Fairchild NDS351AN N-channel logic level enhancement mode field effect transistor Datasheet

April 1997
NDS351AN
N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description
Features
These N-Channel logic level enhancement mode power field
effect transistors are produced using Fairchild's proprietary,
high cell density, DMOS technology. This very high density
process is especially tailored to minimize on-state resistance.
These devices are particularly suited for low voltage
applications in notebook computers, portable phones, PCMCIA
cards, and
other battery powered circuits where fast
switching, and low in-line power loss are needed in a very small
outline surface mount package.
1.2A, 30 V. RDS(ON) = 0.25 Ω @ VGS = 4.5 V
RDS(ON) = 0.16 Ω @ VGS = 10 V.
Industry standard outline SOT-23 surface mount package
using proprietary SuperSOTTM-3 design for superior
thermal and electrical capabilities.
High density cell design for extremely low RDS(ON).
Exceptional on-resistance and maximum DC current
capability.
Compact industry standard SOT-23 surface mount
_________________________________________________________________________________
D
S
G
Absolute Maximum Ratings
T A = 25°C unless otherwise noted
Symbol
Parameter
VDSS
Drain-Source Voltage
VGSS
Gate-Source Voltage - Continuous
ID
Maximum Drain Current - Continuous
PD
Maximum Power Dissipation
(Note 1a)
- Pulsed
Units
30
V
20
V
± 1.2
A
± 10
(Note 1a)
(Note 1b)
TJ,TSTG
NDS351AN
Operating and Storage Temperature Range
0.5
W
0.46
-55 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
250
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
75
°C/W
© 1997 Fairchild Semiconductor Corporation
NDS351AN Rev. C
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
IDSS
Zero Gate Voltage Drain Current
VDS = 24 V, VGS = 0 V
30
V
TJ =125°C
1
µA
10
µA
IGSSF
Gate - Body Leakage, Forward
VGS = 20 VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -20 V, VDS = 0 V
-100
nA
2
V
ON CHARACTERISTICS (Note 2)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
RDS(ON)
Static Drain-Source On-Resistance
VGS = 4.5 V, ID = 1.2 A
0.8
TJ =125°C
0.5
TJ =125°C
VGS = 10 V, ID = 1.4 A
1.7
1.3
1.5
0.19
0.25
0.28
0.37
0.125
0.16
3.5
Ω
ID(ON)
On-State Drain Current
VGS = 4.5 V, VDS = 5 V
gFS
Forward Transconductance
VDS = 5 V, ID= 1.2 A,
1.8
A
S
VDS = 10 V, VGS = 0 V,
f = 1.0 MHz
125
pF
100
pF
90
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS
td(on)
Turn - On Delay Time
tr
Turn - On Rise Time
td(off)
tf
Qg
Total Gate Charge
Q gs
Gate-Source Charge
Q gd
Gate-Drain Charge
(Note 2)
VDD = 10 V, ID = 1 A,
VGS = 10 V, RGEN = 50 Ω
6
15
ns
15
30
ns
Turn - Off Delay Time
14
30
ns
Turn - Off Fall Time
18
40
ns
1.9
2.7
nC
VDS = 10 V, ID = 1.2 A,
VGS = 4.5 V
0.5
nC
0.9
nC
NDS351AN Rev. C
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
0.42
A
5
A
1.2
V
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
IS
Maximum Continuous Drain-Source Diode Forward Current
ISM
Maximum Pulsed Drain-Source Diode Forward Current
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = 1.2 A (Note 2)
0.8
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of
the drain pins. RθJC is
guaranteed by design while RθCA is determined by the user's board design.
P D (t ) =
T J− TA
R θJA(t )
=
TJ
− TA
R θJC+RθCA(t )
= I 2D (t ) × RDS(ON )
TJ
Typical RθJA using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:
a. 250oC/W when mounted on a 0.02 in2 pad of 2oz copper.
b. 270oC/W when mounted on a 0.001 in2 pad of 2oz copper.
1a
1b
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
NDS351AN Rev. C
Typical Electrical Characteristics
1.8
5
6.0
5.0
R DS(on ) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
I D , DRAIN-SOURCE CURRENT (A)
V GS =10V
4.5
4.0
4
3
3.5
2
3.0
1
1.6
VGS = 3.5V
1.4
1.2
4.0
4.5
1
5.0
6.0
0.8
7.0
10
0.6
0.4
0
0
1
V
DS
2
0
3
1
Figure 1. On-Region Characteristics.
4
1.6
RDS(on) , NORMALIZED
V GS = 4.5V
1.4
1.2
1
0.8
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
150
DRAIN-SOURCE ON-RESISTANCE
1.8
I D = 1.2A
VGS = 4.5 V
1.6
1.2
25°C
1
-55°C
0.8
0.6
0.4
0
Figure 3. On-Resistance Variation
with Temperature.
25°C
125°C
3
2
1
1
1.5
V
2
GS
2.5
3
3.5
2
I D, DRAIN CURRENT (A)
3
4
1.2
T = -55°C
J
4
0
0.5
1
Figure 4. On-Resistance Variation
with Drain Current and Temperature.
5
V DS = 5.0V
TJ = 125°C
1.4
Vth , NORMALIZED
GATE-SOURCE THRESHOLD VOLTAGE
R DS(ON), NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
3
Figure 2. On-Resistance Variation
with Drain Current and Gate Voltage.
1.8
I D , DRAIN CURRENT (A)
2
I D , DRAIN CURRENT (A)
, DRAIN-SOURCE VOLTAGE (V)
4
, GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics.
4.5
5
V DS= V GS
I D = 250µA
1.1
1
0.9
0.8
0.7
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
150
Figure 6. Gate Threshold Variation
with Temperature.
NDS351AN Rev. C
Typical Electrical Characteristics (continued)
5
I D = 250µA
1.08
1.04
1
1
TJ = 125°C
25°C
0.1
-55°C
0.01
0.001
S
0.96
0.92
-50
-25
0
T
J
25
50
75
100
125
0.0001
150
0
0.2
0.4
0.6
0.8
1
V SD , BODY DIODE FORWARD VOLTAGE (V)
, JUNCTION TEMPERATURE (°C)
Figure 7. Breakdown Voltage Variation with
Temperature.
1.2
Figure 8. Body Diode Forward Voltage Variation with
Source Current and Temperature.
10
, GATE-SOURCE VOLTAGE (V)
400
300
200
150
C iss
C oss
100
f = 1 MHz
V GS = 0V
C rss
I D = 1.2A
10V
VDS = 5V
8
15V
6
4
2
V
80
GS
CAPACITANCE (pF)
V GS = 0V
I , REVERSE DRAIN CURRENT (A)
BV DSS , NORMALIZED
DRAIN-SOURCE BREAKDOWN VOLTAGE
1.12
50
0.1
0.2
0.5
V
DS
1
2
5
10
20
0
30
0
1
t on
VDD
t d(on)
t d(off)
tf
90%
90%
V OUT
D
VOUT
R GEN
4
t off
tr
RL
V IN
3
Figure 10. Gate Charge Characteristics.
Figure 9. Capacitance Characteristics.
VGS
2
Q g , GATE CHARGE (nC)
, DRAIN TO SOURCE VOLTAGE (V)
10%
10%
DUT
G
INVERTED
90%
S
V IN
50%
50%
10%
PULSE WIDTH
Figure 11. Switching Test Circuit.
Figure 12. Switching Waveforms.
NDS351AN Rev. C
5
20
VDS = 5.0V
1m
s
10
4
25°C
3
125°C
2
5
3
I D , DRAIN CURRENT (A)
T J = -55°C
1
N)
S(O
RD
1
0
1
2
3
I , DRAIN CURRENT (A)
4
0.1
0.2
0.5
V
D
s
ms
10s
DC
DS
1
2
5
10
20 30
50
, DRAI N-SOURCE VOLTAGE (V)
Figure 14. Maximum Safe Operating Area.
1.6
1
I , STEADY-STATE DRAIN CURRENT (A)
0.8
0.6
1a
1b
0.4
0.2
4.5"x5" FR-4 Board
TA = 25 oC
Still Air
0
0.1
0.2
0.3
2oz COPPER MOUNTING PAD AREA (in 2 )
1.4
1.2
1a
1b
4.5"x5" FR-4 Board
o
1
TA = 2 5 C
Still Air
VG S = 4 . 5 V
D
STEADY-STATE POWER DISSIPATION (W)
Figure 13. Transconductance Variation with
Drain Current and Temperature.
0
100
V GS = 4.5V
SINGLE PULSE
RθJA =See Note1b
TA = 25°C
0.01
0.1
5
IT
LIM
0.3
0.03
g
0
10m
1s
FS
, TRANSCONDUCTANCE (SIEMENS)
Typical Electrical Characteristics (continued)
0.8
0
0.4
Figue 15. SuperSOTTM _ 3 Maximum
Steady-State
Power Dissipation versus Copper Mounting Pad Area.
0.1
0.2
0.3
2oz COPPER MOUNTING PAD AREA (in 2 )
0.4
Figure 16. Maximum Steady-State Drain
Current versus Copper Mounting Pad Area.
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
1
0.5
D = 0.5
R θJA (t) = r(t) * R θJA
R θJA = See Note 1b
0.2
0.2
0.1
0.1
0.05
0.05
0.02
0.01
0.005
P(pk)
0.02
t1
0.01
t2
TJ - TA = P * R θJA (t)
Single Pulse
Duty Cycle, D = t1 /t2
0.002
0.001
0.0001
0.001
0.01
0.1
t 1 , TIME (sec)
1
10
100
300
Figure 17. Transient Thermal Response Curve.
Note : Characterization performed using the conditions described in note 1b. Transient thermal response will
change depending on the circuit board design.
NDS351AN Rev. C
Similar pages