cannot access the device’s built-in memory or built-in I/O devices using the BUSRQ and
BUSAK signal.
91CY22I-8
2005-06-21
TMP91CY22I
3.
Operation
This device is a version of expanding its internal mask ROM size to 256 Kbytes and RAM size to
16 Kbytes. The configuration and the functionality of this device are the same as those of the
TMP91CW12A. For the functions of this device that are not described here, refer to the
TMP91CW12A data sheet.
3.1
Memory Map
Figure 3.1.1 is a memory map of the TMP91CY22I.
000000H
Internal I/O
(4 Kbytes)
Direct area (n)
000100H
001000H
64 Kbyte area
(nn)
Internal RAM
(16 Kbytes)
005000H
010000H
External memory
16 Mbyte area
(R)
(−R)
(R+)
(R + R8/16)
(R + d8/16)
(nnn)
FC0000H
Internal ROM
(256 Kbytes)
FFFF00H
FFFFFFH
Vector Table (256 bytes)
(
= Internal area)
Figure 3.1.1 Memory Map
91CY22I-9
2005-06-21
TMP91CY22I
4.
4.1
Electrical Characteristics
Maximum Ratings
Parameter
Symbol
Rating
Unit
Power Supply Voltage
Vcc
−0.5 to 4.0
V
Input Voltage
VIN
−0.5 to Vcc + 0.5
V
Output Current
IOL
2
Output Current
IOH
−2
mA
Output Current (total)
ΣIOL
80
mA
Output Current (total)
ΣIOH
−80
mA
Power Dissipation (Ta = 85°C)
PD
600
mW
Soldering Temperature (10 s)
TSOLDER
260
°C
Storage Temperature
TSTG
−65 to 150
°C
Operating Temperature
TOPR
−40 to 85
°C
Note:
mA
The maximum ratings are rated values which must not be exceeded during operation,
even for an instant. Any one of the ratings must not be exceeded. If any maximum rating
is exceeded, a device may break down or its performance may be degraded, causing it to
catch fire or explode resulting in injury to the user. Thus, when designing products which
include this device, ensure that no maximum rating value will ever be exceeded.
Point of note about solderability of lead free products (attach “G” to package name)
Test
parameter
Test condition
Note
Solderability
(1)
Pass:
solderability rate until forming ≥ 95%
Use of Sn-63Pb solder Bath
Solder bath temperature =230°C, Dipping time = 5 seconds
The number of times = one, Use of R-type flux
(2)
Use of Sn-3.0Ag-0.5Cu solder bath
Solder bath temperature =245°C, Dipping time = 5 seconds
The number of times = one, Use of R-type flux (use of lead free)
91CY22I-10
2005-06-21
TMP91CY22I
4.2
DC Characteristics (1/2)
Parameter
Power Supply Voltage
(AVcc = DVcc)
(AVss = DVss = 0 V)
P00 to P17 (AD0 to 15)
P20 to PA7 (except P63)
Input
Low Voltage
RESET , NMI , P63 (INT0)
AM0, 1
X1
VCC
VIL
VIL1
VIL2
VIL3
VIL4
P00 to P17 (AD0 to AD15)
P20 to PA7 (except P63)
RESET , NMI , P63 (INT0)
Input
High Voltage
Symbol
AM0, 1
X1
VIH
VIH1
VIH2
VIH3
VIH4
Output Low Voltage
VOL
Output High Voltage
VOH
Note:
Condition
Min
fc = 4 to 27 MHz
fs = 30 to
2.7
fc = 2 to 10 MHz
34 kHz
1.8
Typ.
(Note)
Max
Unit
3.6
V
Vcc ≥ 2.7 V
0.6
Vcc < 2.7 V
0.2Vcc
Vcc ≥ 2.7 V
0.3Vcc
Vcc < 2.7 V
0.2Vcc
Vcc ≥ 2.7 V
−0.3
Vcc < 2.7 V
Vcc ≥ 2.7 V
0.25Vcc
0.15Vcc
0.3
Vcc < 2.7 V
0.3
Vcc ≥ 2.7 V
0.2Vcc
Vcc < 2.7 V
0.1Vcc
Vcc ≥ 2.7 V
2.0
Vcc < 2.7 V
0.7Vcc
Vcc ≥ 2.7 V
0.7Vcc
Vcc < 2.7 V
0.8Vcc
Vcc ≥ 2.7 V
0.75Vcc
Vcc < 2.7 V
0.85Vcc
Vcc ≥ 2.7 V
Vcc − 0.3
Vcc < 2.7 V
Vcc − 0.3
Vcc ≥ 2.7 V
0.8Vcc
V
Vcc + 0.3
Vcc < 2.7 V
IOL = 1.6 mA
Vcc ≥ 2.7 V
0.45
IOL = 0.4 mA
Vcc < 2.7 V
0.15Vcc
IOH = −400 µA
Vcc ≥ 2.7 V
2.4
IOH = −200µA
Vcc < 2.7 V
0.8Vcc
0.9Vcc
V
Typical values are for when Ta = 25°C and Vcc = 3.0 V unless otherwise noted.
91CY22I-11
2005-06-21
TMP91CY22I
4.2
DC Characteristics (2/2)
Parameter
Symbol
Condition
Min
Typ.
(Note 1)
Max
Input Leakage Current
ILI
0.0 ≤ VIN ≤ Vcc
0.02
±5
Output Leakage Current
ILO
0.2 ≤ VIN ≤ Vcc − 0.2
0.05
±10
Power Down Voltage
(at STOP, RAM back-up)
VSTOP
V IL2 = 0.2 Vcc,
V IH2 = 0.8 Vcc
1.8
RESET Pull-up Resistor
RRST
Vcc = 3 V ± 10%
100
400
Vcc = 2 V ± 10%
200
1000
Pin Capacitance
Schmitt Width
RESET , NMI , INT0
CIO
VTH
Programmable
Pull-up Resistor
RKH
NORMAL (Note 2)
Icc
IDLE2
fc = 1 MHz
10
Vcc ≥ 2.7 V
0.4
1.0
Vcc < 2.7 V
0.3
0.8
Vcc = 3 V ± 10%
100
400
Vcc = 2 V ± 10%
200
1000
Vcc = 3 V ± 10%
fc = 27 MHz
IDLE1
NORMAL (Note 2)
IDLE2
IDLE1
Vcc = 2 V ± 10 %
fc = 10 MHz
(Typ.: Vcc = 2.0 V)
IDLE2
Vcc = 3 V ± 10 %
fs = 32.768 kHz
IDLE1
Ta ≤ 70°C
SLOW (Note 2)
Ta ≤ 85°C
IDLE1
Vcc = 2 V ± 10 %
fs = 32.768 KHz
(Typ.: Vcc = 2.0 V)
STOP
Vcc = 1.8 to 3.3V
SLOW (Note 2)
IDLE2
3.6
Note 1:
Typical values are for when Ta = 25°C and Vcc = 3.0 V unless otherwise noted.
Note 2:
Icc measurement conditions (NORMAL, SLOW):
10.0
µA
V
kΩ
pF
V
kΩ
13.0
2.5
3.5
1.0
1.8
1.7
2.5
0.6
0.9
0.25
0.4
11.6
30
5.2
19
3.0
Unit
8
mA
mA
µA
15
7.7
20
3.5
13
2.0
10
0.1
10
µA
µA
All functions are operating; output pins are open and input pins are fixed.
91CY22I-12
2005-06-21
TMP91CY22I
4.3
AC Characteristics
(1) Vcc = 3.0 V ± 10%
No.
Parameter
Symbol
Variable
fFPH = 27 MHz
Max
Unit
Min
Max
Min
37.0
31250
37.0
ns
1
fFPH Period ( = x)
tFPH
2
A0 to A15 Vaild → ALE Fall
tAL
0.5x − 14
4
ns
3
ALE Fall → A0 to A15 Hold
tLA
0.5x − 16
2
ns
4
ALE High Width
tLL
x − 20
17
ns
5
ALE Fall → RD / WR Fall
tLC
0.5x − 14
4
ns
6
RD Rise → ALE Rise
tCLR
0.5x − 10
8
ns
7
WR Rise → ALE Rise
tCLW
x − 10
27
ns
8
A0 to A15 Valid → RD / WR Fall
tACL
x − 23
14
ns
9
A0 to A23 Valid → RD / WR Fall
tACH
1.5x − 26
29
ns
10
RD Rise → A0 to A23 Hold
tCAR
0.5x − 13
5
ns
11
WR Rise → A0 to A23 Hold
tCAW
x − 13
24
12
A0 to A15 Valid → D0 to D15 Input
tADL
3.0x − 38
73
ns
13
A0 to A23 Valid → D0 to D15 Input
tADH
3.5x − 41
88
ns
14
RD Fall → D0 to D15 Input
tRD
44
ns
15
RD Low Width
tRR
2.0x − 15
59
ns
16
RD Rise → D0 to A15 Hold
tHR
0
0
ns
2.0x − 30
ns
17
RD Rise → A0 to A15 Output
tRAE
x − 15
22
ns
18
WR Low Width
tWW
1.5x − 15
40
ns
19
D0 to D15 Valid → WR Rise
tDW
1.5x − 35
20
ns
20
WR Rise → D0 to D15 Hold
tWD
x − 25
12
ns
1+n
wait Mode
1+n
wait Mode
1+n
wait Mode
tAWH
3.5x − 60
69
ns
tAWL
3.0x − 50
61
ns
21
A0 to A23 Valid → WAIT Input
22
A0 to A15 Valid → WAIT Input
23
RD / WR Fall → WAIT Hold
24
A0 to A23 Valid → Port Input
tAPH
25
A0 to A23 Valid → Port Hold
tAPH2
26
A0 to A23 Valid → Port Valid
tAP
2.0x + 0
tCW
74
3.5x − 89
3.5x
ns
40
ns
209
ns
129
3.5x + 80
ns
AC Measuring Conditions
• Output Level: High = 0.7 Vcc, Low = 0.3 Vcc, CL = 50 pF
• Input Level: High = 0.9 Vcc, Low = 0.1 Vcc
Note:
“x” used in an expression shows a frequency for the clock
fFPH selected by
SYSCR1<SYSCK>.
The value of “x” changes according to whether a clock gear or a low-speed oscillator is
selected.
An example value is calculated for fc, with gear=1/fc (SYSCR1<SYSCK,GEAR2 to 0> = 0000).
91CY22I-13
2005-06-21
TMP91CY22I
(2) Vcc = 2.0 V ± 10%
No.
Parameter
Symbol
Variable
fFPH =10M Hz
Min
Max
Min
100
31250
Max
Unit
1
fFPH Period ( = x)
tFPH
100
ns
2
A0 to A15 → ALE Fall
tAL
0.5 x − 28
22
ns
3
ALE Fall → A0 to A15 Hold
tLA
0.5 x − 35
15
ns
4
ALE High Width
tLL
x − 40
60
ns
5
ALE Fall → RD / WR Fall
tLC
0.5x − 28
22
ns
6
RD Rise → ALE Rise
tCLR
0.5x − 20
30
ns
7
WR Rise → ALE Rise
tACW
x − 20
80
ns
8
A0 to A15 Valid → RD / WR Fall
tACL
x − 75
25
ns
9
A0 to A23 Valid → RD / WR Fall
TACH
1.5x −70
80
ns
10
RD Rise → A0 to A23 Hold
tCAR
0.5x − 30
20
ns
11
WR Rise → A0 to A23 Hold
TCAW
x − 30
70
ns
12
A0 to A15 Valid → D0 to D15 Input
tADL
13
A0 to A23 Valid → D0 to D15 Input
14
RD Fall → D0 to D15 Input
15
RD Low Width
tRR
16
RD Rise → D0 to D15 Hold
tHR
0
0
ns
17
RD Rise → A0 to A15 Output
tRAE
x − 30
70
ns
18
WR Low Width
tWW
1.5 x − 30
120
ns
19
D0 to D15 Valid → WR Rise
tDW
1.5 x − 70
80
ns
20
WR Rise →D0 to D15 Hold
tWD
x − 50
50
ns
21
A0 to A23 Valid → WAIT Input
22
A0 to A15 Valid → WAIT Input
1+n
wait mode
1+n
wait mode
23
RD / WR Fall → WAIT Hold
1+n
wait mode
24
A0 to A23 Valid → Port Input
tAPH
25
A0 to A23 Valid → Port Hold
tAPH2
26
A0 to A23 Valid → Port Valid
tAP
3.0x − 76
224
ns
tADH
3.5x − 82
268
ns
TRD
2.0x − 60
140
ns
2.0x − 30
170
3.5x − 120
tAWH
3.0x − 100
tAWL
2.0x + 0
tCW
ns
230
ns
200
ns
180
ns
520
ns
200
3.5x − 170
3.5x
ns
350
3.5x + 170
ns
AC Measuring Conditions
• Output Level: High = 0.7 Vcc, Low = 0.3 Vcc, CL = 50 pF
• Input Level: High = 0.9 Vcc, Low = 0.1 Vcc
Note:
“x” used in an expression shows a frequency for the clock fFPH selected by
SYSCR1<SYSCK>.
The value of “x” changes according to whether a clock gear or a low-speed oscillator is
selected.
An example value is calculated for fc, with gear=1/fc (SYSCR1<SYSCK,GEAR2 to 0> = 0000).
91CY22I-14
2005-06-21
TMP91CY22I
(3) Read Cycle
tFPH
fFPH
A0 to A23
CS0 to CS3
R/W
tAWH
tAWL
tCW
WAIT
tAP
tAPH2
Port input
(Note)
tADH
RD
tACH
tAC
tLC
AD0 to AD15
A0 to A15
tAL
ALE
Note:
tCAR
tRR
tRD
tADL
tRAE
tHR
D0 to D15
tLA
tCLR
tLL
Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as RD and CS
are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also
note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact
your local Toshiba sales representative.
91CY22I-15
2005-06-21
TMP91CY22I
(4) Write Cycle
fFPH
A0 to A23
CS0 to CS3
R/W
WAIT
tAP
Port Output
(Note)
tCAW
WR, HWR
tWW
tDW
AD0 to AD15
A0 to A15
tWD
D0 to D15
tCLW
ALE
Note:
Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as WR and CS
are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also
note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact
your local Toshiba sales representative.
91CY22I-16
2005-06-21
TMP91CY22I
4.4
AD Conversion Characteristics
AVcc = Vcc, AVss = Vss
parameter
Symbol
Analog Reference Voltage (+)
VREFH
Analog Reference Voltage (−)
VREFL
Condition
Min
(not including quantizing errors)
−
Max
Vcc = 3 V ± 10%
Vcc − 0.2 V
Vcc
Vcc
Vcc = 2 V ± 10%
Vcc
Vcc
Vcc
Vcc = 3 V ± 10%
Vss
Vss
Vss + 0.2 V
Vss
Vss
Vcc = 2 V ± 10%
Analog Input Voltage Range
VAIN
Analog Current for Analog Reference
Vcc = 3 V ± 10%
Voltage
IREF
<VREFON> = 1
Vcc = 2 V ± 10%
(VREFL = 0V)
Vcc = 1.8 V to 3.3 V
<VREFON> = 0
Error
Typ.
VREFL
Vss
0.94
1.20
0.65
0.90
mA
0.02
5.0
± 1.0
± 4.0
Vcc = 2 V ± 10%
± 1.0
± 4.0
1 LSB = (VREFH − VREFL)/1024 [V]
Note 2:
The operation above is guaranteed for fFPH ≥ 4 MHz.
Note 3:
The value for ICC includes the current which flows through the AVCC pin.
91CY22I-17
V
VREFH
Vcc = 3 V ± 10%
Note 1:
Unit
µA
LSB
2005-06-21
TMP91CY22I
4.5
Serial Channel Timing (I/O Internal Mode)
(1) SCLK Input Mode
Parameter
Variable
Symbol
Min
SCLK Period
tSCY
10 MHz
Max
16X
tSCY/2 − 4x −110
Output Data → SCLK Rising
tOSS
/Falling Edge*
(Vcc=3V±10%)
→ Output Data Hold
SCLK Rising/Falling Edge*
→ Input Data Hold
SCLK Rising/Falling Edge*
1.6
0.59
290
38
220
⎯
Unit
Max
µs
tSCY/2 + 2X + 0
1000
370
ns
tHSR
3x+10
310
121
ns
tSCY − 0
Valid Data Input
t
→SCLK Rising/Falling Edge* RDS
*) SCLK Rinsing/Falling Edge:
Min
tOHS
tSRD
→ Valid Data Input
Max
ns
tSCY/2 − 4x −180
(Vcc=2V±10%)
SCLK Rising/Falling Edge*
Min
27 MHz
1600
0
0
592
0
ns
ns
The rising edge is used in SCLK Rising Mode.
The falling edge is used in SCLK Falling Mode.
Note: Value of 27 MHz and 10MHz at tSCY = 16X.
(2) SCLK Output Mode
Parameter
SCLK Period
Variable
Symbol
tSCY
10 MHz
27 MHz
Min
Max
Min
Max
Min
Max
16X
8192X
1.6
819
0.59
303
Unit
µs
Output Data
tOSS
→ SCLK Rising/Falling Edge*
tSCY/2 − 40
760
256
ns
SCLK Rising/Falling Edge*
tOHS
tSCY/2 − 40
760
256
ns
tHSR
0
0
0
ns
→ Output Data Hold
SCLK Rising/Falling Edge*
→ Input Data Hold
SCLK Rising Rising/Falling Edge*
→ Valid Data Input
tSCY − 1X − 180
tSRD
Valid Data Input
tRDS
→ SCLK Rising/Falling Edge*
1X + 180
1320
375
280
217
ns
ns
tSCY
SCLK
Output Mode/
Input Mode
SCLK
(Input Mode)
tOSS
tOHS
OUTPUT DATA
TXD
0
INPUT DATA
RXD
0
1
tSRD
Valid
91CY22I-18
tRDS
1
Valid
2
3
tHSR
2
3
Valid
Valid
2005-06-21
TMP91CY22I
4.6
Event Counter (TA0IN, TA4IN, TB0IN0, TB0IN1, TB1IN0, TB1IN1)
Parameter
Variable
Symbol
Min
4.7
10 MHz
Max
Min
27 MHz
Max
Min
Unit
Max
Clock period
tVCK
8X + 100
900
396
ns
Clock Low level width
tVCKL
4X + 40
440
188
ns
Clock High level width
tVCKH
4X + 40
440
188
ns
10 MHz
27 MHz
Interrupt and Capture
(1) NMI , INT0 to INT4 Interrupts
Parameter
Variable
Symbol
Min
Max
Min
Max
Min
Unit
Max
NMI , INT0 to INT4 Low level width
tINTAL
4X + 40
440
188
ns
NMI , INT0 to INT4 High level width
tINTAH
4X + 40
440
188
ns
(2) INT5 to INT8 Interrupts, Capture
The INT5 to INT8 input width depends on the system clock and prescaler clock settings.
tINTBL
tINTBH
System Clock Prescaler Clock (INT5 to INT8 Low level Width) (INT5 to INT8 High Level Width) Unit
Selected
Selected
Variable
fFPH = 10 MHz
Variable
fFPH = 27 MHz
<SYSCK>
<PRCK1:0>
0 (fc)
1 (fs)
Note:
4.8
Min
Min
Min
8X + 100
396
8X + 100
396
ns
10 (fc/16)
128Xc + 0.1
4.8
128Xc + 0.1
4.8
00 (fFPH)
8X + 0.1
244.3
8X + 0.1
244.3
µs
Xc = Period of Clock fc
SCOUT Pin AC Characteristics
Parameter
Low level width
High level width
Note:
Min
00 (fFPH)
Symbol
tSCH
tSCL
Variable
Min
10 MHz
Max
Min
Max
27 MHz
Min
Max
Condition Unit
0.5T − 13
37
5
Vcc ≥ 2.7 V
0.5T − 25
25
−
Vcc < 2.7 V
0.5T − 13
37
5
Vcc ≥ 2.7 V
0.5T − 25
25
−
Vcc < 2.7 V
ns
ns
T = Period of SCOUT
Measrement Condition
• Output Level: High 0.7 Vcc/Low 0.3 Vcc, CL = 10pF
tSCH
tSCL
SCOUT
91CY22I-19
2005-06-21
TMP91CY22I
4.9
Bus Request/Bus Acknowledge
BUSRQ
(Note 1)
BUSAK
tCBAL
tBAA
(Note 2)
tABA
AD0 to AD15
A0 to A23,
RD , WR
(Note 2)
CS0 to
CS3 ,
R / W HWR
ALE
Variable
Paramter
Symbol
Min
Output Buffer Off to BUSAK
Low
BUSAK
High
to
Output
Buffer On
Note 1:
tABA
tBAA
Max
fFPH = 10 MHz
Min
Max
fFPH = 27 MHz
Min
Condition Unit
Max
0
80
0
80
0
80
Vcc ≥ 2.7 V
0
300
0
300
0
300
Vcc < 2.7 V
0
80
0
80
0
80
Vcc ≥ 2.7 V
0
300
0
300
0
300
Vcc < 2.7 V
ns
ns
Even if the BUSRQ Signal goes Low, the bus will not be released while the WAIT signal is Low. The bus will only be released
when BUSRQ goes Low while WAIT is High.
Note 2:
This line shows only that the output buffer is in the Off state.
It does not indicate that the signal level is fixed.
Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external
capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since
fixing of the level is delayed.
The internal programmable pull-up/pull-down resistor is switched between the active and non-active states by the internal signal.
91CY22I-20
2005-06-21
TMP91CY22I
4.10 Recommended Oscillation Circuit
TMP91CY22I has been evaluated by murata manufacturing Co., Ltd. Please refer to murata
manufacturing Co., Ltd.
Note:
Total loads value of oscillator is sum of external loads (C1 and C2) and floating loads of
actual assemble board. There is a possibility of miss-operating. When designing board, it
should design minimum length pattern around oscillator. And we recommend that oscillator
evaluation try on your actual using board.
(1) Examples of resonator connection
X1
XT1
X2
XT2
Rd
Rd
C1
C2
C1
Figure 4.10.1 High-frequency Oscillator
Connection
C2
Figure 4.10.2 Low-frequency Oscillator
Connection
(2) Recommended ceramic resonators for TMP91CY22I: Murata Manufacturing Co., Ltd.
Ta = −40 to 85°C
Parameter of
MCU
Frequency
[MHZ]
2.00
4.00
TMP91CY22I
6.00
10.00
Running Condition
Elements
Oscillation
Item of Oscillator
C1
C2
[pF]
[pF]
CSTCC2M00G56-R0
(47)
(47)
CSTCR4M00G55-R0
(39)
(39)
CSTLS4M00G56-B0
(47)
(47)
CSTCR6M75G55-R0
(39)
(39)
CSTLS6M75G56-B0
(47)
(47)
CSTLS10M0G53-B0
(15)
(15)
Rd
[Ω]
Voltage of
Power
[V]
Tc[°C]
1.8 ∼ 2.2
0
2.7 ∼ 3.3
-20 ∼ +80
1.8 ∼ 2.2
•
In CST*** type oscillator, capacitance C1, C2 is built-in.
•
The product numbers and specifications of the resonators by Murata Manufacturing
Co., Ltd. are subject to change. For up-to-date information, please refer to the
following URL;
http://www.murata.co.jp
91CY22I-21
2005-06-21
TMP91CY22I
5.
Package Dimensions
P-LQFP100-1414-0.50F
Unit: mm
91CY22I-22
2005-06-21