TOSHIBA TMP93PW20A

TOSHIBA Original CMOS 16-Bit Microcontroller
TLCS-900/L Series
TMP93PW20A
Semiconductor Company
Preface
Thank you very much for making use of Toshiba microcomputer LSIs.
Before use this LSI, refer the section, “Points of Note and Restrictions”.
Especially, take care below cautions.
**CAUTION**
How to release the HALT mode
Usually, interrupts can release all halts status. However, the interrupts = ( NMI ,
INT0 to INT4, INTKEY and INTRTC), which can release the HALT mode may not
be able to do so if they are input during the period CPU is shifting to the HALT
mode (for about 3 clocks of fFPH) with IDLE1 or STOP mode (RUN and IDLE2 are
not applicable to this case). (In this case, an interrupt request is kept on hold
internally.)
If another interrupt is generated after it has shifted to HALT mode completely,
halt status can be released without difficultly. The priority of this interrupt is
compare with that of the interrupt kept on hold internally, and the interrupt with
higher priority is handled first followed by the other interrupt.
TMP93PW20A
Low Voltage/Low Power
CMOS 16-Bit Microcontroller
TMP93PW20AF
1.
Outline and Device Characteristics
The TMP93PW20A is OTP type MCU which includes 128 Kbytes one-time PROM. Using the
adapter-socket, you can write and verify the data for the TMP93CS20 by general EPROM
programmer.
The TMP93PW20A has the same pin-assignment as the TMP93CS20 (Mask ROM type).
Writing the program to built-in PROM, the TMP93PW20A operates as the same way as the
TMP93CS20.
There are differences in the memory mapping area and the memory capacity of the internal
PROM and RAM between the TMP93PW20A and the TMP93CS20. The internal PROM of the
TMP93PW20A is 128 Kbytes, and the internal RAM is 4 Kbytes. The internal ROM of the
TMP93CS20 is 64 Kbytes, and the internal RAM is 2 Kbytes. Memory maps are described as
follows.
030619EBP1
• The information contained herein is subject to change without notice.
• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of TOSHIBA or others.
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid
situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to
property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document
shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any
law and regulations.
• For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality
and Reliability Assurance/Handling Precautions.
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use
these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips.
93PW20A-1
2004-02-10
TMP93PW20A
000000H
000000H
Internal I/O
(128 bytes)
0000A0H
Internal I/O
(128 bytes)
0000A0H
Internal RAM
(2 Kbytes)
Internal RAM
(4 Kbytes)
0008A0H
0010A0H
FE0000H
FF0000H
Internal PROM
(128 Kbytes)
Internal ROM
(64 Kbytes)
FFFF00H
FFFF00H
Interrupt vector table area
(256 bytes)
Interrupt vector table area
(256 bytes)
FFFFFFH
FFFFFFH
Memory map of TMP93PW20A
Memory map of TMP93CS20
Product No.
ROM
RAM
Package
Adapter Socket
TMP93PW20A
OTP 128 Kbytes
4 Kbytes
P-LQFP144-1616-0.40
BM11141
93PW20A-2
2004-02-10
TMP93PW20A
ADTRG (P37)
AN0 to AN7
(P50 to P57)
AVCC
AVSS
VREFH
VREFL
VCC [3]
VSS [8]
CPU (900/L)
10-bit 8 channel
AD
converter
SCK (P60)
SO/SDA (P61)
SI/SCL (P62)
Serial bus
interface
TXD0 (P63)
RXD0 (P64)
SCLK0/ CTS0 (P65)
Serial I/O
(Cannel 0)
TXD1 (P80)
RXD1 (P81)
Serial I/O
(Channel 1)
W A
B C
D E
H L
IX
IY
IZ
SP
XWA
XBC
XDE
XHL
XIX
XIY
XIZ
XSP
OSC1
Clock Gear
32 bits
P
OSC2
F
SR
X1
X2
C
XT1 (P86)
XT2 (P87)
CLK
ALE
SCOUT (P73)
EA
RESET
RD (P30)
WR (P31)
HWR (P32)
WAIT (P84)
4 Kbytes RAM
TI0 (P66)
8-bit timer
(Timer 0)
TO1 (P67)
8-bit timer
(Timer 1)
Port 0
P00 to P07
(AD0 to AD7)
TI2 (P82)
8-bit timer
(Timer 2)
Port 1
P10 to P17
(AD8/A8 to AD15/A15)
TO3 (P83)
8-bit timer
(Timer 3)
Port 2
P20 to P27
(A0/A16 to A7/A23)
128 Kbytes ROM
TI4 (P40)
TO4 (P41)
TI6 (P42)
TO6 (P43)
16-bit timer
(Timer 4)
16-bit timer
(Timer 8)
TI8/INT8 (P70)
TI9/INT9 (P71)
TO8 (P72)
16-bit timer
(Timer A)
TIA/INTA (P74)
TIB/INTB (P75)
TOA (P76)
16-bit timer
(Timer 6)
Interrupt
controller
KEY0 to KEY7
(P40 to P47)
Key wakeup
(KEY0 to KEY7)
NMI (P77)
INT0 to INT4 (P33 to P37)
INT7 (P66)
Watchdog
timer
LCD driver
Real time
counter
V1 to V3
C0 to C1
SEG0 to SEG23
SEG24 to SEG39 (P90 to PA7)
COM0 to COM3
Note: The item in parentheses ( ) are the initial setting after reset.
Figure 1.1
TMP93PW20A Block Diagram
93PW20A-3
2004-02-10
TMP93PW20A
2.
Pin Assignment and Functions
The assignment of input/output pins for the TMP93PW20A their names and outline functions
are described below.
2.1 Pin Assignment
PA1 (SEG33)
PA0 (SEG32)
P97 (SEG31)
P96 (SEG30)
P95 (SEG29)
P94 (SEG28)
P93 (SEG27)
P92 (SEG26)
VSS
P91 (SEG25)
P90 (SEG24)
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
VSS
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
Figure 2.1.1 shows pin assignment of the TMP93PW20AF.
108
109
72
110 105
100
95
90
85
80
75
70
115
65
120
60
TMP93PW20AF
LQFP144
125
55
Top view
130
50
135
45
140
40
5
15
20
25
30
1
35
36
Figure 2.1.1
37
COM3
COM2
COM1
COM0
C1
C0
V3
VCC
VSS
V2
V1
P47 (KEY7)
P46 (KEY6)
P45 (KEY5)
P44 (KEY4)
P43 (TO6/KEY3)
P42 (TI6/KEY2)
P41 (TO4/KEY1)
P40 (TI4/KEY0)
P85
P84 ( WAIT )
P83 (TO3)
P82 (TI2)
P81 (RXD1)
P80 (TXD1)
P77 ( NMI )
P76 (TOA)
P75 (TIB/INTB)
VSS
P74 (TIA/INTA)
P73 (SCOUT)
P72 (TO8)
P71 (TI9/INT9)
P70 (TI8/INT8)
P67 (TO1)
P66 (TI0/INT7)
RESET
(SCK) P60
(SO/SDA) P61
(SI/SCL) P62
(TXD0) P63
(RXD0) P64
(SCLK0/CTS0) P65
144
10
(AD7) P07
(AD8/A8) P10
(AD9/A9) P11
(AD10/A10) P12
(AD11/A11) P13
(AD12/A12) P14
(AD13/A13) P15
VSS
(AD14/A14) P16
(AD15/A15) P17
(A0/A16) P20
(A1/A17) P21
(A2/A18) P22
(A3/A19) P23
(A4/A20) P24
(A5/A21) P25
(A6/A22) P26
(A7/A23) P27
CLK
ALE
EA
X1
X2
TEST1
TEST2
(XT1) P86
(XT2) P87
VSS
VCC
(SEG34) PA2
(SEG35) PA3
(SEG36) PA4
(SEG37) PA5
(SEG38) PA6
(SEG39) PA7
( RD ) P30
VSS
( WR ) P31
( HWR ) P32
(INT0) P33
(INT1) P34
(INT2) P35
(INT3) P36
(INT4/ ADTRG ) P37
VREFH
VREFL
(AN7) P57
(AN6) P56
(AN5) P55
(AN4) P54
(AN3) P53
(AN2) P52
(AN1) P51
(AN0) P50
AVCC
AVSS
VSS
VCC
(AD0) P00
(AD1) P01
(AD2) P02
(AD3) P03
(AD4) P04
(AD5) P05
(AD6) P06
73
Pin Assignment (144-pin LQFP)
93PW20A-4
2004-02-10
TMP93PW20A
2.2
Pin Names and Functions
The TMP93PW20A has MCU mode and PROM mode.
(1) Pin functions of TMP93PW20A in MCU mode.
Table 2.2.1
Pin Names
Number
of Pins
Name and Function in MCU Mode (1/3)
I/O
Functions
Port 0: I/O port that allows I/O to be selected at the bit level.
Address and data (lower): Bits 0 to 7 for address and data bus.
P00 to P07
AD0 to AD7
8
I/O
I/O
P10 to P17
AD8 to AD15
A8 to A15
8
I/O
I/O
Output
Port 1: I/O port that allows I/O to be selected at the bit level.
Address and data (Upper): Bits 8 to 15 for address and data bus.
Address: Bits 8 to 15 for address bus.
P20 to P27
A0 to A7
A16 to A23
8
I/O
Output
Output
Port 2: I/O port that allows I/O to be selected at the bit level (with pull-up resistor).
Address: Bits 0 to 7 for address bus.
Address: Bits 16 to 23 for address bus.
P30
1
Output
Output
Port 30: Output port.
Read: Strobe signal for reading external memory.
(Read when reading internal memory at P3<P30> = 0, P3FC<P30F> = 1.)
1
Output
Output
Port 31: Output port.
Write: Strobe signal for writing data on pins AD0 to AD7.
1
I/O
Output
Port 32: I/O port (with pull-up resistor).
High write: Strobe signal for writing data on pins AD8 to AD15.
P33
INT0
1
I/O
Input
Port 33: I/O port (with pull-up resistor).
Interrupt request pin 0: Interrupt request pin with programmable
level/rising/falling edge.
P34
INT1
1
I/O
Input
Port 34: I/O port (with pull-up resistor).
Interrupt request pin 1: Interrupt request pin with programmable rising/falling
edge.
P35
INT2
1
I/O
Input
Port 35: I/O port (with pull-up resistor).
Interrupt request pin 2: Interrupt request pin with programmable rising/falling
edge.
P36
INT3
1
I/O
Input
Port 36: I/O port (with pull-up resistor).
Interrupt request pin 3: Interrupt request pin with programmable rising/falling
edge.
P37
INT4
1
I/O
Input
Input
Port 37: I/O port (with pull-up resistor).
Interrupt request pin 4: Interrupt request pin with programmable rising/falling
edge.
ADTRG Input AD external trigger pin: External trigger pin to start AD conversion.
RD
P31
WR
P32
HWR
ADTRG
P40
TI4
KEY0
1
I/O
Input
Input
Port 40: I/O port (with pull-up resistor).
Timer input 4: 16-bit timer 4 input.
Key input 0: Key-on wakeup pin 0.
P41
TO4
KEY1
1
I/O
Output
Input
Port 41: I/O port (with pull-up resistor).
Timer output 4: 16-bit timer 4 output.
Key input 1: Key-on wakeup pin 1.
P42
TI6
KEY2
1
I/O
Input
Input
Port 42: I/O port (with pull-up resistor).
Timer input 6: 16-bit timer 6 input.
Key input 2: Key-on wakeup pin 2.
P43
TO6
KEY3
1
I/O
Output
Input
Port 43: I/O port (with pull-up resistor).
Timer output 6: 16-bit timer 6 output.
Key input 3: Key-on wakeup pin 3.
P44 to P47
KEY4 to KEY7
4
I/O
Input
Port 44 to 47: I/O port (with pull-up resistor).
Key input 4 to 7: Key-on wakeup pin 4 to 7.
P50 to P57
AN0 to AN7
8
Input
Input
Port 50 to 57: Pin used to input port.
Analog input 0 to 7.
93PW20A-5
2004-02-10
TMP93PW20A
Table 2.2.1
Pin Names
Number
of Pins
Name and Function in MCU Mode (2/3)
I/O
Functions
P60
SCK
1
I/O
I/O
P61
SO
SDA
1
I/O
Output
I/O
P62
SI
SCL
1
I/O
Input
I/O
P63
TXD0
1
I/O
Output
P64
RXD0
1
I/O
Input
Port 64: I/O port.
Serial receive data 0.
P65
SCLK0
1
I/O
I/O
Input
Port 65: I/O port.
Serial clock I/O 0.
Serial data send enable 0 (Clear to send).
P66
TI0
INT7
1
I/O
Input
Input
Port 66: I/O port.
Timer input 0: 8-bit timer 0 input.
Interrupt request pin 7: Interrupt request pin with programmable rising/falling
edge.
P67
TO1
1
I/O
Output
P70
TI8
INT8
1
I/O
Input
Input
Port 70: I/O port (with pull-up resistor).
Timer input 8: 16-bit timer 8 input.
Interrupt request pin 8: Interrupt request pin with programmable rising/falling
edge.
P71
TI9
INT9
1
I/O
Input
Input
Port 71: I/O port (with pull-up resistor).
Timer input 9: 16-bit timer 8 input.
Interrupt request pin 9: Interrupt request pin with rising edge.
P72
TO8
1
I/O
Output
Port 72: I/O port (with pull-up resistor).
Timer output 8: 16-bit timer 8 output.
P73
SCOUT
1
I/O
Output
Port 73: I/O port (with pull-up resistor).
System clock output: System clock or double system clock output to be
synchronized with the external circuit.
P74
TIA
INTA
1
I/O
Input
Input
Port 74: I/O port (with pull-up resistor).
Timer input A: 16-bit timer A input.
Interrupt request pin A: Interrupt request pin with programmable rising/falling
edge.
P75
TIB
INTB
1
I/O
Input
Input
Port 75: I/O port (with pull-up resistor).
Timer input B: 16-bit timer B input.
Interrupt request pin B: Interrupt request pin with rising edge.
P76
TOA
1
I/O
Output
P77
1
I/O
Input
P80
TXD1
1
I/O
Output
Port 80: I/O port (with programmable open drain).
Serial send data 1.
P81
RXD1
1
I/O
Input
Port 81: I/O port (with programmable open drain).
Serial receive data 1.
P82
TI2
1
I/O
Input
Port 82: I/O port (with programmable open drain).
Timer input 2: 8-bit timer 2 input pin.
P83
TO3
1
I/O
Output
Port 83: I/O port (with programmable open drain).
Timer output 3: 8-bit timer 2, 3 output pin.
P84
1
I/O
Input
Port 84: I/O port (with programmable open drain).
Wait: Pin used to request CPU bus wait.
CTS0
NMI
WAIT
Port 60: I/O port.
Clock I/O pin in SIO mode of the serial bus interface.
Port 61: I/O port (with programmable open drain).
Data send channel in SIO mode of the serial bus interface.
Data I/O pin in I2C bus mode of the serial bus interface.
Port 62: I/O port (with programmable open drain).
Data receive channel in SIO mode of the serial bus interface.
Clock I/O pin in I2C bus mode of the serial bus interface.
Port 63: I/O port (with programmable open drain).
Serial send data 0.
Port 67: I/O port.
Timer output1: 8-bit timer 0 or timer 1 output.
Port 76: I/O port (with pull-up resistor).
Timer output A: 16-bit timer A output.
Port 77: I/O port (with pull-up resistor).
Non-maskable interrupt request pin: Interrupt request pin with programmable
falling edge or both edges.
93PW20A-6
2004-02-10
TMP93PW20A
Table 2.2.1
Name and Function in MCU Mode (3/3)
Number
of Pins
I/O
P85
1
I/O
P86
XT1
1
I/O
Input
Port 86: I/O port (Open drain).
Low-frequency oscillator connecting pin.
P87
XT2
1
I/O
Output
Port 87: I/O port (Open drain).
Low-frequency oscillator connecting pin.
P90 to P97
SEG24 to SEG31
8
Output
Output
Port 90 to port 97: Output port (Open drain).
Segment data output pin.
PA0 to PA7
SEG32 to SEG39
8
Output
Output
Port A0 to A7: Output port, large current port (Open drain).
LCD segment output pin.
SEG0 to SEG23
24
Output
LCD segment output.
COM0 to COM3
4
Output
LCD common output.
AVCC
1
Power supply Power supply pin for AD converter.
AVSS
1
Power supply GND pin for AD converter (0 V).
VREFH
1
Input
VREFL
1
Input
Pin for reference voltage input to AD converter (L).
X1
1
Input
Oscillator connecting pin.
X2
1
Output
RESET
1
Input
ALE
1
Output
Address latch enable.
Can be disabled for reducing noise.
CLK
1
Output
Clock output: Outputs “external input clock × 1 ÷ 4” clock.
Pulled-up during reset.
Can be disabled for reducing noise.
Pin Names
Input
Functions
Port 85: I/O port (with programmable open drain).
Pin for reference voltage input to AD converter (H).
Oscillator connecting pin.
Reset: Initializes LSI.
EA
1
VCC
3
Power supply Power supply pin (All Vcc pins should be connected with the power supply pin).
The VCC pin should be connected.
VSS
8
Power supply GND pin (0 V) (All Vss pins should be connected with GND (0 V)).
TEST1
TEST2
2
Output
Input
C0, C1,
V1 to V3
5
LCD pin
TEST1 should be connected with TEST2 pin.
Do not connect to any other pins.
LCD drive boosting pin.
A condenser should be connected between C0 and C1, V1, V2, V3 and GND.
Note: All pins that have built-in pull-up resistors can be disconnected from the built-in pull-up resistor by software.
93PW20A-7
2004-02-10
TMP93PW20A
(2) Pin function of the TMP93PW20A in PROM mode
Pin names and functions are shown in Table 2.2.2.
Table 2.2.2
Pin Names
Pin Names and Function in PROM Mode
Number of
Input/Output
Pins
A7 to A0
8
Input
A15 to A8
8
Input
A16
1
Input
D7 to D0
8
I/O
CE
1
OE
PGM
Functions
Pin Names (in MCU mode)
P27 to P20
Memory address of program
P17 to P10
P67
Memory data of program
P07 to P00
Input
Chip enable
P32
1
Input
Output control
P30
1
Input
Program control
P31
VPP
1
Power supply
12.75 V/5 V (Power supply of program)
EA
VCC
4
Power supply
6.25 V/5 V
VCC, AVCC
VSS
9
Power supply
0V
VSS, AVSS
Pin Names
Number of
Input/Output
Pins
P60
1
Input
RESET
1
Input
CLK
1
Input
ALE
1
Output
X1
1
Input
X2
1
Output
P66 to P61
6
Input
TEST1
TEST2
2
Output
Input
88
I/O
P37 to P33
P47 to P40
P57 to P50
P77 to P70
P87 to P80
P97 to P90
PA7 to PA0
SEG23 to SEG0
VREFH
VREFL
C0, C1
COM3 to COM0
V3 to V1
Pin State
Fix to low level (Security pin)
Fix to low level (PROM mode)
Open
Self oscillation with resonator
Fix to high level
TEST1 should be connected with TEST2 pin
Do not connect to any other pins
Open
93PW20A-8
2004-02-10
TMP93PW20A
3.
Operation
This section describes the functions and basic operational blocks of the TMP93PW20A.
The TMP93PW20A has PROM in place of the mask ROM which is included in the TMP93CS20.
The other configuration and functions are the same as the TMP93CS20. Regarding the function
of the TMP93PW20A, which is not described herein, see the TMP93CS20.
The TMP93PW20A has two operational modes: MCU mode and PROM mode.
3.1
MCU mode
(1) Mode setting and function
The MCU mode is set by releasing the CLK pin (Pin open).
In the MCU mode, the operation is the same as TMP93CS20.
(2) Memory map
The memory map of TMP93PW20A differs from that of TMP93CS20.
The memory map in MCU mode is show in Figure 3.1.1, and the memory map in PROM
mode is shown in Figure 3.1.2.
00000H
000000H
Internal I/O (160 bytes)
0000A0H
Internal RAM (4 Kbytes)
0010A0H
Internal PROM
(128 Kbytes)
FE0000H
Internal PROM
(128 Kbytes)
1FFFFH
FFFF00H
FFFFFFH
(
Interrupt vector table area
(256 bytes)
Figure 3.1.1
Memory Map in MCU Mode
Figure 3.1.2
93PW20A-9
=Internal area)
Memory Map in PROM Mode
2004-02-10
TMP93PW20A
(3) Note on setting of the wait controller
The TMP93PW20A has a wide memory area compared as the TMP93CS20. For the
addressing area of WAITC1, there is a difference between the TMP93PW20A and the
TMP93CS20.
When bits 1 and 0 < B1C1:0> in the chip select and wait control register 1 (WAITC1) is
set to 00, the address area is specified as follows.
3.2
TMP93PW20A
TMP93CS20
10A0H to 7FFFH
8A0H to 7FFFH
PROM Mode
(1) Mode setting and programming
PROM mode is set by setting the RESET and CLK pins to the “Low” level.
The programming and verification for the internal PROM is achieved by using a general
PROM programmer with the adaptor socket.
1.
OTP adaptor
BM11141: TMP93PW20AF adaptor
2.
Setting OTP adaptor
Set the switch (SW1) to N side.
3.
Setting PROM programmer
i) Set PROM type to TC571000D.
Size: 1 Mbits (128 K × 8 bits)
VPP: 12.75 V
tPW: 100 µs
Electric signature function: None
ii) Transferring the data (Copy)
In TMP93PW20AF, PROM is placed on addresses 00000H to 1FFFFH in
PROM mode, and addresses FE0000H to FFFFFFH in MCU mode.
Therefore data should be transferred to addresses 00000H to 1FFFFH in
PROM mode using the object converter (tuconv) or the block transfer mode. (See
instruction manual of PROM programmer.)
iii) Setting program address
Start address: 00000H
End address:
4.
1FFFFH
Programming
Program/verify according to the procedures of PROM programmer.
93PW20A-10
2004-02-10
TMP93PW20A
VPP (12.75 V/5 V)
VCC
AVCC, VCC
EA
TEST1
TEST2
A16
to
A0
P30
P32
P31
P67
P17
to
P10
P27
to
P20
OE
CE
PGM
P07
to
P00
D7
to
D0
RESET
CLK
VCC
X1
See “Pin Names and
Function in PROM Mode” in
Table 2.2.2 for other pin’s
states.
Use the 10 MHz resonator
in case of programming
and verification by a
general EPROM
programmer.
P65 to P61
X2
VSS
AVSS
Figure 3.2.1
*
P60
Security
Pin Setting in PROM Mode
(2) Note on electric signature
The electric signature mode (Hereinafter referred to as “signature”) is not supported in
the TMP93PW20A. Therefore using signature with PROM programmer applies voltage of
12 ± 0.5 V to pin 9 (A9) of the address, and the device is damaged. Do not use signature.
(3) Program mode
The TMP93PW20A is provided with all bits set to 1 (OFF). When programming it, write
data 0 to necessary bit locations.
Applying VPP = 12.5 V, OE = VIH CE = VIL enables writing data.
The one-time PROM which is included in the TMP93PW20A can write data in any order.
It is possible to write a special address.
(4) Adapter socket (BM11141)
The BM11141 is an adapter socket to write data to the one-time PROM in the
TMP93PW20A using a general PROM programmer.
(5) Program storage area in PROM mode
The TMP93PW20A has a program area (FE0000H to FFFFFFH) of 128 Kbytes. In
PROM mode, addresses 00000H to 1FFFFH correspond to addresses FE0000H to
FFFFFFH in MCU mode.
93PW20A-11
2004-02-10
TMP93PW20A
(6) How to program with a general PROM programmer
The PROM programmer should be equivalent to TC571000D.
1.
Set a switch (SW1) of BM11141 to a program side (NOR). (BM11141 is hereinafter
referred as an adapter.) (Note 1)
2.
Set a MCU to the adapter. (Note 2)
3.
Set the adapter to the PROM programmer. (Note 2)
4.
Specify TC571000D as a type of the PROM.
5.
Set a start address to 00000H and an end address to 1FFFFH to write the PROM.
(Note 3)
6.
Write the one-time PROM and verify according to operational procedures of the
PROM programmer.
Note 1: If you write a data to the one-time PROM without setting the switch (SW1) to the
program side, a device should be damaged.
Note 2: 1 pin marked on the socket of the PROM programmer must be matched to the 1
pin of the adapter. If you set them in reverse, the MCU or the PROM programmer
should be damaged.
Note 3: When data 0 is written to an address over 1FFFFH, there is a possibility that the
data is written to addresses 00000H to 1FFFFH and an original program is
corrupted.
(7) Programming flow chart
The programming mode is set by applying 12.75 V (programming voltage) to the VPP
pin when the following pins are set as follows, (VCC: 6.25 V, RESET : “Low” level, CLK:
“Low” level).
While address and data are fixed and CE pin is set to “L” level, 0.1 ms of “Low” level
pulse is applied to PGM pin to program the data.
Then the data in the address is verified.
If the programmed data is incorrect, another 0.1 ms pulse is applied to PGM pin.
This programming procedure is repeated until correct data is read from the address (25
times maximum).
Subsequently, all data are programmed in all addresses.
The verification for all data is done under the condition of VPP = VCC = 5 V after all data
were written.
Figure 3.2.2 shows the programming flowchart.
93PW20A-12
2004-02-10
TMP93PW20A
High Speed Program Writing.
Flowchart
Start
VCC = 6.25 V ± 0.25 V
VPP = 12.75 V ± 0.25 V
Address = Start address
X=0
Program 0.1 ms pulse
X=X+1
X > 25?
Yes
No
Error
Verify
Address = Address + 1
OK
No
Last address?
Yes
VCC = 5 V
VPP = 5 V
Read all data
Error
OK
Pass
Figure 3.2.2
Failure
Flowchart
93PW20A-13
2004-02-10
TMP93PW20A
(8) Security bit
The TMP93PW20A has a security bit.
If the security bit is programmed to 0, the content of the PROM can not be read in PROM
mode. (Outputs data FFH)
(How to program the security bit)
The difference from the programming procedures described in section 3.2 (1) are follows.
1.
Setting OTP adapter
Set the switch (SW1) to S side.
2.
Setting PROM programmer
i)
Transferring the data
ii)
Setting programming address
The security bit is in bit 0 of address 00000H.
Set the start address 00000H and the end address 00000H.
Set the data FEH at the address 00000H.
93PW20A-14
2004-02-10
TMP93PW20A
4.
Electrical Characteristics
4.1
“X” used in an expression shows a frequency for
the clock fFPH selected by SYSCR1<SYSCK>.
The value of X changes according to whether a
clock gear or a low speed oscillator is selected.
An example value is calculated for fc, with gear =
fc/1 (SYSCR1<SYSCK, GEAR2:0> = 0000).
Maximum Rating (TMP93PW20A)
Symbol
Rating
Power supply voltage
Parameter
VCC
−0.5 to 6.5
Input voltage
VIN
Output current (Per one pin), large current
port
IOL1
20
Output current (Per one pin)
IOL2
2
Output current (Total of large current port)
ΣIOL1
80
Output current (Total)
ΣIOL
120
Output current (Total)
ΣIOH
−80
Power dissipation (Ta = 85°C)
PD
600
Soldering temperature (10 s)
TSOLDER
260
Storage temperature
TSTG
−65 to150
Operating temperature
TOPR
−40 to 85
Unit
Except EA pin
−0.5 to VCC + 0.5
EA pin
−0.5 to 14.0
V
mA
mW
°C
Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one
of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its
performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when
designing products which include this device, ensure that no maximum rating value will ever be exceeded.
4.2
DC Characteristics (1/2)
Ta = −40 to 85°C
Parameter
Power supply voltage
AVCC = VCC
AVSS = VSS = 0 V
AD0 to AD15
Input low
voltage
Symbol
fc = 4 to 20 MHz
VCC
fs = 30 to
fc = 4 to 12.5 MHz 34 kHz
VIL
VCC ≥ 4.5 V
VIL1
VCC < 4.5 V
Port
VIL1
KEY0 to KEY7, NMI,
INT0 to INT4
VIL2
EA
VIL3
X1
VIL4
RESET
VIL5
AD0 to AD15
Port
Input high KEY0 to KEY7,
voltage
NMI , INT0 to INT4
Condition
Min
Typ.
(Note)
Max
Unit
5.5
V
4.5
2.7
0.8
0.6
0.3 VCC
−0.3
VCC = 2.7 to 5.5 V
0.25 VCC
0.3
0.2 VCC
0.1 VCC
VIH
VCC ≥ 4.5 V
VIH
VCC ≥ 4.5 V
VIH1
2.2
V
2.0
0.7 VCC
VIH2
0.75 VCC
VCC = 2.7 to 5.5 V
VCC + 0.3
Vcc − 0.3
EA
VIH3
X1
VIH4
0.8 VCC
RESET
VIH5
0.6 VCC
Note: Typical values are for Ta = 25°C and VCC = 5 V unless otherwise noted.
93PW20A-15
2004-02-10
TMP93PW20A
4.2
DC Characteristics (2/2)
Parameter
Symbol
Condition
Min
Typ.
(Note 1)
Max
Unit
0.45
V
Output low voltage
VOL
IOL = 1.6 mA
(VCC = 2.7 to 5.5 V)
Output low current (PA0 to PA7)
IOLA
VOL =
1.0 V
VOH1
IOH = −400 µA
(VCC = 3 V ± 10%)
2.4
VOH2
IOH = −400 µA
(VCC = 5 V ± 10%)
4.2
IDAR
(Note 2)
VEXT = 1.5 V
REXT = 1.1 kΩ
(VCC = 5 V ± 10% only)
−1.0
Input leakage current
ILI
0.0 ≤ VIN ≤ VCC
0.02
±5
Output leakage current
ILO
0.2 ≤ VIN ≤ VCC − 0.2
0.05
±10
Power down voltage
(at stop, RAM backup)
VSTOP
VIL2 = 0.2 VCC,
VIH2 = 0.8 VCC
Pin capacitance
CIO
fc = 1 MHz
Shumitt width
KEYx, NMI , INT0 to INT4, RESET
VTH
Programmable pull-up resistance
RKH
Output high voltage
Darlington drive current
(8 output pins max)
(VCC = 5 V ± 10%)
16
(VCC = 3 V ± 10%)
7
V
0.4
10
pF
1.0
V
50
150
VCC = 3 V ± 10%
100
300
32
40
24
30
17
21
4.5
7
NORMAL
14
20
10
14
7
10
VCC = 3 V ± 10%
fc = 12.5 MHz
(Typ. VCC = 3.0 V)
IDLE2
IDLE1
ICC
Vcc = 3 V ± 10%
fs = 32.768 kHz
(Typ. VCC = 3.0 V)
at boosting frequency
= 1 kHz
SLOW
RUN
IDLE2
IDLE1
2
3
40
55
30
42
20
33
10
24
Ta ≤ 50°C
STOP
Ta ≤ 70°C
Ta ≤ 85°C
Note 1:
Typical values are for Ta = 25°C and VCC = 5 V unless otherwise noted.
Note 2:
IDAR is guaranteed for up to eight ports.
µA
V
IDLE1
RUN
mA
6.0
VCC = 5 V ± 10%
VCC = 5 V ± 10%
fc = 20 MHz
IDLE2
−3.5
2.0
NORMAL
RUN
mA
kΩ
mA
mA
µA
10
0.2
20
µA
50
Note 3:
Segment or common output is not loaded.
Note 4:
ICC measurement conditions (NORMAL, SLOW): Only CPU is operational; output pins are open and
input pins are fixed.
(e.g.) Diagram of IDAR
REXT
IDAR
VEXT
93PW20A-16
2004-02-10
TMP93PW20A
4.3
AC Electrical Characteristics
(1) VCC = 5 V ± 10%
No.
Parameter
Symbol
Variable
Min
16 MHz
Max
31250
Min
20 MHz
Max
Min
Max
Unit
1
Osc. period (= x)
tOSC
50
62.5
50
ns
2
CLK width
tCLK
2x − 40
85
60
ns
3
A0 to A23 valid → CLK hold
tAK
0.5x − 20
11
5
ns
4
CLK valid → A0 to A23 hold
tKA
1.5x − 70
24
5
ns
5
A0 to A15 valid → ALE fall
tAL
0.5x − 15
16
10
ns
6
ALE fall → A0 to A15 hold
tLA
0.5x − 20
11
5
ns
7
ALE high width
tLL
x − 40
23
10
ns
8
ALE fall → RD / WR fall
tLC
0.5x − 25
6
0
ns
9
RD / WR rise → ALE rise
tCL
ns
0.5x − 20
11
5
10 A0 to A15 valid → RD / WR fall
tACL
x − 25
38
25
ns
11 A0 to A23 valid → RD / WR fall
tACH
1.5x − 50
44
25
ns
tCA
0.5x − 25
12
RD / WR rise → A0 to A23 hold
13 A0 to A15 valid → D0 to D15 input
14 A0 to A23 valid → D0 to D15 input
6
0
ns
tADL
3.0x − 55
133
95
ns
tADH
3.5x − 65
154
110
ns
15
RD fall → D0 to D15 input
tRD
2.0x − 60
65
40
ns
16
RD low pulse width
tRR
2.0x − 40
85
60
17
RD rise → D0 to D15 hold
tHR
0
0
0
ns
18
RD rise → A0 to A15 output
tRAE
x − 15
48
35
ns
19
WR low pulse width
tWW
2.0x − 40
85
60
ns
tDW
2.0x − 55
70
45
ns
tWD
0.5x − 15
16
10
20 D0 to D15 valid → WR rise
21
WR rise → D0 to D15 hold
22 A0 to A23 valid → WAIT input
23 A0 to A15 valid → WAIT input
24
RD / WR fall → WAIT hold
(1 + N)
WAIT mode
(1 + N)
WAIT mode
(1 + N)
WAIT mode
tAPH
26 A0 to A23 valid → Port hold
tAPH2
WR rise → Port valid
129
3.0x − 80
tAWL
tCW
25 A0 to A23 valid → Port input
27
3.5x − 90
tAWH
2.0x + 0
108
125
2.5x − 120
2.5x + 50
tCP
ns
85
ns
70
ns
5
ns
200
ns
100
36
206
200
ns
ns
175
200
ns
AC measuring conditions
• Output level: High 2.2 V/Low 0.8 V, CL = 50 pF
(However, CL = 100 pF for AD0 to AD15, A0 to A23, ALE, RD , WR ,
HWR , CLK)
• Input level:
High 2.4 V/Low 0.45 V (AD0 to AD15)
High 0.8 × VCC/Low 0.2 × VCC (except AD0 to AD15)
93PW20A-17
2004-02-10
TMP93PW20A
(2) VCC = 3 V ± 10%
No.
Parameter
Variable
Symbol
Min
12.5 MHz
Max
Max
Unit
1
Osc. period (= x)
tOSC
80
80
ns
2
CLK width
tCLK
2x − 40
120
ns
3
A0 to A23 valid → CLK hold
tAK
0.5x − 30
10
ns
4
CLK valid → A0 to A23 hold
tKA
1.5x − 80
40
ns
5
A0 to A15 valid → ALE fall
tAL
0.5x − 35
5
ns
6
ALE fall → A0 to A15 hold
tLA
0.5x − 35
5
ns
7
ALE high width
tLL
x − 60
20
ns
8
ALE fall → RD / WR fall
tLC
0.5x − 35
5
ns
9
RD / WR rise → ALE rise
tCL
0.5x − 40
0
ns
tACL
x − 50
30
ns
tACH
1.5x − 50
70
ns
tCA
0.5x − 40
0
10 A0 to A15 valid → RD / WR fall
11 A0 to A23 valid → RD / WR fall
12
RD / WR rise → A0 to A23 hold
13 A0 to A15 valid → D0 to D15 input
14 A0 to A23 valid → D0 to D15 input
31250
Min
ns
tADL
3.0x − 110
130
ns
tADH
3.5x − 125
155
ns
15
RD fall → D0 to D15 input
tRD
2.0x − 115
45
ns
16
RD low pulse width
tRR
2.0x − 40
120
17
RD rise → D0 to D15 hold
tHR
0
0
ns
18
RD rise → A0 to A15 output
tRAE
x − 25
55
ns
19
WR low pulse width
tWW
2.0x − 40
120
ns
tDW
2.0x − 120
40
ns
tWD
0.5x − 40
0
20 D0 to D15 valid → WR rise
21
WR rise → D0 to D15 hold
(1 + N)
WAIT mode
(1 + N)
WAIT mode
(1 + N)
WAIT mode
22 A0 to A23 valid → WAIT input
23 A0 to A15 valid → WAIT input
24
RD / WR fall → WAIT hold
tCW
tAPH
26 A0 to A23 valid → Port hold
tAPH2
WR rise → Port valid
3.0x − 100
tAWL
25 A0 to A23 valid → Port input
27
3.5x − 130
tAWH
2.0x + 0
ns
150
ns
140
ns
160
2.5x − 120
2.5x + 50
tCP
ns
ns
80
ns
200
ns
250
200
ns
AC measuring conditions
•
Output level: High 0.7 × VCC/Low 0.3 × VCC, CL = 50 pF
•
Input level:
High 0.9 × VCC/Low 0.1 × VCC
93PW20A-18
2004-02-10
TMP93PW20A
(1) Read cycle
tOSC
X1/XT1
tCLK
CLK
tAK
tKA
A0 to A23
tAWH
tCW
tAWL
WAIT
tAPH
tAPH2
Port input
(Note)
tADH
RD
tRR
tCA
tACH
tACL
AD0 to AD15
tLC
tRD
tADL
A0 to A15
tAL
tRAE
tHR
D0 to D15
tLA
tCL
ALE
tLL
Note:
Since the CPU accesses the internal area to read data from a port, the control signals of
external pins such as RD and CS are not enabled. Therefore, the above waveform diagram
should be regarded as depicting internal operation. Please also note that the timing and AC
characteristics of port input/output shown above are typical representation. For details, contact
your local Toshiba sales representative.
93PW20A-19
2004-02-10
TMP93PW20A
(2) Write cycle
X1/XT1
CLK
A0 to A23
WAIT
Port output
(Note)
tWW
tCP
WR , HWR
tDW
AD0 to AD15
A0 to A15
tWD
D0 to D15
ALE
Note:
Since the CPU accesses the internal area to write data to a port, the control signals of external
pins such as WR and CS are not enabled. Therefore, the above waveform diagram should
be regarded as depicting internal operation. Please also note that the timing and AC
characteristics of port input/output shown above are typical representation. For details, contact
your local Toshiba sales representative.
93PW20A-20
2004-02-10
TMP93PW20A
4.4
Serial Channel Timing
(1) I/O interface mode
1.
SCLK input mode
Parameter
Variable
Symbol
32.768 MHz (Note) 12.5 MHz
Min
Max
Min
Max
Min
Max
20 MHz
Min
Unit
Max
SCLK cycle
tSCY
16x
488 µs
1.28
0.8
µs
Output data
→ SCLK rising edge or falling
edge*
tOSS
tSCY/2 − 5x − 50
91.5 µs
190
100
ns
SCLK rising edge or falling edge*
→ Output data hold
tOHS
5x − 100
152 µs
300
150
ns
SCLK rising edge or falling edge*
→ Input data hold
tHSR
0
0
0
0
ns
SCLK rising edge or falling edge*
→ Effective data input
tSRD
tSCY − 5x − 100
336 µs
780
450
ns
Note: System clock is fs, or input clock to prescaler is divisor clock of fs.
*)
The rising edge is used in SCLK Rising mode.
The falling edge is used in SCLK Falling mode.
2.
SCLK output mode
Parameter
32.768 kHz
(Note)
Variable
Symbol
Min
Max
8192x
Min
12.5 MHz
Max
Min
Max
20 MHz
Min
Unit
Max
SCLK cycle (Programmable)
tSCY
16x
488 µs 250 ms 1.28 655.36
0.8 409.6
µs
Output data → SCLK rising edge
tOSS
tSCY − 2x − 150
427 µs
970
550
ns
SCLK rising edge
→ Output data hold
tOHS
2x − 80
60 µs
80
20
ns
SCLK rising edge
→ Input data hold
tHSR
0
0
0
0
ns
SCLK rising edge
t
→ Effective data hold SRD
tSCY − 2x − 150
428 µs
970
550
ns
Note: System clock is fs, or input clock to prescaler is divisor clock of fs.
SCLK
tSCY
SCLK output mode (Only rising
edge is used) or SCLK input
mode (SCLK rising edge mode)
SCLK
SCLK input mode (SCLK falling
edge mode)
tOSS
Output data TXD
tOHS
0
1
2
tSRD
Input data RXD
3
tHSR
0
Valid
1
Valid
2
Valid
3
Valid
(2) UART mode (SCLK0 and SCLK1 external input)
Parameter
Variable
Symbol
Min
32.768 kHz (Note)
Max
Min
Max
12.5 MHz
Min
Max
20 MHz
Min
Unit
Max
SCLK cycle
tSCY
4x + 20
122 µs
340
220
ns
SCLK low level pulse width
tSCYL
2x + 5
6 µs
165
105
ns
SCLK high level pulse width
tSCYH
2x + 5
6 µs
165
105
ns
Note: System clock is fs, or input clock to prescaler is divisor clock of fs.
93PW20A-21
2004-02-10
TMP93PW20A
4.5
AD Converter Characteristics
(VSS = 0 V, AVCC = VCC, AVSS = VSS, Ta = −40 to 85°C)
AVCC = VCC, AVSS = VSS
Parameter
Analog reference voltage (+)
Symbol
VREFH
Analog reference voltage (−)
VREFL
Analog input voltage range
VAIN
Analog current for analog
reference voltage
<VREFON> = 1
<VREFON> = 0
Condition
Min
Typ.
Max
VCC = 5 V ± 10%
VCC − 1.5 V
VCC
VCC
VCC = 3 V ± 10%
VCC − 0.2 V
VCC
VCC
VCC = 5 V ± 10%
VSS
VCC = 3 V ± 10%
VSS
IREF
= 3 V ± 10%
V
(VREFL = 0 V) CC
VCC = 2.7~5.5 V
Error
(Not including quantizing errors)
V
VREFL
VCC = 5 V ± 10%
−
Unit
VREFH
1.6
2.0
1.0
1.5
0.02
5.0
VCC = 5 V ± 10%
±1.0
±3.0
VCC = 3 V ± 10%
±1.0
±5.0
mA
µA
LSB
Note 1: 1LSB = (VREFH − VREFL)/210 [V]
Note 2: Minimum operation frequency.
The operation of the AD converter is guaranteed only when fc (High-frequency oscillator) is used. (It is not
guaranteed when fs is used.) Additionally, it is guaranteed when the clock frequency which is selected by
the clock gear is 4 MHz or more.
Note 3: The value ICC includes the current which flows through the AVCC pin.
4.6
LCD Driver Characteristics
Charge and Pump
Characteristics
Symbol
Min
Typ.
Reference input voltage
VL1
0.9
Output voltage
V2 pin
VL2
2 × VL1
V3 pin
VL3
3 × VL1
Max
Unit
1.83
V
External capacity C0, C1
CPMP
0.1
1.0
V1 pin
CVL1
0.1
1.0
V2 pin
CVL2
0.1
1.0
V3 pin
CVL3
0.1
1.0
µF
Note: Output voltage and External capacity are not loaded.
93PW20A-22
2004-02-10
TMP93PW20A
4.7
Event Counter (TI0, TI2, TI4, TI6, TI8 to TIB)
Parameter
4.8
Symbol
Variable
Min
Max
12.5 MHz
Min
Max
20 MHz
Min
Max
Unit
Clock cycle
tVCK
8X + 100
740
500
ns
Low level clock pulse width
tVCKL
4X + 40
360
240
ns
High level clock pulse width
tVCKH
4X + 40
360
240
ns
Interrupt and Capture
(1) NMI , INT0 to INT4 interrupts and INTKEY interrupt
Parameter
Symbol
Variable
Min
Max
12.5 MHz
Min
Max
20 MHz
Min
Max
Unit
Low level pulse width
tINTAL
4X
320
200
ns
High level pulse width
tINTAH
4X
320
200
ns
(2) INT7 to INTB interrupts and capture
Parameter
4.9
Symbol
Variable
Min
Max
12.5 MHz
Min
Max
20 MHz
Min
Max
Unit
Low level pulse width
tINTBL
4X + 100
420
300
ns
High level pulse width
tINTBH
4X + 100
420
300
ns
SCOUT Pin AC Characteristics
Parameter
Symbol
High level pulse width
VCC = 5 V ± 10%
High level pulse width
VCC = 3 V ± 10%
Low level pulse width
Min
Max
12.5 MHz
Min
Max
20 MHz
Min
0.5X − 10
30
15
0.5X − 20
20
−
0.5X − 10
30
15
0.5X − 20
20
−
Max
−
tSCL
VCC = 3 V ± 10%
Unit
ns
tSCH
Low level pulse width
VCC = 5 V ± 10%
Variable
ns
−
Measurement condition
•
Output level: High 2.2 V/Low 0.8 V, CL = 10 pF
tSCH
tSCL
SCOUT
93PW20A-23
2004-02-10
TMP93PW20A
4.10 Timing Chart for Serial Bus Interface
(1) I2C bus mode
Parameter
Variable
Symbol
START instruction → SDA falling edge
Min
Typ.
Unit
Max
tGSTA
3X
s
Start condition hold time
tHD:STA
2nX
s
SCL low level pulse width
tLOW
2nX
s
SCL high level pulse width
tHIGH
2nX + 12X
s
Data hold time (Input)
tHD:IDAT
0
ns
Data setup time (Input)
tSU:IDAT
250
ns
Data hold time (Output)
tHD:ODAT
7X
11X
s
2nX − tHD:ODAT
Data valid → SCL rising edge
tODAT
STOP instruction → SDA falling edge
tFSDA
3X
SDA falling edge → SCL rising edge
tFDRC
2nX
s
tSU:STO
2nX + 16X
s
Stop condition hold time
s
s
Note: SBICR1<SCK2:0> sets n.
Start instruction
Stop instruction
SDA
tGSTA
tLOW
tODAT
tHD:ODAT
SCL
tHD:STA
tHD:IDAT
tHIGH
tSU:IDAT
93PW20A-24
tFSDA
tFDRC
tSU:STO
2004-02-10
TMP93PW20A
(2) Clock-synchronous 8-bit SIO mode (Serial bus interface) clock
1.
SCK input mode
Parameter
Variable
Symbol
Min
Unit
Max
SCK cycle
tSCY2
25X
s
SCK falling edge → Output data hold
tOHS2
6X
s
Output data → SCK rising edge
tOSS2
tSCY2 − 6X
s
SCK rising edge → Input data hold
tHSR2
6X
ns
Input data → SCK rising edge
tISS2
0
ns
2. SCK output mode
Parameter
Variable
Symbol
Min
Max
211X
Unit
SCK cycle
tSCY2
25X
SCK falling edge → Output data hold
tOHS2
2X
Output data → SCK rising edge
tOSS2
tSCY2 − 2X
s
SCK rising edge → Input data hold
tHSR2
2X
s
Input data → SCK rising edge
tISS2
0
ns
tSCY2
s
s
tOSS2
SCK
(Input/output mode)
SO
(Output mode)
SI
(Input mode)
tOHS2
tISS2
tHSR2
93PW20A-25
2004-02-10
TMP93PW20A
4.11 Operation in PROM Mode
(1) DC and AC characteristics in read operation
Ta = 25 ± 5°C VCC = 5 V ± 10%
Symbol
Condition
Min
Max
VPP read voltage
Parameter
VPP
−
4.5
5.5
Unit
Input high voltage (A0 to A16, CE , OE , PGM )
VIH1
−
2.2
VCC + 0.3
Input low voltage (A0 to A16, CE , OE , PGM )
VIL1
−
−0.3
0.8
Address to output delay
tACC
CL = 50 PF
−
2.25 TCYC + α
V
ns
TCYC = 400 ns (10 MHz clock)
α = 200 ns
A0 to A16
CE
OE
PGM
D0 to D7
tACC
Data output
93PW20A-26
2004-02-10
TMP93PW20A
(2) DC and AC characteristics in programming
Ta = 25 ± 5°C VCC = 6.25 V ± 0.25 V
Symbol
Condition
Min
Typ.
Max
Programming supply voltage
Parameter
VPP
−
12.50
12.75
13.00
Input high voltage
(D0 to D7, A0 to A16, CE , OE , PGM )
VIH
−
2.6
VCC + 0.3
Input low voltage
(D0 to D7, A0 to A16, CE , OE , PGM )
VIL
−
−0.3
0.8
VCC supply current
ICC
fc = 10 MHz
−
50
VPP supply current
IPP
VPP = 13.00 V
−
50
PGM program pulse width
tPW
CL = 50 PF
0.095
0.1
0.105
Unit
V
mA
ms
A0 to A16
CE
OE
D0 to D7
Unknown
Data in stable
Data out valid
tPW
PGM
VPP
Note 1: The power supply of VPP (12.75 V) must be turned on at the same time or the later time for a power supply
of VCC and must be turned off at the same time or early time for a power supply of VCC.
Note 2: The device suffers a damage taking out and putting in on the condition of VPP = 12.75 V.
Note 3: The maximum spec of VPP pin is 14.0 V. Be carefull a overshoot at the programming.
93PW20A-27
2004-02-10
TMP93PW20A
5.
Port Section Equivalent Circuit Diagram
•
Reading the circuit diagram
Basically, the gate symbols written are the same as those used for the standard CMOS logic
IC [74HCXX] series.
The dedicated signal is described below.
Stop: This signal becomes active 1 when the HALT mode setting register is set to the Stop
mode and the CPU executes the HALT instruction. When the drive enable bit
[DRVE] is set to 1, however, Stop remains at 0.
•
The input protection resistance ranges from several tens of ohms to several hundreds of
ohms.
■
P0 (AD0 to AD7), P1 (AD8 to AD15, A8 to A15), and P67 (TO1)
VCC
Output data
P-ch
Output enable
STOP
N-ch
I/O
Input data
Input enable
■
P30 ( RD ) and P31 ( WR )
VCC
Output data
Output
STOP
93PW20A-28
2004-02-10
TMP93PW20A
■
P2 (A16 to A23, A0 to A7), P32 (HWR), P72 (TO8), P73 (SCOUT), and P76 (TOA)
VCC
Output data
VCC
Output enable
STOP
Programmable
pull-up resistance
I/O
Input data
Input enable
■ P70 (TI8/INT8), P71 (TI9/INT9), P74 (TIA/INTA), and P75 (TIB/INTB)
VCC
Output data
VCC
Output enable
STOP
I/O
Input data
INT8 to INTB
TI8 to TIB
■
Programmable
pull-up resistance
Input enable
P33 to P36 (INT0 to INT3)
VCC
Output data
VCC
Output enable
STOP
I/O
Input data
INT0 to INT3
Programmable
pull-up resistance
Input enable
93PW20A-29
2004-02-10
TMP93PW20A
■
P4 (TIx, TOx, KEYx) and P77 ( NMI )
VCC
Output data
VCC
Output enable
STOP
Programmable
pull-up resistance
I/O
Input data
Input enable
TI4, TI6
NMI , KEY0 to KEY7
■ P37 (INT4/ ADTRG )
VCC
Output data
VCC
Output enable
STOP
Programmable
pull-up resistance
I/O
Input data
Input enable
AD trigger
STOP
■
INT4
P5 (AN0 to AN7)
Analog input
channel select
Input
Analog data
Input data
Input enable
93PW20A-30
2004-02-10
TMP93PW20A
■
P63 (TXD0), P80 (TXD1), P83 (TO3), and P85
VCC
Output data
Open-drain
output enable
Output enable
STOP
I/O
Input data
Input enable
■
P60 (SCK), P64 (RXD0), P65 (SCLK0), and P66 (TI0/INT7)
VCC
Output
P-ch
Output enable
STOP
N-ch
I/O
Input data
SCK
RXD0
SCLK0
TI0
INT7
Input enable
93PW20A-31
2004-02-10
TMP93PW20A
■
P61 (SO/SDA), P62 (SI/SCL), P81 (RXD1), P82 (TI2), and P84 ( WAIT )
VCC
Output data
Open-drain
output enable
Output enable
STOP
I/O
Input data
SDA
SI
SCL
RXD1
TI2
Input enable
WAIT
■
P86 (XT1) and P87 (XT2)
Input enable
Clock
Input data
Output data
Output enable
Oscillator
P87 (XT2)
Input enable
Input data
P86 (XT1)
Output data
Output enable
STOP
Low-frequency
oscillation enable
93PW20A-32
2004-02-10
TMP93PW20A
■
P90 to P97 (SEG24 to SEG31), PA0 to PA7 (SEG32 to SEG39)
Segment output
Output data
Output
Output enable
STOP
■
CLK
VCC
Output enable
VCC
Internal CLK
P-ch
Output
STOP
N-ch
Internal reset
Test circuit
■
VREFH and VREFL
VREFON
P-ch
VREFH
String
resistance
VREFL
93PW20A-33
2004-02-10
TMP93PW20A
■
EA
Input data
■
Input
ALE
VCC
Internal ALE
P-ch
Output
Output enable
N-ch
■
RESET
Input
Reset
WDTOUT
Reset enable
■
Schmitt
X1 and X2
Clock
Oscillator
X2
High-frequency o
cillation enable
P-ch
N-ch
X1
93PW20A-34
2004-02-10
TMP93PW20A
6.
Package Dimensions
P-LQFP144-1616-0.40
Unit: mm
93PW20A-35
2004-02-10
TMP93PW20A
93PW20A-36
2004-02-10