RENESAS M37736EHLXXXHP

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MIN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
ot a its are
is n
m
This etric li
m
ice:
Not e para
m
So
LI
PRE
PROM VERSION OF M37736MHLXXXHP
DESCRIPTION
The M37736EHLXXXHP is a single-chip microcomputer using the
7700 Family core. This single-chip microcomputer has a CPU and a
bus interface unit. The CPU is a 16-bit parallel processor that can be
an 8-bit parallel processor, and the bus interface unit enhances the
memory access efficiency to execute instructions fast. This
microcomputer also includes a 32 kHz oscillation circuit, in addition
to the PROM, RAM, multiple-function timers, serial I/O, A-D converter,
and so on.
Its strong points are the low power dissipation, the low supply voltage,
and the small package.
In the M37736MHLXXXHP, as the multiplex method of the external
bus, either of 2 types can be selected.
The M37736EHLXXXHP has the same function as the
M37736MHLXXXHP except that the built-in ROM is PROM. (Refer
to the basic function blocks description.)
●Instruction execution time
The fastest instruction at 12 MHz frequency ...................... 333 ns
●Single power supply ...................................................... 2.7–5.5 V
●Low power dissipation (At 3 V supply voltage, 12 MHz frequency)
............................................ 9 mW (Typ.)
●Interrupts ............................................................ 19 types, 7 levels
●Multiple-function 16-bit timer ................................................. 5 + 3
●Serial I/O (UART or clock synchronous) ..................................... 3
●10-bit A-D converter .............................................. 8-channel inputs
●12-bit watchdog timer
●Programmable input/output, output
(ports P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10) ............... 84
●Clock generating circuit ........................................ 2 circuits built-in
●Small package ..................... 100-pin plastic molded fine-pitch QFP
(100P6Q-A;0.5 mm lead pitch)
APPLICATION
FEATURES
●Number of basic instructions .................................................. 103
●Memory size
PROM ................................................. 124 Kbytes
RAM ................................................ 3968 bytes
Control devices for general commercial equipment such as office
automation, office equipment, personal information equipment, and
others.
Control devices for general industrial equipment such as
communication equipment, and others.
75 ↔ P92/RXD2
74 → P93/TXD2
73 → P94
72 → P95
71 → P96
70 → P97
69 ↔ P00/A0/CS0
68 ↔ P01/A1/CS1
67 ↔ P02/A2/CS2
66 ↔ P03/A3/CS3
65 ↔ P04/A4/CS4
64 ↔ P05/A5/RSMP
63 ↔ P06/A6/A16
62 ↔ P07/A7/A17
61 ↔ P10/A8/D8
60 ↔ P11/A9/D9
59 ↔ P12/A10/D10
58 ↔ P13/A11/D11
57 ↔ P14/A12/D12
56 ↔ P15/A13/D13
55 ↔ P16/A14/D14
54 ↔ P17/A15/D15
53 ↔ P20/A16/A0/D0
52 ↔ P21/A17/A1/D1
51 ↔ P22/A18/A2/D2
PIN CONFIGURATION (TOP VIEW)
M37736EHLXXXHP
P65/TB0IN ↔ 1
P64/INT2 ↔ 2
P63/INT1 ↔ 3
P62/INT0 ↔ 4
P61/TA4IN ↔ 5
P60/TA4OUT ↔ 6
P57/TA3IN ↔ 7
P56/TA3OUT ↔ 8
P55/TA2IN ↔ 9
P54/TA2OUT ↔ 10
P53/TA1IN ↔ 11
P52/TA1OUT ↔ 12
P51/TA0IN ↔ 13
P50/TA0OUT ↔ 14
P107/KI3 ↔ 15
P106/KI2 ↔ 16
P105/KI1 ↔ 17
P104/KI0 ↔ 18
P103 ↔ 19
P102 ↔ 20
P101 ↔ 21
P100 ↔ 22
P47 ↔ 23
P46 ↔ 24
P45 ↔ 25
P91/CLK2 ↔ 76
P90/CTS2 ↔ 77
P87/TXD1 ↔ 78
P86/RXD1 ↔ 79
P85/CLK1 ↔ 80
P84/CTS1/RTS1 ↔ 81
P83/TXD0 ↔ 82
P82/RXD0/CLKS0 ↔ 83
P81/CLK0 ↔ 84
P80/CTS0/RTS0/CLKS1 ↔ 85
86
VCC
87
AVCC
VREF → 88
89
AVSS
90
VSS
P77/AN7/XCIN ↔ 91
P76/AN6/XCOUT ↔ 92
P75/AN5/ADTRG ↔ 93
P74/AN4 ↔ 94
P73/AN3 ↔ 95
P72/AN2 ↔ 96
P71/AN1 ↔ 97
P70/AN0 ↔ 98
P67/TB2IN/f SUB ↔ 99
P66/TB1IN ↔ 100
Outline 100P6Q-A
50 ↔ P23/A19/A3/D3
49 ↔ P24/A20/A4/D4
48 ↔ P25/A21/A5/D5
47 ↔ P26/A22/A6/D6
46 ↔ P27/A23/A7/D7
45 ↔ P30/R/W/WEL
44 ↔ P31/BHE/WEH
43 ↔ P32/ALE
42 ↔ P33/HLDA
41 → EVL0
40 → EVL1
39
VCC
38
VSS
37 → E/RDE
36 → XOUT
35 ← XIN
34 ← RESET
33 ← BSEL
32 ← CNVSS
31 ← BYTE
30 ↔ P40/HOLD
29 ↔ P41/RDY
28 ↔ P42/f1
27 ↔ P43
26 ↔ P44
M37736EHLXXXHP
P0(8)
Input/Output
port P0
P1(8)
Input/Output
port P1
P2(8)
Input/Output
port P2
P3(4)
Input/Output
port P3
P4(8)
Input/Output
port P4
P5(8)
Input/Output
port P5
Input/Output
port P6
Input/Output
port P7
Input/Output
port P8
AVCC
Address Bus
A-D Converter(10)
UART0(9)
UART2(9)
CNVSS
UART1(9)
Data Address Register DA(24)
(0V)
AVSS
P6(8)
Instruction Queue Buffer Q2(8)
Incrementer(24)
(0V)
VSS
XCIN
Stack Pointer S(16)
Timer TB1(16)
Timer TB2(16)
Timer TB0(16)
Timer TA0(16)
XCOUT
Direct Page Register DPR(16)
Timer TA1(16)
Processor Status Register PS(11)
Timer TA4(16)
Input Buffer Register IB(16)
Timer TA2(16)
Data Bank Register DT((8)
Timer TA3(16)
Watchdog Timer
Program Bank Register PG(8)
VCC
Accumulator B(16)
XCIN XCOUT
Index Register X(16)
RAM
3968 bytes
Index Register Y(16)
Accumulator A(16)
Arithmetic Logic
Unit(16)
PROM
124 Kbytes
Clock Generating Circuit
Bus method
Reset input selection input
RESET
BSEL
Enable output
E
Clock output
XOUT
P7(8)
Data Bus(Odd)
Instruction Queue Buffer Q1(8)
Program Counter PC(16)
Clock input
XIN
P8(8)
Instruction Register(8)
Instruction Queue Buffer Q0(8)
Incrementer/Decrementer(24)
M37736EHLXXXHP BLOCK DIAGRAM











Data Bus(Even)
Program Address Register PA(24)
2











Data Buffer DBL(8)











P9(8)






















P10(8)
Data Buffer DBH(8)











Output
port P9





Input/Output
port P10











Reference External data bus width
selection input
voltage input
BYTE
VREF
PROM VERSION OF M37736MHLXXXHP











P











IN
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som











IM
REL
MITSUBISHI MICROCOMPUTERS
Y
AR
IM
REL
R
INA
Y
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
MITSUBISHI MICROCOMPUTERS
M37736EHLXXXHP
PROM VERSION OF M37736MHLXXXHP
FUNCTIONS OF M37736EHLXXXHP
Parameter
Number of basic instructions
Instruction execution time
Memory size
Input/Output ports
Output port
Multi-function timers
PROM
RAM
P0 – P2, P4 – P8, P10
P3
P9
TA0, TA1, TA2, TA3, TA4
TB0, TB1, TB2
Serial I/O
A-D converter
Watchdog timer
Interrupts
Clock generating circuit
Supply voltage
Power dissipation
Input/Output characteristic
Memory expansion
Operating temperature range
Device structure
Package
Input/Output voltage
Output current
Functions
103
333 ns (the fastest instruction at external clock 12 MHz frequency)
124 Kbytes
3968 bytes
8-bit ✕ 9
4-bit ✕ 1
8-bit ✕ 1
16-bit ✕ 5
16-bit ✕ 3
(UART or clock synchronous serial I/O) ✕ 3
10-bit ✕ 1 (8 channels)
12-bit ✕ 1
3 external types, 16 internal types
Each interrupt can be set to the priority level (0 – 7.)
2 circuits built-in (externally connected to a ceramic resonator or a
quartz-crystal oscillator)
2.7 – 5.5 V
9 mW (at 3 V supply voltage, external clock 12 MHz frequency)
22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency)
5V
5 mA
External bus mode A; maximum 16 Mbytes,
External bus mode B; maximum 1 Mbytes
–40 to 85 °C
CMOS high-performance silicon gate process
100-pin plastic molded fine-pitch QFP (100P6Q-A;0.5 mm lead pitch)
3
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
a fin are su
not
s
limit
is is
: Th metric
e
ic
Not e para
Som
P
PROM VERSION OF M37736MHLXXXHP
PIN DESCRIPTION
Pin
Vcc,
Vss
CNVss
Name
Input/Output
Power source
Apply 2.7 – 5.5 V to Vcc and 0 V to Vss.
CNVss input
Input
RESET
Reset input
Input
XIN
Clock input
XOUT
Clock output
Output
E
Enable output
Output
BYTE
External data
bus width
selection input
Bus method
select input
Input
________
Input
_
BSEL
AVcc,
AVss
VREF
P00 – P07
Analog power
source input
Reference
voltage input
I/O port P0
Input
Input
I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3
I/O
P40 – P47 I/O port P4
I/O
P50 – P57 I/O port P5
I/O
P60 – P67 I/O port P6
I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8
I/O
P90 – P97 Output port P9
Output
P100 – P107 I/O port P10
I/O
EVL0, EVL1
4
Output
Functions
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory
expansion mode, and to Vcc for the microprocessor mode.
When “L” level is applied to this pin, the microcomputer enters the reset state.
These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should
be connected to the XIN pin, and the XOUT pin should be left open.
This pin functions as the enable signal output pin which indicates the access status in the internal
bus. In the external bus
mode B and the memory expansion mode or the microprocessor mode,
___
this pin output signal RDE.
In the memory expansion mode or the microprocessor mode, this pin determines whether the
external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L”
signal is input and an 8-bit width when “H” signal is input.
In the memory expansion mode or the microprocessor mode, this pin determines the external bus
mode. The bus mode becomes the external bus mode A when “H” signal is input, and the external
bus mode B when “L” signal is input.
Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.
This is reference voltage input pin for the A-D converter.
In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so
that each pin can be programmed for input or output. These ports are in the input mode when
reset.
In the memory expansion mode or the microprocessor mode,
____ address (A0 – A7)
___these
___pins output
at the external bus mode A, and these pins output signals CS0 – CS4 and RSMP, and addresses
(A16, A17) at the external bus mode B.
In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set
to “L” in the memory expansion mode or the microprocessor mode and external data bus has a
16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When
the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output.
In the single-chip mode, these pins have the same functions as port P0. In the memory expansion
mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address
is output. When using the external bus mode A, the address is A16 – A23. When using the
external bus mode B, the address is A0 – A7.
In the single-chip mode, these pins have
as
_
_
_
_
_
_ the
_
_
_
_
_
_
_
_
_
_
_
_
_
_same function
_
_
_
_
_
_
_
_
_
_
_
_
_
_ port P0. In the memory expansion
mode or the microprocessor
mode, R/W___,____BHE
, ALE, and HLDA signals are output at the external
________ ____________
__________
bus mode A, and WEL, WEH, ALE, and HLDA signals are output at the external bus mode B.
In the single-chip mode, these pins have the same functions as____
port P0. In___
the memory expansion
mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and a
clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip
mode. However, in the memory expansion mode, P42 can be selected as an I/O port.
In addition to having the same functions as port P0 in the single-chip mode, these pins also
function as I/O pins for timers A0 to A3.
In addition to having the same functions as port P0 in the single-chip mode,
___ these
___ pins also
function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins
for timers B0 to B2. P67 also functions as sub-clock φSUB output pin.
In addition to having the same functions as port P0 in the single-chip mode, these pins function
as input pins for A-D converter. Additionally, P76 and P77 have the function as the output pin
(XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When
P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between
the both.
In addition to having the same functions as port P0 in the single-chip mode, these pins also
function as I/O pins for UART 0 and UART 1.
Port P9 is an 8-bit I/O port. These ports are floating when reset. When writing to the port latch,
these ports become the output mode. P90 – P93 also function as I/O port for UART 2.
In addition to having the same functions as port P0_____in
the
__single-chip mode. P104 – P107 also
__
function as input pins for key input interrupt input (Kl0 – Kl3).
These pins should be left open.
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
BASIC FUNCTION BLOCKS
The M37736EHLXXXHP has the same functions as the
M37736MHBXXXGP except for the following :
(1) The built-in ROM is PROM.
(2) The package is different.
(3) The reset circuit is different.
Refer to the section on the M37736MHBXXXGP.
RESET CIRCUIT
_____
The microcomputer is released from the reset state when the RESET
pin is returned to “H” level after holding it at “L” level with the power
source voltage at 2.7 – 5.5 V. Program execution starts at the address
formed by setting address A23 – A16 to 0016, A15 – A8 to the contents
of address FFFF16, and A7 – A0 to the contents of address FFFE16.
Figure 1 shows an example of a reset circuit. When the stabilized
clock is input from the external to the main-clock oscillation circuit,
the reset input voltage must be 0.55 V or less when the power source
voltage reaches 2.7 V. When a resonator/oscillator is connected to
the main-clock oscillation circuit, change the reset input voltage from
“L” to “H” after the main-clock oscillation is fully stabilized.
The status of the internal registers during reset is the same as the
M37736MHBXXXGP’s.
Power on
2.7V
VCC
RESET
VCC
0V
RESET
0V
0.55V
Note. In this case, stabilized clock is input from the
external to the main-clock oscillation circuit.
Perform careful evalvation at the system design
level before using.
Fig. 1 Example of a reset circuit
5
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
PIN DESCRIPTION (EPROM MODE)
Pin
VCC, VSS
CNVSS
BYTE
____
RESET
XIN
XOUT
_
E
AVCC, AVSS
VREF
P00 – P07
Name
Power supply
VPP input
VPP input
Reset input
Clock input
Clock output
Enable output
Analog supply input
Reference voltage input
Input/Output
Input
Input
Input
Input
Output
Output
Input
Input
Functions
Supply 5V±10% to VCC and 0V to VSS.
Connect to VPP when programming or verifing.
Connect to VPP when programming or verifing.
Connect to VSS.
Connect a ceramic resonator between XIN and XOUT.
Keep open.
Connect AVCC to VCC and AVSS to VSS.
Connect to VSS.
P10 – P17
P20 – P27
Address input (A0 – A7)
Address input (A8 – A15)
Data I/O (D0 – D7)
P30
P31 – P33
P40 – P47
Input port P3
Input port P4
Input
I/O
Input
Input
Input
P50 – P57
Control signal input
Input
P60 – P67
Input port P6
P70 – P77
P80 – P87
Input port P7
Input port P8
Input
Input
Input
P90 – P97
Input port P9
Input
Connect to VSS.
P100 – P107
Input port P10
____
Input
Connect to VSS.
Input
Connect to Vcc.
BSEL
EVL0,EVL1
6
Address input (A16)
____
Output
Port P0 functions as the lower 8 bits address input (A0 – A7).
Port P1 functions as the higher 8 bits address input (A8 – A15).
Port P2 functions as the 8 bits data bus(D0 – D7).
P30 functions as the most significant bit address input (A16).
Connect to VSS.
Connect to VSS.
___ __
__
P50, P51 and P52 function as PGM, OE and CE input pins respectively.
Connect P53, P54, P55 and P56 to VCC. Connect P57 to VSS.
Connect to VSS.
Connect to VSS.
Connect to VSS.
Keep open.
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
ge.
ion.
icat o chan
t
ecif
l sp ubject
a
in
f
s
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
EPROM MODE
M5M27C101K). When in this mode, the built-in PROM can be
programmed or read from using these pins in the same way as with
the M5M27C101K.
This chip does not have Device Identifier Mode, so that set the
corresponding program algorithm. The program area should specify
address 0100016 – 1FFFF16.
Connect the clock which is either ceramic resonator or external clock
to XIN pin and XOUT pin.
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
↔ P92
→ P93
→ P94
→ P95
→ P96
→ P97
↔ P00
↔ P01
↔ P02
↔ P03
↔ P04
↔ P05
↔ P06
↔ P07
↔ P10
↔ P11
↔ P12
↔ P13
↔ P14
↔ P15
↔ P16
↔ P17
↔ P20
↔ P21
↔ P22
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
D0
D1
D2
The M37736EHLXXXHP features an EPROM mode in addition to its
_____
normal modes. When the RESET signal level is “L”, the chip
automatically enters the EPROM mode. Table 1 list the
correspondence between pins and Figure 2 shows the pin
connections in the EPROM mode.
The EPROM mode is the 1M mode for the EPROM that is equivalent
to the M5M27C101K.
When in the EPROM mode, ports P0, P1, P2, P30, P50, P51, P52,
CNV SS and BYTE are used for the EPROM (equivalent to the
↔ P23
↔ P24
↔ P25
↔ P26
↔ P27
↔ P30
↔ P31
↔ P32
↔ P33
→ EVL0
→ EVL1
VCC
VSS
→E
→ XOUT
← XIN
← RESET
← BSEL
← CNVSS
← BYTE
↔ P40
↔ P41
↔ P42
↔ P43
↔ P44
D3
D4
D5
D6
D7
A16
VSS
∗
VPP
CE
OE
PGM
P65 ↔ 1
P64 ↔ 2
P63 ↔ 3
P62 ↔ 4
P61 ↔ 5
P60 ↔ 6
P57 ↔ 7
P56 ↔ 8
P55 ↔ 9
P54 ↔ 10
P53 ↔ 11
P52 ↔ 12
P51 ↔ 13
P50 ↔ 14
P107 ↔ 15
P106 ↔ 16
P105 ↔ 17
P104 ↔ 18
P103 ↔ 19
P102 ↔ 20
P101 ↔ 21
P100 ↔ 22
P47 ↔ 23
P46 ↔ 24
P45 ↔ 25
M37736EHLHP
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26



VCC
P91 ↔ 76
P90 ↔ 77
P87 ↔ 78
P86 ↔ 79
P85 ↔ 80
P84 ↔ 81
P83 ↔ 82
P82 ↔ 83
P81 ↔ 84
P80 ↔ 85
86
VCC
87
AVCC
VREF → 88
89
AVSS
90
VSS
P77 ↔ 91
P76 ↔ 92
P75 ↔ 93
P74 ↔ 94
P73 ↔ 95
P72 ↔ 96
P71 ↔ 97
P70 ↔ 98
P67 ↔ 99
P66 ↔ 100
∗ : Connect to ceramic oscillation circuit.
Outline 100P6Q-A
: It is used in the EPROM mode.
Fig. 2 Pin connection in EPROM mode
7
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
Table 1 Pin function in EPROM mode
VCC
VPP
VSS
Address input
Data I/O
__
CE
__
OE
___
PGM
8
M37736EHLXXXHP
VCC
M5M27C101K
VCC
CNVSS, BYTE
VSS
Ports P0, P1, P30
VPP
VSS
A0 – A16
Port P2
P52
D0 – D7
P51
P50
OE
__
CE
__
___
PGM
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
ge.
ion.
icat o chan
t
ecif
l sp ubject
a
in
f
s
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
FUNCTION IN EPROM MODE
1M mode (equivalent to the M5M27C101K)
Reading
__
__
To read the EPROM, set the CE and OE pins to a “L” level. Input the
address of the data (A0 – A16) to be read, and the data will be output
to the I/O pins D0 – D7. The data I/O pins will be floating when either
__
__
the CE or OE pins are in the “H” state.
Programming
Programming must be performed in 8 bits by a byte program. To
__
__
program to the EPROM, set the CE pin to a “L” level and the OE pin to
a “H” level. The CPU will enter the programming mode when 12.5 V
is applied to the VPP pin. The address to be programmed to is selected
with pins A0 – A16, and the data to be programmed is input to pins D0
___
– D7. Set the PGM pin to a “L” level to being programming.
Programming operation
To program the M37736EHLXXXHP, first set VCC = 6 V, VPP = 12.5
V, and set the address to 0100016. Apply a 0.2 ms programming
pulse, check that the data can be read, and if it cannot be read OK,
repeat the procedure, applying a 0.2 ms programming pulse and
checking that the data can be read until it can be read OK. Record
the accumulated number of pulse applied (X) before the data can be
read OK, and then write the data again, applying a further once this
number of pulses (0.2 ✕ X ms).
When this series of programming operations is complete, increment
the address, and continue to repeat the procedure above until the
last address has been reached.
Finally, when all addresses have been programmed, read with VCC =
VPP = 5 V (or VCC = VPP = 5.5 V).
Table 2. I/O signal in each mode
Pin
Mode
Read-out
Output
Disable
Programming
Programming
Verify
Program Disable
__
__
___
CE
OE
PGM
VPP
VCC
Data I/O
VIL
VIL
VIL
VIH
X
X
5V
5V
5V
5V
Output
Floating
VIH
VIL
X
VIH
X
5V 5V
VIL 12.5 V 6 V
Floating
Input
VIL
VIL
VIH 12.5 V 6 V
Output
VIH
VIH
VIH 12.5 V 6 V
Floating
Note 1 : An X indicates either VIL or VIH.
Programming operation (equivalent to the M5M27C101K)
AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted)
Symbol
Parameter
tAS
Address setup time
tOES
tDS
tAH
tDH
tDFP
tVCS
OE setup time
tVPS
tPW
tOPW
tCES
tOE
__
Test conditions
Min.
2
0.19
PGM over program pulse width
0.19
__
CE setup time
__
Data valid from OE
Max.
Unit
µs
µs
2
2
Data setup time
Address hold time
Data hold time
Output enable to output float delay
VCC setup time
VPP setup time
___
PGM pulse width
___
Limits
Typ.
0
2
130
0
2
2
0.2
µs
µs
µs
ns
µs
µs
0.21
5.25
ms
ms
150
µs
ns
2
9
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
AC waveforms
PROGRAM
VERIFY
VIH
ADDRESS
VIL
tAH
tAS
VIH/VOH
DATA
DATA OUTPUT VALID
DATA SET
VIL/VOL
tDS
tDH
tDFP
VPP
VPP
VCC
VCC +1
VCC
VCC
tVPS
tVCS
VIH
CE
VIL
tCES
VIH
PGM
tOES
VIL
tOE
tPW
VIH
tOPW
OE
VIL
Test conditions for A.C. characteristics
Input voltage : VIL = 0.45 V, VIH = 2.4 V
Input rise and fall times (10 % – 90 %) : ≤ 20 ns
Reference voltage at timing measurement : Input, Output
“L” = 0.8 V, “H” = 2 V
Programming algorithm flow chart
START
ADDR=FIRST LOCATION
VCC=6.0 V
VPP=12.5 V
X=0
PROGRAM ONE PULSE OF 0.2 ms
X=X+1
YES
X=25?
NO
FAIL
VERIFY
BYTE
FAIL
VERIFY
BYTE
PASS
PROGRAM PULSE OF
0.2X ms DURATION
DEVICE
FAILED
PASS
NO
INCREMENT ADDR
LAST ADDR?
YES
VCC=VPP=*5.0 V
VERIFY
ALL BYTE
FAIL
DEVICE
FAILED
PASS
DEVICE PASSED
10
*4.5 V ≤ VCC = VPP ≤ 5.5 V
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
SAFETY INSTRUCTIONS
ADDRESSING MODES
(1) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on.
(2) The programmable M37736EHLHP that is shipped in blank is also
provided. For the M37736EHLHP, Mitsubishi Electric corp. does
not perform PROM programming test and screening following the
assembly processes. To improve reliability after programming,
performing programming and test according to the flow below
before use is recommended.
The M37736EHLXXXHP has 28 powerful addressing modes. Refer
to the “7700 Family Software Manual” for the details.
Programming with PROM programmer
Screening
MACHINE INSTRUCTION LIST
The M37736EHLXXXHP has 103 machine instructions. Refer to the
“7700 Family Software Manual” for the details.
DATA REQUIRED FOR PROM ORDERING
Please send the following data for writing to PROM.
(1) M37736EHLXXXHP writing to PROM order confirmation form
(2) 100P6Q mark specification form (100P6D mark specification form
is substituted.)
(3) ROM data (EPROM 3 sets)
(Caution)
(Leave at 150 °C for 40 hours)
Verify test with PROM programmer
Function check in target device
Caution : Never expose to 150 °C exceeding 100 hours.
11
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
AVcc
VI
VI
VO
Pd
Topr
Tstg
Parameter
Conditions
Power source voltage
Analog power_____
source voltage
Input voltage RESET, CNVss, BYTE
Input voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
P60 – P67, P70 – P77, P80 – P87,
P90 – P92, P100 – P107, VREF,
XIN, BSEL
Output voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
7,
P60 – P67, P70 – P77, P80 – P8_
P90 – P97, P100 – P107, XOUT, E
Power dissipation
Ta = 25 °C
Operating temperature
Storage temperature
Ratings
–0.3 to +7
–0.3 to +7
–0.3 to +12(Note)
Unit
V
V
V
–0.3 to Vcc + 0.3
V
–0.3 to Vcc + 0.3
V
200
–40 to +85
–65 to +150
mW
°C
°C
Note. When the EPROM is programmed, input voltage of pins CNVss and BYTE is 13 V respectively.
RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol
Vcc
AVcc
Vss
AVss
VIH
VIH
VIH
VIL
VIL
VIL
IOH(peak)
IOH(avg)
IOL(peak)
IOL(peak)
IOL(avg)
IOL(avg)
f(XIN)
f(XCIN)
Parameter
f(XIN) : Operating
f(XIN) : Stopped, f(XCIN) = 32.768 kHz
Analog power source voltage
Power source voltage
Analog power source voltage
, P60 – P67,
High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57_____
P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL, XCIN (Note 3)
High-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
High-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
P60 – P67,
Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, _____
P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL, XCIN (Note 3)
Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
Low-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P100 – P107
High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P100 – P107
Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P104 – P107
Low-level peak output current P44 – P47, P100 – P103
Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P104 – P107
Low-level average output current P44 – P47, P100 – P103
Main-clock oscillation frequency (Note 4)
Sub-clock oscillation frequency
Min.
2.7
2.7
Power source voltage
Max.
5.5
5.5
Vcc
0
0
Unit
V
V
V
V
0.8 Vcc
Vcc
V
0.8 Vcc
Vcc
V
0.5 Vcc
Vcc
V
0
0.2Vcc
V
0
0.2Vcc
V
0
0.16Vcc
V
–10
mA
–5
mA
10
mA
16
mA
5
mA
12
12
50
mA
MHz
kHz
Notes 1. Average output current is the average value of a 100 ms interval.
2. The sum of IOL(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less,
the sum of IOH(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less,
the sum of IOL(peak) for ports P4, P5, P6, P7, and P10 must be 100 mA or less, and
the sum of IOH(peak) for ports P4, P5, P6, P7, and P10 must be 80 mA or less.
3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”.
4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”.
12
Limits
Typ.
32.768
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)
Symbol
Parameter
VOH
High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P100 – P107
High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33
VOH
High-level output voltage P30 – P32
VOH
High-level output voltage E
VOL
Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33,
P40 – P43, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P104 – P107
VOH
_
VOL
Low-level output voltage P44 – P47, P100 – P103
VOL
Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33
VOL
Low-level output voltage P30 – P32
VOL
Low-level output voltage E
VT+ – VT–
Hysteresis HOLD
, _______
RDY, TA0IN – TA4IN, TB0IN – TB2IN,
_______
__________
________
________
________
INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0,
_____
_____
CLK1, CLK2, KI0 – KI3
_
____ ___
_____
VT+ – VT–
Hysteresis RESET
VT+ – VT–
Hysteresis XIN
VT+ – VT–
Hysteresis XCIN (When external clock is input)
IIH
IIL
High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P7
7,
_____
P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL
Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P53, P60, P61, P65 – P67,
P70 _____
– P77, P80 – P87, P90 – P92, P100 – P103,
XIN, RESET, CNVss, BYTE, BSEL
Low-level input current P62 – P64, P104 – P107
Test conditions
VCC = 5 V, IOH = –10 mA
Limits
Typ.
Min.
Unit
Max.
3
VCC = 3 V, IOH = –1 mA
2.5
VCC = 5 V, IOH = –400 µA
VCC = 5 V, IOH = –10 mA
VCC = 5 V, IOH = –400 µA
VCC = 3 V, IOH = –1 mA
VCC = 5 V, IOH = –10 mA
VCC = 5 V, IOH = –400 µA
VCC = 3 V, IOH = –1 mA
4.7
3.1
4.8
2.6
3.4
4.8
2.6
V
V
V
V
2
VCC = 5 V, IOL = 10 mA
V
VCC = 3 V, IOL = 1 mA
0.5
VCC = 5 V, IOL = 16 mA
VCC = 3 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 5 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 3 V, IOL = 1 mA
VCC = 5 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 3 V, IOL = 1 mA
1.8
1.5
0.45
1.9
0.43
0.4
1.6
0.4
0.4
VCC = 5 V
0.4
1
VCC = 3 V
0.1
0.7
VCC = 5 V
VCC = 3 V
VCC = 5 V
VCC = 3 V
VCC = 5 V
VCC = 3 V
0.2
0.1
0.1
0.06
0.1
0.06
0.5
0.4
0.4
0.26
0.4
0.26
VCC = 5 V, VI = 5 V
5
VCC = 3 V, VI = 3 V
4
VCC = 5 V, VI = 0 V
–5
VCC = 3 V, VI = 0 V
–4
VI = 0 V,
VCC = 5 V
–5
transistor
VCC = 3 V
–4
VI = 0 V,
VCC = 5 V
–0.25
–0.5
–1.0
VCC = 3 V
–0.08
–0.18
–0.35
with a pull-up
transistor
VRAM
RAM hold voltage
V
V
V
V
V
V
V
µA
µA
without a pull-up
IIL
V
When clock is stopped.
2
µA
mA
V
13
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol
Parameter
Power source
current
ICC
Limits
Typ.
Max.
Unit
VCC = 5 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 6 MHz),
f(XCIN) = 32.768 kHz,
in operating (Note 1)
4.5
9
mA
VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 6 MHz),
f(XCIN) = 32.768 kHz,
in operating (Note 1)
3
6
mA
VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
(f(f2) = 0.75 MHz),
f(XCIN) : Stopped,
in operating
0.4
0.8
mA
6
12
µA
30
60
µA
3
6
µA
1
µA
20
µA
Test conditions
Min.
When single-chip
mode, output pins
are open, and
other pins are VSS. VCC = 3 V,
f(XIN) = 12 MHz (square waveform),
f(XCIN) = 32.768 kHz,
when a WIT instruction is executed (Note 2)
VCC = 3 V,
f(XIN) : Stopped,
f(XCIN) = 32.768 kHz,
in operating (Note 3)
VCC = 3 V,
f(XIN) : Stopped,
f(XCIN) = 32.768 kHz,
when a WIT instruction is executed (Note 4)
Ta = 25 °C,
when clock is stopped
Ta = 85 °C,
when clock is stopped
Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop
bit = “1”.
2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”.
3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.
4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Symbol
—
—
RLADDER
tCONV
VREF
VIA
Parameter
Resolution
Absolute accuracy
Ladder resistance
Conversion time
Reference voltage
Analog input voltage
Test conditions
VREF = VCC
VREF = VCC
VREF = VCC
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
14
Min.
10
19.6
2.7
0
Limits
Typ.
Max.
10
±3
25
VCC
VREF
Unit
Bits
LSB
kΩ
µs
V
V
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ.
2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Symbol
tc
tw(H)
tw(L)
tr
tf
Parameter
External clock input cycle time (Note 3)
External clock input high-level pulse width (Note 4)
External clock input low-level pulse width (Note 4)
External clock rise time
External clock fall time
Limits
Min.
83
33
33
Max.
15
15
Unit
ns
ns
ns
ns
ns
Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns.
4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.
Single-chip mode
Symbol
tsu(P0D–E)
tsu(P1D–E)
tsu(P2D–E)
tsu(P3D–E)
tsu(P4D–E)
tsu(P5D–E)
tsu(P6D–E)
tsu(P7D–E)
tsu(P8D–E)
tsu(P10D–E)
th(E–P0D)
th(E–P1D)
th(E–P2D)
th(E–P3D)
th(E–P4D)
th(E–P5D)
th(E–P6D)
th(E–P7D)
th(E–P8D)
th(E–P10D)
Parameter
Port P0 input setup time
Port P1 input setup time
Port P2 input setup time
Port P3 input setup time
Port P4 input setup time
Port P5 input setup time
Port P6 input setup time
Port P7 input setup time
Port P8 input setup time
Port P10 input setup time
Port P0 input hold time
Port P1 input hold time
Port P2 input hold time
Port P3 input hold time
Port P4 input hold time
Port P5 input hold time
Port P6 input hold time
Port P7 input hold time
Port P8 input hold time
Port P10 input hold time
Limits
Min.
200
200
200
200
200
200
200
200
200
200
0
0
0
0
0
0
0
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Memory expansion mode and microprocessor mode
Symbol
tsu(D–E)
tsu(D–RDE)
tsu(RDY–φ1)
tsu(HOLD–φ1)
th(E–D)
th(RDE–D)
th(φ1–RDY)
th(φ1–HOLD)
Parameter
Data input setup time (external bus mode A)
Data input setup time (external bus mode B)
___
RDY input setup time
____
HOLD input setup time
Data input hold time (external bus mode A)
Data input hold time (external bus mode B)
___
RDY input hold time
____
HOLD input hold time
Limits
Min.
50
50
80
80
0
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
15
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
Timer A input
(Count input in event counter mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
PROM VERSION OF M37736MHLXXXHP
Parameter
TAiIN input cycle time
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
250
125
125
Max.
Unit
ns
ns
ns
Timer A input (Gating input in timer mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
Parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width (Note)
TAiIN input low-level pulse width (Note)
Limits
Min.
666
333
333
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in one-shot pulse mode)
Symbol
t c(TA)
tw(TAH)
tw(TAL)
Parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
666
166
166
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in pulse width modulation mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
166
166
Max.
Unit
ns
ns
Timer A input (Up-down input in event counter mode)
Symbol
tc(UP)
tw(UPH)
tw(UPL)
tsu(UP–TIN)
th(TIN–UP)
Parameter
TAiOUT input cycle time
TAiOUT input high-level pulse width
TAiOUT input low-level pulse width
TAiOUT input setup time
TAiOUT input hold time
Limits
Min.
3333
1666
1666
666
666
Max.
Unit
ns
ns
ns
ns
ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol
tc(TA)
tsu(TAjIN–TAjOUT)
tsu(TAjOUT–TAjIN)
16
Parameter
TAjIN input cycle time
TAjIN input setup time
TAjOUT input setup time
Limits
Min.
2000
500
500
Max.
Unit
ns
ns
ns
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
Timer B input (Count input in event counter mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
250
125
125
500
250
250
TBiIN input cycle time (one edge count)
TBiIN input high-level pulse width (one edge count)
TBiIN input low-level pulse width (one edge count)
TBiIN input cycle time (both edges count)
TBiIN input high-level pulse width (both edges count)
TBiIN input low-level pulse width (both edges count)
Max.
Unit
ns
ns
ns
ns
ns
ns
Timer B input (Pulse period measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
666
333
333
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer B input (Pulse width measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
666
333
333
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
A-D trigger input
Symbol
Limits
Parameter
Min.
1333
166
__________
tc(AD)
tw(ADL)
AD
TRG input cycle time (minimum allowable trigger)
__________
ADTRG input low-level pulse width
Max.
Unit
ns
ns
Serial I/O
Symbol
tc(CK)
tw(CKH)
tw(CKL)
td(C–Q)
th(C–Q)
tsu(D–C)
th(C–D)
Limits
Parameter
Min.
333
166
166
CLKi input cycle time
CLKi input high-level pulse width
CLKi input low-level pulse width
TXDi output delay time
TXDi hold time
RXDi input setup time
RXDi input hold time
Max.
100
0
65
75
_________
Unit
ns
ns
ns
ns
ns
ns
ns
___
External interrupt INTi input, key input interrupt KIi input
Symbol
Parameter
___
tw(INH)
tw(INL)
tw(KIL)
INTi input high-level pulse width
___
INTi input low-level pulse width
__
KIi input low-level pulse width
Limits
Min.
250
250
250
Max.
Unit
ns
ns
ns
17
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
DATA FORMULAS
Timer A input (Gating input in timer mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input high-level pulse width
tw(TAL)
TAiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Max.
Unit
ns
ns
ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
Limits
Min.
8 ✕ 109
2 · f(f2)
Max.
Unit
ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol
Parameter
tc(TB)
TBiIN input cycle time
tw(TBH)
TBiIN input high-level pulse width
tw(TBL)
TBiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Note. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
18
Max.
Unit
ns
ns
ns
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
SWITCHING CHARACTERISTICS
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Single-chip mode
Symbol
Parameter
Limits
Test conditions
Min.
td(E–P0Q)
Port P0 data output delay time
td(E–P1Q)
Port P1 data output delay time
td(E–P2Q)
Port P2 data output delay time
td(E–P3Q)
Port P3 data output delay time
td(E–P4Q)
Port P4 data output delay time
Fig. 3
td(E–P5Q)
Port P5 data output delay time
td(E–P6Q)
Port P6 data output delay time
td(E–P7Q)
Port P7 data output delay time
td(E–P8Q)
Port P8 data output delay time
td(E–P9Q)
Port P9 data output delay time
Port P10 data output delay time
td(E–P10Q)
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
Max.
300
300
300
300
300
300
300
300
300
300
300
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
P0
P1
P2
50 pF
P3
P4
P5
P6
P7
P8
P9
P 10
φ1
E
Fig. 3 Measuring circuit for ports P0 – P10 and φ1
19
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode A]
Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz (Note 1), unless otherwise noted)
Symbol
td(An–E)
td(A–E)
Parameter
Address output delay time
Address output delay time
th(E–An)
Address hold time
tw(ALE)
ALE pulse width
tsu(A–ALE)
th(ALE–A)
Address output setup time
Address hold time
td(ALE–E)
ALE output delay time
td(E–DQ)
th(E–DQ)
Data output delay time
Data hold time
tw(EL)
tpxz(E–DZ)
tpzx(E–DZ)
td(BHE–E)
td(R/W–E)
th(E–BHE)
th(E–R/W)
td(E–φ1)
td(φ1–HLDA)
_
E pulse width
Test
(Note 2)
Wait mode conditions
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Fig. 3
BHE output delay time
_
R/ W output delay time
___
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
BHE
hold time
_
R/ W hold time
φ1 output delay time
____
HLDA output delay time
Unit
20
ns
182
ns
20
ns
162
ns
40
ns
40
ns
123
ns
10
ns
93
ns
9
ns
40
ns
4
ns
40
131
ns
ns
ns
ns
298
ns
40
53
ns
ns
20
ns
182
ns
20
ns
182
33
33
0
ns
ns
ns
ns
ns
10
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
2. No wait : Wait bit = “1”.
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
20
Max.
90
Floating start delay time
Floating release delay time
___
Limits
Min.
30
120
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode A]
Memory expansion mode and microprocessor mode
Bus timing data formulas (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C,
Symbol
td(An–E)
Parameter
Address output delay time
f(XIN) = 12 MHz (Max., Note), unless otherwise noted)
Wait mode
No wait
Wait 1
Wait 0
td(A–E)
Address output delay time
No wait
Wait 1
Wait 0
th(E–An)
Address hold time
tw(ALE)
ALE pulse width
No wait
Wait 1
Wait 0
tsu(A–ALE)
Address output setup time
No wait
Wait 1
Wait 0
th(ALE–A)
Address hold time
No wait
Wait 1
Wait 0
td(ALE–E)
td(E–DQ)
th(E–DQ)
ALE output delay time
tpxz(E–DZ)
tpzx(E–DZ)
1✕
2 · f(f2)
No wait
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Wait 1
Wait 0
_
R/W output delay time
No wait
Wait 1
No wait
Wait 1
Wait 0
___
th(E–BHE)
BHE hold time
_
th(E–R/W)
R/W hold time
td(E–φ1)
φ1 output delay time
ns
ns
ns
ns
ns
ns
– 43
ns
ns
– 43
ns
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
ns
– 43
ns
– 35
ns
– 35
ns
10
Wait 0
td(R/W–E)
ns
90
Floating release delay time
BHE output delay time
ns
ns
Floating start delay time
___
td(BHE–E)
109
Unit
ns
4
Wait 0
Data hold time
E pulse width
Max.
9
1 ✕ 109
2 · f(f2)
Data output delay time
_
tw(EL)
No wait
Wait 1
Limits
Min.
1 ✕ 109
– 63
2 · f(f2)
9
3 ✕ 10
– 68
2 · f(f2)
9
1 ✕ 10
– 63
2 · f(f2)
9
3 ✕ 10
– 88
2 · f(f2)
9
1 ✕ 10
– 43
2 · f(f2)
9
1 ✕ 10
– 43
2 · f(f2)
9
2 ✕ 10
– 43
2 · f(f2)
1 ✕ 109
– 73
2 · f(f2)
2 ✕ 109
– 73
2 · f(f2)
ns
– 30
ns
– 63
ns
– 68
ns
– 63
ns
– 68
ns
– 50
ns
– 50
ns
0
30
ns
Notes 1. This applies when the main-clock division selection bit = “0”.
2. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
21
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode B]
Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))
Symbol
Parameter
td(CS–WE)
td(CS–RDE)
Chip-select output delay time
th(WE–CS)
th(RDE–CS)
Chip-select hold time
td(An–WE)
td(An–RDE)
Address output delay time
td(A–WE)
td(A–RDE)
Address output delay time
th(WE–An)
th(RDE–An)
Address hold time
tw(ALE)
ALE pulse width
tsu(A–ALE)
th(ALE–A)
Address output setup time
Address hold time
td(ALE–WE)
td(ALE–RDE)
ALE output delay time
td(WE–DQ)
th(WE–DQ)
Data output delay time
Data hold time
___ ___
tw(WE)
WEL/WEH pulse width
tpxz(RDE–DZ)
tpzx(RDE–DZ)
Floating start delay time
Floating release delay time
tw(RDE)
td(RSMP–WE)
td(RSMP–RDE)
th(φ1–RSMP)
td(WE–φ1)
td(RDE–φ1)
td(φ1–HLDA)
Test
(Note 2)
Wait mode conditions
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Fig.3
Max.
No wait
Wait 1
Wait 0
Unit
20
ns
182
ns
4
ns
20
ns
182
ns
20
ns
162
ns
40
ns
40
ns
123
ns
10
ns
93
ns
9
ns
40
ns
4
ns
40
131
ns
ns
ns
ns
298
ns
40
90
53
128
ns
ns
ns
295
ns
25
ns
RSMP hold time
0
ns
φ1 output delay time
0
___
RDE pulse width
10
No wait
Wait 1
Wait 0
____
RSMP output delay time
____
30
ns
120
ns
____
HLDA output delay time
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
2. No wait : Wait bit = “1”.
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
22
Limits
Min.
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode B]
Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note1))
Symbol
Parameter
td(CS–WE)
td(CS–RDE)
Chip-select output delay time
th(WE–CS)
th(RDE–CS)
Chip-select hold time
td(An–WE)
td(An–RDE)
Wait 0
Address output delay time
Address output delay time
th(WE–An)
th(RDE–An)
Address hold time
No wait
Wait 1
No wait
Wait 1
Wait 0
ALE pulse width
No wait
Wait 1
Wait 0
tsu(A–ALE)
Address output setup time
No wait
Wait 1
Wait 0
th(ALE–A)
Address hold time
No wait
Wait 1
ALE output delay time
td(WE–DQ)
Data output delay time
th(WE–DQ)
Data hold time
tw(WE)
WEL/WEH pulse width
___ ___
tpxz(RDE–DZ)
tpzx(RDE–DZ)
1 ✕ 10
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
No wait
Wait 1
ns
ns
ns
– 63
ns
– 68
ns
– 63
ns
– 88
ns
– 43
ns
– 43
ns
– 43
ns
– 73
ns
– 73
ns
9
1 ✕ 10
2 · f(f2)
ns
– 43
ns
ns
4
Wait 0
1 ✕ 10
2 · f(f2)
No wait
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
9
– 43
ns
90
Wait 1
Wait 0
No wait
Wait 1
Wait 0
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
0
ns
– 43
ns
– 35
ns
– 35
ns
10
Floating release delay time
RDE pulse width
Unit
9
Floating start delay time
___
tw(RDE)
Max.
9
Wait 0
td(ALE–WE)
td(ALE–RDE)
Limits
Min.
1 ✕ 109
– 63
2 · f(f2)
9
3 ✕ 10
– 68
2 · f(f2)
4
Wait 0
td(A–WE)
td(A–RDE)
tw(ALE)
Wait mode
No wait
Wait 1
ns
– 30
ns
– 38
ns
– 38
ns
td(RSMP–WE) ____
– 58
RSMP output delay time
td(RSMP–RDE)
____
th(φ1–RSMP)
RSMP hold time
td(WE–φ1)
φ1 output delay time
0
td(RDE–φ1)
Notes 1. This applies when the main clock division selection bit = “0”.
2. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
ns
ns
30
ns
23
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
TIMING DIAGRAM
PROM VERSION OF M37736MHLXXXHP
tr
tf
tc
tw(H)
XIN
E
td(E–PiQ)
Port Pi output
(i = 0 – 10)
tsu(PiD–E)
Port Pi input
(i = 0 – 8, 10)
24
th(E–PiD)
tw(L)
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
In event count mode
TAiOUT input
(Up-down input)
TAiIN input
(when count by falling)
TAiIN input
(when count by rising)
th(TIN–UP)
tsu(UP–TIN)
In event counter mode
(When two-phase pulse input is selected)
tc(TA)
TAjIN input
tsu(TAjIN–TAjOUT)
tsu(TAjIN–TAjOUT)
tsu(TAjOUT–TAjIN)
TAjOUT input
tsu(TAjOUT–TAjIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
25
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tSU(D–C)
RxDi
tw(INL)
INTi input
Kli input
26
tw(INH)
tw(KNL)
th(C–D)
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
Memory expansion mode and microprocessor mode
(When wait bit = “1”)
φ1
E or RDE,
WEL, WEH
RDY input
tsu(RDY–φ1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E or RDE,
WEL, WEH
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “1” or “0” in common)
φ1
tsu(HOLD–φ1)
th(φ1–HOLD)
HOLD input
td(φ1–HLDA)
td(φ1–HLDA)
HLDA output
Test conditions
• VCC = 2.7 – 5.5 V
• Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC
• Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
27
MIN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
ot a its are
is n
m
This etric li
m
ice:
Not e para
m
So
LI
PRE
PROM VERSION OF M37736MHLXXXHP
[External bus mode A]
Memory expansion mode and microprocessor mode
(No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(E-φ1)
td(E-φ1)
tw(EL)
E
td(An-E)
An
th(E-An)
Address
Address
tw(ALE)
Address
td(ALE-E)
ALE
th(ALE-A)
th(E-DQ)
tsu(A-ALE)
Am/Dm
Address
Data
tpxz(E-DZ)
tpzx(E-DZ)
Address
Address
th(E-D)
td(E-DQ)
td(A-E)
tsu(D-E)
DmIN
Data
td(BHE-E)
th(E-BHE)
BHE
td(R/W-E)
R/W
Test conditions
• VCC = 2.7 – 5.5 V
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Data input DmIN : VIL = 0.16 VCC, VIH = 0.5 VCC
28
th(E-R/W)
IM
L
E
R
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode A]
Memory expansion mode and microprocessor mode
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L)
tw(H)
tf tr
tc
XIN
1
td(E–
1)
td(E–
1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
Address
Address
td(ALE–E)
ALE
th(ALE–A)
tsu(A–ALE)
Am/Dm
th(E–DQ)
Address
td(A–E)
Data
tpzx(E–DZ)
tpxz(E–DZ)
Address
Address
td(E–DQ)
th(E–D)
tsu(D–E)
DmIN
Data
td(BHE–E)
th(E–BHE)
td(R/W–E)
th(E–R/W)
BHE
R/W
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc
29
IM
L
E
R
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode A]
Memory expansion mode and microprocessor mode
(Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L)
tw(H)
tf tr
tc
XIN
1
td(E–
td(E–
1)
1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
td(ALE–E)
tsu(A–ALE)
th(ALE–A)
Address
Address
ALE
Am/Dm
Address
Data
tpzx(E–DZ)
tpxz(E–DZ)
th(E–DQ)
Address
Address
td(E–DQ)
td(A–E)
tsu(D–E)
DmIN
Data
td(BHE–E)
th(E–BHE)
BHE
td(R/W–E)
R/W
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Data input DmIN : VIL = 0.16 Vcc, VIH = 0.5 Vcc
30
th(E–R/W)
th(E–D)
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode B]
Memory expansion and m icroprocessor mode
(No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
1
td(WE–
td(WE–
1)
td(RDE–
1)
td(RDE–
1)
1)
CS0 – CS4
t d(CS–WE)
td(CS–RDE)
th(WE –CS)
An
th(RDE– CS)
Address
Address
td(An–WE)
tw(ALE)
Address
td(An–RDE )
td(ALE –WE)
th(RDE –An)
th(WE –An)
ALE
td(ALE –RDE)
th(ALE –A)
tsu(A–ALE)
th(WE –DQ)
Am/Dm
Address
Data
tpxz(RDE –DZ)
tpzx(RDE –DZ)
Address
Address
td(A–RDE)
td(WE –DQ)
t d(A–WE)
tw(WE)
th(RDE –D)
WEL, WEH
t su(D–RDE)
DmIN
Data
tw(RDE)
RDE
th(
1–RSMP)
td(RSMP –WE)
td(RSMP –RDE)
RSMP
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
31
IM
L
E
R
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHLXXXHP
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode B]
Memory expansion and microprocessor mode
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L)
tw(H)
tf tr
tc
XIN
1
td(WE–
td(WE–
1)
1)
td(RDE–
td(RDE-
1)
1)
CS0 – CS4
th(WE–CS)
th(RDE–CS)
td(CS–RDE)
td(CS–WE)
An
Address
td(An–WE)
tw(ALE)
Address
th(RDE–An)
td(An–RDE)
th(WE-An)
td(ALE–WE)
ALE
th(ALE–A)
tsu(A–ALE)
Am/Dm
td(ALE–RDE)
tpxz(RDE–DZ)
th(WE–DQ)
Address
td(A–WE)
Data
td(WE–DQ)
Address
tpzx(RDE–DZ)
Address
td(A–RDE)
tw(WE)
th(RDE–D)
WEL, WEH
tsu(D–RDE)
DmIN
Data
tw(RDE)
RDE
th(
RSMP
1–RSMP)
td(RSMP–WE)
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
32
td(RSMP–RDE)
IM
REL
R
INA
MITSUBISHI MICROCOMPUTERS
Y
M37736EHLXXXHP
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHLXXXHP
[External bus mode B]
Memory expansion and microprocessor mode
(Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L)
tw(H)
tf tr
tc
XIN
1
td(WE–
td(WE–
1)
td(RDE–
1)
td(RDE–
1)
1)
CS0 – CS4
th(WE–CS)
td(CS–WE)
td(CS–RDE)
th(RDE–CS)
Address
An
Address
td(An–WE)
tw(ALE)
Address
td(An–RDE)
td(ALE–WE)
th(RDE–An)
th(WE–An)
ALE
td(ALE–RDE)
tsu(A–ALE)
Am/Dm
th(ALE–A)
Address
Data
th(WE–DQ)
tpxz(RDE–DZ)
tpzx(RDE–DZ)
Address
Address
td(WE–DQ)
td(A–WE)
td(A–RDE)
tw(WE)
WEL, WEH
tsu(D–RDE)
DmIN
th(RDE–D)
Data
tw(RDE)
RDE
td(RSMP–WE)
th(
1–RSMP)
td(RSMP–RDE)
RSMP
Test conditions
• Vcc = 2.7 – 5.5 V
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
33
IM
REL
IN
Y
AR
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PACKAGE OUTLINE
34
MITSUBISHI MICROCOMPUTERS
M37736EHLXXXHP
PROM VERSION OF M37736MHLXXXHP
IM
REL
IN
Y
AR
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
MITSUBISHI MICROCOMPUTERS
M37736EHLXXXHP
PROM VERSION OF M37736MHLXXXHP
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1997 MITSUBISHI ELECTRIC CORP.
H-LF487-A KI-9703 Printed in Japan (ROD) 2
New publication, effective Mar. 1997.
36
Specifications
subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
M37736EHLXXXHP Datasheet
Rev.
date
Revision Description
1.00
First Edition
970611
2.00
The following are revised:
980731
Page
Previous Version
Revised Version
P11
Right column
Line 2
The M37736EHLXXXHP has 28 powerful
addressing modes. Refer to the MITSUBISHI
SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details
of each addressing mode.
The M37736EHLXXXHP has 28 powerful
addressing modes. Refer to the “7700 Family
Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37736EHLXXXHP has 103 machine
instructions. Refer to the MITSUBISHI
SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details.
P15
Memory expansion mode and
microprocessor
mode
MACHINE INSTRUCTION LIST
The M37736EHLXXXHP has 103 machine
instructions. Refer to the “7700 Family Software
Manual” for the details.
Previous Version
Symbol
Parameter
Limits
Min.
Max.
Unit
tsu (D–E)
Data input setup time (external bus mode A)
80
ns
tsu (D–RDE)
Data input setup time (external bus mode B)
80
ns
Revised Version
Symbol
Parameter
Limits
Min.
Max.
Unit
tsu (D–E)
Data input setup time (external bus mode A)
50
ns
tsu (D–RDE)
Data input setup time (external bus mode B)
50
ns
(1)