TI1 ONET2591TA 2.5-gbps transimpedance amplifier with agc and rssi Datasheet

ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
2.5-Gbps Transimpedance Amplifier With AGC and RSSI
FEATURES
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
1.8-GHz Bandwidth
2.6-kΩ Differential Transimpedance
Automatic Gain Control (AGC)
6.6-pA/√Hz Typical Input Referred Noise
2-mAp-p Maximum Input Current
Received Signal Strength Indication (RSSI)
CML Data Outputs With On-Chip 50-Ω
Back-Termination
On-Chip Supply Filter Capacitor
Single 3.3-V Supply
Die Size: 0,78 mm × 1,18 mm
•
•
•
SONET/SDH Transmission Systems at OC24
and OC48
2.125-Gbps and 1.0625-Gbps Fibre-Channel
Receivers
Gigabit Ethernet Receivers
PIN Preamplifier-Receivers
DESCRIPTION
The ONET2591TA is a high-speed transimpedance amplifier used in optical receivers with data rates up to 2.5
Gbps.
It features a low input referred noise, 1.8-GHz bandwidth, automatic gain control (AGC), 2.6-kΩ transimpedance,
and received signal strength indication (RSSI).
The ONET2591TA is available in die form and is optimized for use in a TO can.
The ONET2591TA requires a single 3.3-V supply, and its power-efficient design typically dissipates less than 53
mW. The device is characterized for operation from –40°C to 85°C ambient temperature.
AVAILABLE OPTIONS
TA
DIE
–40°C to 85°C
ONET2591TAY
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005, Texas Instruments Incorporated
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
BLOCK DIAGRAM
The ONET2591TA is a high-performance, 2.5-Gbps transimpedance amplifier consisting of the signal path,
supply filter, a control block for dc input current cancellation, automatic gain control (AGC), received signal
strength indication (RSSI), and a band-gap voltage reference and bias current generation block.
The signal path comprises a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer.
The on-chip filter circuit provides filtered VCC for the photodiode and for the transimpedance amplifier. The dc
input current cancellation and AGC use internal low-pass filters to cancel the dc current on the input and to
adjust the transimpedance amplifier gain. Furthermore, circuitry to monitor the received signal strength is
provided.
A simplified block diagram of the ONET2591TA is shown in Figure 1.
VCC
275 pF
GND
220 W
Band-Gap Voltage
Reference and
Bias Current
Generation
200 pF
FILTER
DC Input Current
Cancellation,
AGC, and RSSI
RSSI
RF
OUT+
IN
OUT–
Transimpedance Amplifier
Voltage Amplifier
CML Output Buffer
B0066-01
Figure 1. Simplified Block Diagram of the ONET2591TA
SIGNAL PATH
The first stage of the signal path is a transimpedance amplifier that takes the photodiode current and converts it
into a voltage signal.
If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of AGC
circuitry.
The second stage is a voltage amplifier that provides additional gain and converts its single-ended input voltage
into a differential data signal.
The third signal-path stage is the output buffer, which provides CML outputs with on-chip, 50-Ω back-termination
to VCC.
2
Submit Documentation Feedback
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
FILTER CIRCUITRY
The filter pin provides filtered VCC for the photodiode bias. The on-chip, low-pass filter for the photodiode VCC is
implemented using a filter resistor of 220 Ω and an internal 200-pF capacitor. The corresponding corner
frequency is below 4 MHz.
If a lower cutoff frequency is required for the intended application, an external capacitor can be connected to one
of the FILTER pins.
The supply voltage for the whole amplifier is filtered by means of an on-chip, 275-pF capacitor as well, thus
avoiding the necessity to use an external supply-filter capacitor.
DC INPUT CURRENT CANCELLATION, AGC, AND RSSI
The voltage drop across the internal photodiode supply-filter resistor is monitored by means of a dc input current
cancellation, AGC, and RSSI control circuit block.
If the dc input current exceeds a certain level, it is partially cancelled by means of a controlled current source.
This measure keeps the transimpedance amplifier stage within sufficient operating point limits for optimum
performance. Furthermore, disabling the dc input cancellation at low input currents leads to superior noise
performance.
The AGC circuitry lowers the effective transimpedance feedback resistor RF by means of a MOSFET device
acting as a controlled shunt. This prevents the transimpedance amplifier from being overdriven at high input
currents, which leads to improved jitter behavior within the complete input-current dynamic range. Because the
voltage drop across the supply-filter resistor is sensed and used by the AGC circuit, the photodiode must be
connected to a FILTER pad for the AGC to function correctly.
Finally, this circuit block senses the current through the filter resistor and generates a mirrored current, which is
proportional to the input signal strength. The mirrored current is available at the RSSI output and must be sunk to
ground (GND) using an external resistor. The RSSI gain can be adjusted by choosing the external resistor;
however, for proper operation, ensure that the voltage at the RSSI pad never exceeds VCC – 0.65 V.
BAND-GAP VOLTAGE AND BIAS GENERATION
The ONET2591TA transimpedance amplifier is supplied by a single, 3.3-V supply voltage connected to the VCC
pad. This voltage is referred to GND.
On-chip band-gap voltage circuitry generates a supply-voltage-independent reference from which all other
internally required voltages and bias currents are derived.
Submit Documentation Feedback
3
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
BOND PAD ASSIGNMENT
The ONET2591TA is available as a bare die. The locations of the bond pads are shown in the following figure.
GND
2
10
GND
OUT+
3
9
OUT–
VCC
4
8
RSSI
5
6
7
2591TA
GND
IN
11
FILTER
1
FILTER
GND
M0033-01
BOND PAD DESCRIPTION
PAD
NAME
FILTER
GND
TYPE
DESCRIPTION
5, 6
Analog
Bias voltage for photodiode (cathode). These pads connect through an internal 220-Ω resistor to
VCC and a 200-pF filter capacitor to ground (GND). Both FILTER pads are connected on-chip.
For additional photodiode supply filtering, connect an external capacitor from one of the FILTER
pads to GND. The FILTER pad(s) must be connected to the photodiode for the AGC to function.
1, 2, 10, 11
Supply
Circuit ground. All GND pads are connected on die. Bonding all pads is optional; however, for
optimum performance a good ground connection is mandatory.
NO.
IN
7
Analog input
OUT+
3
Analog output
Non-inverted data output. On-chip 50-Ω back-terminated to VCC.
OUT–
9
Analog output
Inverted data output. On-chip 50-Ω back-terminated to VCC.
Analog output current proportional to the input data amplitude. Indicates the strength of the
received signal (RSSI). Must be sunk through an external resistor to ground (GND). The RSSI
gain can be adjusted by choosing the external resistor; however, for proper operation, ensure
that the voltage at the RSSI pad never exceeds VCC – 0.65 V. If the RSSI feature is not used,
this pad must be bonded to ground (GND) to ensure proper operation.
RSSI
8
Analog output
VCC
4
Supply
4
Data input to TIA (photodiode anode)
3.3-V, +10%/–12% supply voltage
Submit Documentation Feedback
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
(2)
VCC
Supply voltage
VFILTER, VOUT+, VOUT–,
VRSSI
Voltage at FILTER, OUT+, OUT–, RSSI
IIN
Current into IN
IFILTER
Current into FILTER
IOUT+, IOUT–
Continuous current at outputs
ESD
(1)
–0.3 V to 4 V
–0.3 V to 4 V
–0.7 mA to 2.5 mA
– 8 mA to 8 mA
ESD rating at all pins except IN
ESD rating at IN
(2)
– 8 mA to 8 mA
(3)
1.5 kV (HBM)
(3)
900 V (HBM)
TJ,max
Maximum junction temperature
Tstg
Storage temperature range
–65°C to 85°C
TA
Operating free-air temperature range
–40°C to 85°C
(1)
(2)
(3)
125°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
For optimum high-frequency performance, the input pin has reduced ESD protection.
RECOMMENDED OPERATING CONDITIONS
over operating free-air temperature range (unless otherwise noted)
MIN
NOM
MAX
VCC
Supply voltage
2.9
3.3
3.6
TA
Operating free-air temperature
–40
LFILTER,
LIN
Wire-bond inductor at pins FILTER and IN
UNIT
V
85
°C
0.8
nH
DC ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted). Typical values are at VCC = 3.3 V and TA = 25°C.
PARAMETER
VCC
Supply voltage
IVCC
Supply current
VIN
Input bias voltage
ROUT
Output resistance
RFILTER
Photodiode filter resistance
TEST CONDITIONS
MIN
TYP
MAX
2.9
3.3
3.6
Average photodiode current IPD = 0
mA
10
14
20
Average photodiode current IPD = 1
mA
13
17
23
0.85
1.05
V
Single-ended to VCC
40
50
60
Ω
220
Submit Documentation Feedback
UNIT
V
mA
Ω
5
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
AC ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted). Typical values are at VCC = 3.3 V and TA = 25°C.
PARAMETER
TEST CONDITIONS
iIN-OVL
AC input overload current
ARSSI
RSSI gain
MIN
TYP
Resistive load to GND
(1)
0.95
1
2000
RSSI output offset current (no light)
1.05
A/A
10
40
µA
2600
3200
Ω
Small-signal transimpedance
Differential output; input current iIN =
50 µAp-p
fH,3dB
Small-signal bandwidth
CPD = 0.6 pF, iIN = 50 µAp-p (2)
1.8
fL,3dB
Low-frequency, –3-dB bandwidth
– 3 dB, input current iIN < 50 µAp-p
40
fH,3dB,RSSI
RSSI bandwidth
iN-IN
Input referred RMS noise
CPD = 0.6 pF, 50 kHz–2.5 GHz
Input referred noise current density
CPD = 0. 6 pF
280
iIN = 100 µAp-p (K28.5 pattern)
Deterministic jitter
iIN = 1 mAp-p (K28.5 pattern)
iIN = 2 mAp-p (K28.5 pattern)
VOUT,D,MAX Maximum differential output voltage
(2)
(3)
Input current iIN = 1 mAp-p
140
kHz
MHz
345
6.6
iIN = 50 µAp-p (K28.5 pattern)
(1)
GHz
70
3.5
(3)
UNIT
mAp-p
Z21
DJ
MAX
2
nA
pA/√Hz
8
16
8.5
20
3
10
4
14
200
310
psp-p
mVp-p
The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended
application by choosing the external resistor. However, for proper operation of the ONET2591TA, ensure that the voltage at RSSI never
exceeds VCC – 0.65 V.
The minimum small-signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed
photodiode capacitance is 0.6 pF. The bond-wire inductance is 0.8 nH. The small-signal bandwidth strongly depends on environmental
parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance.
Input referred RMS noise is (RMS output noise)/(gain @ 100 MHz). The maximum input referred noise is specified over process
corners, temperature, and supply voltage variation.
TYPICAL CHARACTERISTICS
Typical operating condition is at VCC = 3.3 V and TA = 25°C.
UNFILTERED INPUT REFERRED NOISE
vs
AVERAGE INPUT CURRENT
UNFILTERED INPUT REFERRED NOISE
vs
AMBIENT TEMPERATURE
800
2400
Input Referred Noise Current − nARMS
Input Referred Noise Current − nARMS
2200
2000
1800
1600
1400
1200
1000
800
600
400
700
600
500
400
300
200
100
200
0
10
100
Average Input Current − µA
1k
0
−40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90
G001
Figure 2.
6
TA − Ambient Temperature − °C
Figure 3.
Submit Documentation Feedback
G002
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
TYPICAL CHARACTERISTICS (continued)
Typical operating condition is at VCC = 3.3 V and TA = 25°C.
TRANSIMPEDANCE
vs
AVERAGE INPUT CURRENT
4000
3000
3500
2500
Transimpedance − Ω
Transimpedance − Ω
SMALL-SIGNAL TRANSIMPEDANCE
vs
AMBIENT TEMPERATURE
3000
2500
2000
1500
1500
1000
500
1000
−40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90
TA − Ambient Temperature − °C
0
0
100 200 300 400 500 600 700 800 900 1000
Average Input Current − µA
G003
G004
Figure 4.
Figure 5.
SMALL-SIGNAL BANDWIDTH
vs
AMBIENT TEMPERATURE
SMALL-SIGNAL TRANSFER CHARACTERISTICS
70
1.95
69
1.90
68
Transimpedance − dBΩ
2.00
1.85
Bandwidth − GHz
2000
1.80
1.75
1.70
1.65
67
66
65
64
63
1.60
62
1.55
61
1.50
−40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90
60
100
TA − Ambient Temperature − °C
200
500
1k
2k
5k
f − Frequency − MHz
G006
G005
Figure 6.
Figure 7.
Submit Documentation Feedback
7
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
TYPICAL CHARACTERISTICS (continued)
Typical operating condition is at VCC = 3.3 V and TA = 25°C.
RSSI OUTPUT CURRENT
vs
AVERAGE INPUT CURRENT
DETERMINISTIC JITTER
vs
INPUT CURRENT
10
1200
9
8
Deterministic Jitter − ps
RSSI Output Current − µA
1000
800
600
400
7
6
5
4
3
2
200
1
0
0
0
200
400
600
800
1000
0
1200
400
800
1200
Input Current − µAP−P
Average Input Current − µA
G007
2000
G008
Figure 9.
OUTPUT EYE DIAGRAM AT 2.5 GBPS AND 10-µAp-p INPUT
CURRENT
OUTPUT EYE DIAGRAM AT 2.5 GBPS AND 100-µAp-p
INPUT CURRENT
Differential Output Voltage − 5mV/Div
Differential Output Voltage − 50mV/Div
Figure 8.
Time − 100ps/Div
Time − 100ps/Div
G009
Figure 10.
8
1600
G010
Figure 11.
Submit Documentation Feedback
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
TYPICAL CHARACTERISTICS (continued)
Typical operating condition is at VCC = 3.3 V and TA = 25°C.
OUTPUT EYE DIAGRAM AT 2.5 GBPS AND 2-mAp-p INPUT
CURRENT
Differential Output Voltage − 50mV/Div
Differential Output Voltage − 50mV/Div
OUTPUT EYE DIAGRAM AT 2.5 GBPS AND 1-mAp-p INPUT
CURRENT
Time − 100ps/Div
Time − 100ps/Div
G011
Figure 12.
G012
Figure 13.
Submit Documentation Feedback
9
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
APPLICATION INFORMATION
Figure 14 shows an application circuit for an ONET2591TA being used in a typical fiber-optic receiver. The
ONET2591TA converts the electrical current generated by the PIN photodiode into a differential output voltage.
The FILTER input provides a dc bias voltage for the PIN that is low-pass filtered by the combination of the
internal 220-Ω resistor and 200-pF capacitor. For additional power-supply filtering, use an external capacitor,
CFILTER. Because the voltage drop across the 220-Ω resistor is sensed and used by the AGC circuit, the
photodiode must be connected to a FILTER pad for the AGC to function correctly.
The RSSI output is used to mirror the photodiode average current and must be connected via a resistor to GND.
The voltage gain can be adjusted for the intended application by choosing the external resistor. However, for
proper operation of the ONET2591TA, ensure that the voltage at RSSI never exceeds VCC – 0.65 V. If the RSSI
output is not used, it must be grounded.
The OUT+ and OUT– pads are internally terminated by 50-Ω pullup resistors to VCC. The outputs must be
ac-coupled (e.g., using C1 = C2 = 0.1 µF) to the succeeding device. An additional capacitor, CNBW, which is
differentially connected between the two output pins OUT+ and OUT–, can be used to limit the noise bandwidth
and thus optimize the noise performance.
C1
0.1 mF
OUT+
3
4
5
220 W
2
ONET
2591TA
6
7
200 pF
1
CNBW
0 to 2 pF
Optional
PAD#1
VCC
275 pF
11
8
9
10
CFILTER
Optional
C2
0.1 mF
OUT–
RSSI
GND
S0097-01
Figure 14. Basic Application Circuit
ASSEMBLY RECOMMENDATIONS
When packaging the ONET2591TA, careful attention to parasitics and external components is necessary to
achieve optimal performance. Recommendations that optimize performance include:
1. Minimize total capacitance on the IN pad by using a low-capacitance photodiode and paying attention to
stray capacitances. Place the photodiode close to the ONET2591TA die to minimize the bond wire length
and thus the parasitic inductance.
2. An external filter capacitance CFILTER can be used to improve photodiode supply filtering.
3. Use identical termination and symmetrical transmission lines at the ac-coupled differential output pins OUT+
and OUT–. A differential capacitor CNBW can be used to limit the noise bandwidth.
4. Use short bond-wire connections for the supply terminals VCC and GND. Supply-voltage filtering is provided
on-chip. Filtering can be improved by using an additional external capacitor.
10
Submit Documentation Feedback
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
CHIP DIMENSIONS AND PAD LOCATIONS
1
11
2
10
3
9
5
y
4
Origin
0,0
6
7
2591TA
1180 mm
Overall chip dimensions and depiction of the bond-pad locations are given in Figure 15. Layout of the chip
componentry is shown in Figure 16.
8
780 mm
x
M0033-02
y
1180 mm
Figure 15. Chip Dimensions and Pad Locations
Origin
0,0
780 mm
x
M0033-03
Figure 16. Chip Layout
Submit Documentation Feedback
11
ONET2591TA
www.ti.com
SLLS669 – SEPTEMBER 2005
Pad Locations and Descriptions for the ONET2591TA
PAD
COORDINATES
SYMBOL
TYPE
DESCRIPTION
x (µm)
y (µm)
1
100
1063
GND
Supply
Circuit ground
2
100
938
GND
Supply
Circuit ground
3
100
570
OUT+
Analog output
Non-inverted data output
4
90
127
VCC
Supply
3.3-V supply voltage
5
265
127
FILTER
Analog
Bias voltage for photodiode
6
390
127
FILTER
Analog
Bias voltage for photodiode
7
515
127
IN
Analog input
Data input to TIA
8
690
127
RSSI
Analog output
RSSI output signal
9
680
570
OUT–
Analog output
Inverted data output
10
680
938
GND
Supply
Circuit ground
11
680
1063
GND
Supply
Circuit ground
DIE INFORMATION
Die size: 1180 µm × 780 µm
Die thickness: 8 mils (203 µm)
Pad metallization: 99.5% Al, 0.5% Cu
Pad size: octagonal pads, 120 µm × 100 µm
Passivation composition: 6000 Å silicon nitride
Backside contact: none
Die ID: 2591TA
TO46 LAYOUT EXAMPLES
2.
54
m
m
Examples for layouts (top view) in 5-pin and 4-pin TO46 headers are given in Figure 17 and Figure 18,
respectively.
GND
OUT+
OUT–
VCC
RSSI
M0034-01
Figure 17. TO46 5-Pin Layout Example Using the ONET2591TA
12
Submit Documentation Feedback
ONET2591TA
www.ti.com
2.
54
m
m
SLLS669 – SEPTEMBER 2005
VCC
OUT–
OUT+
GND
M0034-02
Figure 18. TO46 4-Pin Layout Example Using the ONET2591TA
Submit Documentation Feedback
13
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
HPA00506AY
ACTIVE
DIESALE
Y
0
1
Green (RoHS
& no Sb/Br)
Call TI
N / A for Pkg Type
-40 to 85
ONET2591TAY
ACTIVE
DIESALE
Y
0
1
Green (RoHS
& no Sb/Br)
Call TI
N / A for Pkg Type
-40 to 85
ONET2591TAYS
ACTIVE
WAFERSALE
YS
0
1
Green (RoHS
& no Sb/Br)
Call TI
N / A for Pkg Type
-40 to 85
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
15-Apr-2017
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Similar pages