Infineon BFP420F Low noise silicon bipolar rf transistor Datasheet

BFP420F
Low Noise Silicon Bipolar RF Transistor
Data Sheet
Revision 1.1, 2012-11-07
RF & Protection Devices
Edition 2012-11-07
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
BFP420F
BFP420F, Low Noise Silicon Bipolar RF Transistor
Revision History: 2012-11-07, Revision 1.1
Previous Revision: Rev. 1.0
Page
Subjects (major changes since last revision)
This datasheet replaces the revision from 2012-01-30.
The product itself has not been changed and the device characteristics remain unchanged.
Only the product description and information available in the datasheet has been expanded and
updated.
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Data Sheet
3
Revision 1.1, 2012-11-07
BFP420F
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
5.1
5.2
5.3
5.4
5.5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Dependent AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristic DC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristic AC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7
Package Information TSFP-4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data Sheet
4
11
11
11
12
18
21
Revision 1.1, 2012-11-07
BFP420F
List of Figures
List of Figures
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Data Sheet
Total Power Dissipation Ptot = f (Ts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BFP420F Testing Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Current vs. Collector Emitter Voltage IC = f (VCE), IB = Parameter in μA . . . . . . . . . . . .
DC Current Gain hFE = f (IC), VCE = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Current vs. Base Emitter Voltage IC = f (VBE), VCE = 3 V. . . . . . . . . . . . . . . . . . . . . . . . .
Base Current vs. Base Emitter Forward Voltage IB = f (VBE), VCE = 3 V . . . . . . . . . . . . . . . . . . . .
Base Current vs. Base Emitter Reverse Voltage IB = f (VEB), VCE = 3 V . . . . . . . . . . . . . . . . . . . .
Collector Emitter Breakdown Voltage VCER = f (RBE), IC = 1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . .
Transition Frequency fT = f (IC), f = 2 GHz, VCE = Parameter in V . . . . . . . . . . . . . . . . . . . . . . . . .
3rd Order Intercept Point OIP3 = f (IC), ZS = ZL= 50 Ω, VCE, f = Parameters . . . . . . . . . . . . . . . . .
3rd Order Intercept Point at output OIP3 [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz . . . . . .
Compression Point at output OP1dB [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz . . . . . . . . . .
Collector Base Capacitance CCB = f (VCB), f = 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Gma, Gms, IS21I² = f (f), VCE = 3 V, IC = 15 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Power Gain Gmax = f (IC), VCE = 3 V, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . . . .
Maximum Power Gain Gmax = f (VCE), IC = 15 mA, f = Parameter in GHz . . . . . . . . . . . . . . . . . . .
Input Matching S11 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Source Impedance for Minimum Noise Figure Zopt = f (f), VCE = 3 V, IC = 4 / 15 mA . . . . . . . . . . .
Output Matching S22 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Figure NFmin = f (f), VCE = 3 V, IC = 4 / 16 mA, ZS = Zopt . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Figure NFmin = f (IC), VCE = 3 V, ZS = Zopt, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . . .
Noise Figure NF50 = f (IC), VCE = 3 V, ZS = 50 Ω, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking Description (Marking BFP420F: AMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
10
12
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
29
29
29
29
Revision 1.1, 2012-11-07
BFP420F
List of Tables
List of Tables
Table 3-1
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Data Sheet
Maximum Ratings at TA = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
General AC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC Characteristics, f = 150 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC Characteristics, f = 450 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC Characteristics, f = 900 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC Characteristics, f = 1500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC Characteristics, f = 1900 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC Characteristics, f = 2400 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC Characteristics, f = 3500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
AC Characteristics, f = 5500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Revision 1.1, 2012-11-07
BFP420F
Product Brief
1
Product Brief
The BFP420F is a low noise wideband NPN bipolar RF transistor. The collector design supports voltages up to
VCEO = 4.5 V and currents up to IC = 60 mA. The device is especially suited for mobile applications in which low
power consumption is a key requirement. The typical transition frequency is approximately 25 GHz, hence the
device offers high power gain at frequencies up to 4.5 GHz in amplifier applications. The device is housed in a thin
small flat plastic package with visible leads.
Data Sheet
7
Revision 1.1, 2012-11-07
BFP420F
Features
2
•
•
•
•
•
•
•
•
•
Features
General purpose low noise NPN bipolar RF transistor
Based on Infineon´s reliable very high volume 25 GHz
silicon bipolar technology
0.95 dB minimum noise figure typical at 900 MHz, 3 V, 4 mA
16.5 dB maximum gain (Gma) typical at 2.4 GHz, 3 V, 15 mA
28 dBm OIP3 typical at 2.4 GHz, 4 V, 40 mA
16.5 dBm OP1dB typical at 2.4 GHz, 4 V, 40 mA
Popular in discrete oscillators
Thin, small, flat, Pb-free (RoHS compliant) and Halogen-free
package with visible leads
Qualification report according to AEC-Q101 available
Applications
As Low Noise Amplifier (LNA) in
•
•
•
Satellite communication systems: Navigation systems (GPS, Glonass), satellite radio (SDARs, DAB)
Multimedia applications such as mobile/portable TV, CATV, FM Radio
ISM applications like RKE, AMR and Zigbee, as well as for emerging wireless applications
As discrete active mixer in RF Frontends
As active device in discrete oscillators
Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions
Product Name
Package
BFP420F
TSFP-4-1
Data Sheet
Pin Configuration
1=B
2=E
8
3=C
Marking
4=E
AMs
Revision 1.1, 2012-11-07
BFP420F
Maximum Ratings
3
Maximum Ratings
Table 3-1
Maximum Ratings at TA = 25 °C (unless otherwise specified)
Parameter
Symbol
Collector emitter voltage
Values
Min.
Max.
–
–
4.5
4.1
Unit
V
VCEO
Note / Test Condition
Open base
TA = 25 °C
TA = -55 °C
Collector base voltage
VCBO
–
15
V
Open emitter
Collector emitter voltage
VCES
–
15
V
E-B short circuited
Emitter base voltage
VEBO
–
1.5
V
Open collector
Base current
IB
–
9
mA
–
IC
–
60
mA
–
Ptot
–
210
mW
TS ≤ 100 °C
Junction temperature
TJ
–
150
°C
–
Storage temperature
TStg
-55
150
°C
–
Collector current
Total power dissipation
1)
1) TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the pcb.
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
Data Sheet
9
Revision 1.1, 2012-11-07
BFP420F
Thermal Characteristics
4
Thermal Characteristics
Table 4-1
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Unit
Note / Test Condition
Max.
1)
Junction - soldering point
RthJS
–
240
–
K/W
–
1)For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
260
240
220
200
180
Ptot [mW]
160
140
120
100
80
60
40
20
0
0
25
50
75
TS [°C]
100
125
150
Figure 4-1 Total Power Dissipation Ptot = f (Ts)
Data Sheet
10
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
5
Electrical Characteristics
5.1
DC Characteristics
Table 5-1
DC Characteristics at TA = 25 °C
Parameter
Symbol
Collector emitter breakdown voltage
V(BR)CEO
Values
Min.
Typ.
Max.
4.5
5.5
–
Unit
Note / Test Condition
V
IC = 1 mA, IB = 0
Open base
Collector emitter leakage current
ICES
–
–
–
1
10
30
μA
nA
VCE = 15 V, VBE = 0
VCE = 3 V, VBE = 0
E-B short circuited
Collector base leakage current
ICBO
–
1
30
nA
VCB = 3 V, IE = 0
Open emitter
Emitter base leakage current
IEBO
–
10
100
nA
VEB = 0.5 V, IC = 0
Open collector
DC current gain
hFE
60
95
130
VCE = 4 V, IC = 5 mA
Pulse measured
5.2
General AC Characteristics
Table 5-2
General AC Characteristics at TA = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Transition frequency
fT
18
25
–
GHz
VCE = 3 V, IC = 30 mA
f = 2 GHz
Collector base capacitance
CCB
–
0.15
0.3
pF
VCB = 2 V, VBE = 0
f = 1 MHz
Emitter grounded
Collector emitter capacitance
CCE
–
0.46
–
pF
VCE = 2 V, VBE = 0
f = 1 MHz
Base grounded
Emitter base capacitance
CEB
–
0.55
–
pF
VEB = 0.5 V, VCB = 0
f = 1 MHz
Collector grounded
Data Sheet
11
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
5.3
Frequency Dependent AC Characteristics
Measurement setup is a test fixture with Bias T’s in a 50 Ω system, TA = 25 °C
VC
Top View
Bias -T
OUT
C
E
VB
E
B
Bias-T
(Pin 1)
IN
Figure 5-1 BFP420F Testing Circuit
Table 5-3
AC Characteristics, f = 150 MHz
Parameter
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Data Sheet
Symbol
Gms
Gms
Gms
S21
S21
S21
NFmin
Gass
NFmin
Gass
Values
Min.
Typ.
Max.
–
–
–
30
34.5
37
–
–
–
22
30
33
–
–
–
0.9
24
–
–
1.4
29
–
–
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
–
–
–
–
–
VCE = 3 V, IC = 15 mA
–
–
dB
OIP3
OP1dB
–
–
21
7
–
–
OIP3
OP1dB
–
25
15.5
–
–
12
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
Table 5-4
AC Characteristics, f = 450 MHz
Parameter
Symbol
Values
Min.
Typ.
Max.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Gms
Gms
Gms
–
–
–
25
29
31
–
–
–
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
S21
S21
S21
–
–
–
21
27
28.5
–
–
–
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Table 5-5
NFmin
Gass
–
–
0.9
22.5
–
–
NFmin
Gass
–
–
1.4
27
–
–
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
OIP3
OP1dB
–
–
21.5
8
–
26.5
16.5
–
–
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
–
–
AC Characteristics, f = 900 MHz
Parameter
Symbol
Values
Min.
Typ.
Max.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Gms
Gms
Gms
–
–
–
22
25
26.5
–
–
–
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
S21
S21
S21
–
–
–
19
23
24
–
–
–
Data Sheet
Unit
13
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
Table 5-5
AC Characteristics, f = 900 MHz (cont’d)
Parameter
Symbol
Values
Min.
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Table 5-6
Note / Test Condition
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
Max.
NFmin
Gass
–
–
0.95
20
–
–
NFmin
Gass
–
–
1.4
23
–
–
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
OIP3
OP1dB
23.5
8
–
–
27.5
17
–
–
–
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
–
–
AC Characteristics, f = 1500 MHz
Parameter
Symbol
Values
Min.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Data Sheet
Typ.
Unit
Gms
Gms
Gma
S21
S21
S21
–
–
–
Typ.
19
22
22
–
–
–
16
19
19,5
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
Max.
–
–
–
–
–
–
NFmin
Gass
–
–
1
16.5
–
–
NFmin
Gass
–
–
1.5
19
–
–
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
–
–
22.5
7
–
–
OIP3
OP1dB
–
–
27.5
16
–
–
14
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
Table 5-7
AC Characteristics, f = 1900 MHz
Parameter
Symbol
Values
Min.
Typ.
Max.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Gms
Gma
Gma
–
–
–
18
19.5
19
–
–
–
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
S21
S21
S21
–
–
–
14
16.5
17
–
–
–
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Table 5-8
NFmin
Gass
–
–
1.1
15
–
–
NFmin
Gass
–
–
1.5
17
–
–
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
OIP3
OP1dB
–
–
24
9
–
28
17
–
–
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
–
–
AC Characteristics, f = 2400 MHz
Parameter
Symbol
Values
Min.
Typ.
Max.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Gms
Gma
Gma
–
–
–
16.5
16.5
16.5
–
–
–
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
S21
S21
S21
–
–
–
12
14.5
15
–
–
–
Data Sheet
Unit
15
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
Table 5-8
AC Characteristics, f = 2400 MHz (cont’d)
Parameter
Symbol
Values
Min.
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Table 5-9
Note / Test Condition
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
Max.
NFmin
Gass
–
–
1.2
12.5
–
–
NFmin
Gass
–
–
1.6
15
–
–
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
OIP3
OP1dB
24.5
8.5
–
–
28
16.5
–
–
–
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
–
–
AC Characteristics, f = 3500 MHz
Parameter
Symbol
Values
Min.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
Data Sheet
Typ.
Unit
Gma
Gma
Gma
S21
S21
S21
–
–
–
Typ.
11.5
12.5
13
–
–
–
9
11
11.5
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
Max.
–
–
–
–
–
–
NFmin
Gass
–
–
1.6
10
–
–
NFmin
Gass
–
–
1.8
11.5
–
–
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
–
–
22
8
–
–
OIP3
OP1dB
–
26
17
–
–
16
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
Table 5-10 AC Characteristics, f = 5500 MHz
Parameter
Symbol
Values
Min.
Typ.
Max.
Maximum Power Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
Gma
Gma
Gma
–
–
–
7.5
8.5
9
–
–
–
Transducer Gain
@ low noise operating point
@ recommended trade off oper. point
@ max. linearity operating point
S21
S21
S21
–
–
–
5.5
7
8
–
–
–
Noise Figure
@ low noise operating point
Minimum noise figure
Associated gain
@ recommended trade off oper. point
Minimum noise figure
Associated gain
Linearity
@ recommended trade off oper. point
3rd order intercept point at output
1 dB gain compression point at output
@ max. linearity operating point
3rd order intercept point at output
1 dB gain compression point at output
NFmin
Gass
–
–
2.2
5
–
–
NFmin
Gass
–
–
2.3
8
–
–
Unit
Note / Test Condition
dB
ZS = ZSoptG, ZL = ZLoptG
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZL = 50 Ω
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
dB
ZS = ZSoptN
VCE = 3 V, IC = 4 mA
VCE = 3 V, IC = 15 mA
dB
OIP3
OP1dB
–
–
22
8.5
–
–
–
26
17
OIP3
OP1dB
–
–
ZS = ZL = 50 Ω
VCE = 3 V, IC = 15 mA
VCE = 4 V, IC = 40 mA
Notes
1. Gms = IS21 / S12I for k < 1; Gma = IS21 / S12I(k-(k2-1)1/2) for k > 1
2. In order to get the NFmin values stated in this chapter the test fixture losses have been subtracted from all
measured results.
3. OIP3 value depends on termination of all intermodulation frequency components. Termination used for this
measurement is 50 Ω from 0.2 MHz to 12 GHz.
Data Sheet
17
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
5.4
Characteristic DC Diagrams
65
I = 725µA
B
I = 675µA
B
IB = 625µA
I = 575µA
B
IB = 525µA
I = 475µA
B
I = 425µA
B
IB = 375µA
IB = 325µA
IB = 275µA
I = 225µA
B
I = 175µA
60
55
50
45
IC [mA]
40
35
30
25
20
B
15
IB = 125µA
10
I = 75µA
B
5
0
IB = 25µA
0
1
2
3
V
CE
4
5
6
[V]
Figure 5-2 Collector Current vs. Collector Emitter Voltage IC = f (VCE), IB = Parameter in μA
2
hFE
10
1
10
−1
10
0
1
10
10
I
C
2
10
[mA]
Figure 5-3 DC Current Gain hFE = f (IC), VCE = 3 V
Data Sheet
18
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
2
10
1
10
0
10
IC [mA]
−1
10
−2
10
−3
10
−4
10
−5
10
0.5
0.6
0.7
0.8
V
BE
0.9
1
[V]
Figure 5-4 Collector Current vs. Base Emitter Voltage IC = f (VBE), VCE = 3 V
0
10
−1
10
−2
10
IB [mA]
−3
10
−4
10
−5
10
−6
10
−7
10
0.5
0.6
0.7
0.8
V
BE
0.9
1
[V]
Figure 5-5 Base Current vs. Base Emitter Forward Voltage IB = f (VBE), VCE = 3 V
Data Sheet
19
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
−6
10
−7
10
−8
IB [A]
10
−9
10
−10
10
−11
10
0.3
0.5
0.7
0.9
VEB [V]
1.1
1.3
1.5
Figure 5-6 Base Current vs. Base Emitter Reverse Voltage IB = f (VEB), VCE = 3 V
8
C
7.5
B
E
VCER [V]
7
RBE
6.5
6
5.5
5
4
10
5
6
10
10
R
BE
7
10
[Ω]
Figure 5-7 Collector Emitter Breakdown Voltage VCER = f (RBE), IC = 1 mA
Data Sheet
20
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
5.5
Characteristic AC Diagrams
28
26
4.00V
3.00V
24
22
2.00V
20
fT [GHz]
18
16
14
1.00V
12
10
8
6
4
2
0
0
10
20
30
40
I [mA]
C
50
60
70
OIP3 [dBm]
Figure 5-8 Transition Frequency fT = f (IC), f = 2 GHz, VCE = Parameter in V
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
−2
−4
3V, 900MHz
4V, 900MHz
3V, 1900MHz
4V, 1900MHz
0
10
20
30
IC [mA]
40
50
60
Figure 5-9 3rd Order Intercept Point OIP3 = f (IC), ZS = ZL= 50 Ω, VCE, f = Parameters
Data Sheet
21
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
18
24
22
23
17
50
21
55
25
20
1415
19
16
60
25
26
24
28
23
35
30
27
17
25
26
20
24
21
19
15
22
20
10 1 18
7
5
28
27
25
IC [mA]
40
22 2 1
14 13 12
15
18 16
20 19
45
27
26
26
25
23
1.5
2
25
24
23
22
21
20
19
1
27
21
20
2.5
VCE [V]
3
24
23
22
3.5
4
15
15
14
8
30
14
13
25
20
10
2
1
5 0
1
6
4
11
5
10
7
3
1.5
12
9
8
2
1
0
2
13
12
9
7
10
16
13
16
7
9
10
11
12
13
4
6
35
5
IC [mA]
40
15
17
3
50
45
15
14
8
5
55
12
9
10
6
4
60
7
Figure 5-10 3rd Order Intercept Point at output OIP3 [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz
4
6
5
8
11
10
9
8
7
3
2.5
VCE [V]
2
1
0
3
4
6
5
3
3.5
11
7
2
1
0
4
Figure 5-11 Compression Point at output OP1dB [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz
Data Sheet
22
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
0.3
CCB [pF]
0.24
0.18
0.12
0.06
0
0
0.5
1
1.5
2
V
CB
2.5
3
3.5
4
[V]
Figure 5-12 Collector Base Capacitance CCB = f (VCB), f = 1 MHz
40
35
30
Gms
G [dB]
25
20
G
ma
15
|S |2
21
10
5
0
0
1
2
3
f [GHz]
4
5
6
Figure 5-13 Gain Gma, Gms, IS21I² = f (f), VCE = 3 V, IC = 15 mA
Data Sheet
23
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
39
0.15GHz
36
33
0.45GHz
30
G [dB]
27
0.90GHz
24
21
1.50GHz
18
1.90GHz
2.40GHz
15
12
3.50GHz
9
5.50GHz
6
3
0
10
20
30
40
I [mA]
C
50
60
70
80
Figure 5-14 Maximum Power Gain Gmax = f (IC), VCE = 3 V, f = Parameter in GHz
39
36
0.15GHz
33
30
0.45GHz
G [dB]
27
0.90GHz
24
1.50GHz
1.90GHz
21
18
2.40GHz
15
3.50GHz
12
9
5.50GHz
6
3
0
1
2
3
VCE [V]
4
5
6
Figure 5-15 Maximum Power Gain Gmax = f (VCE), IC = 15 mA, f = Parameter in GHz
Data Sheet
24
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
1
1.5
0.5
2
0.4
3
0.3
4
0.2
5
0.03 to 6 GHz
0.1
10
step: 1 GHz
4 mA
0.1
0
0.2 0.3 0.4 0.5
1
1.5
2
3
4 5
15 mA
40 mA
−0.1
−10
−0.2
−5
−4
−0.3
−3
−0.4
−0.5
−2
−1.5
−1
Figure 5-16 Input Matching S11 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA
1
1.5
0.5
2
0.4
3
0.3
2.4GHz
4
3.5GHz
0.2
5
1.9GHz
0.9GHz
0.1
10
0.45GHz
0.1
0
0.2 0.3 0.4 0.5
1
1.5
2
3
4 5
I = 4.0mA
c
−0.1
−10
Ic = 15mA
−0.2
−5
−4
−0.3
−3
−0.4
−0.5
−2
−1.5
−1
Figure 5-17 Source Impedance for Minimum Noise Figure Zopt = f (f), VCE = 3 V, IC = 4 / 15 mA
Data Sheet
25
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
1
1.5
0.5
2
0.4
3
0.3
4
0.2
5
0.03 to 6 GHz
0.1
10
step: 1 GHz
4 mA
0.1
0
0.2 0.3 0.4 0.5
1
1.5
2
3
4 5
15 mA
40 mA
−0.1
−10
−0.2
−5
−4
−0.3
−3
−0.4
−0.5
−2
−1.5
−1
Figure 5-18 Output Matching S22 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA
2
1.8
1.6
NFmin [dB]
1.4
1.2
1
0.8
I = 16mA
C
0.6
I =
C
4mA
0.4
0.2
0
0
0.5
1
1.5
2
f [GHz]
2.5
3
3.5
4
Figure 5-19 Noise Figure NFmin = f (f), VCE = 3 V, IC = 4 / 16 mA, ZS = Zopt
Data Sheet
26
Revision 1.1, 2012-11-07
BFP420F
Electrical Characteristics
2.6
2.4
2.2
2
NFmin [dB]
1.8
1.6
1.4
f = 3.5GHz
1.2
f = 2.4GHz
1
f = 1.9GHz
0.8
f = 0.9GHz
0.6
f = 0.45GHz
0.4
0
5
10
15
20
Ic [mA]
25
30
35
Figure 5-20 Noise Figure NFmin = f (IC), VCE = 3 V, ZS = Zopt, f = Parameter in GHz
3.4
3.2
3
2.8
2.6
NF50 [dB]
2.4
2.2
2
1.8
1.6
f = 3.5GHz
1.4
f = 2.4GHz
1.2
f = 1.9GHz
1
f = 0.9GHz
0.8
0.6
f = 0.45GHz
0
5
10
15
20
Ic [mA]
25
30
35
Figure 5-21 Noise Figure NF50 = f (IC), VCE = 3 V, ZS = 50 Ω, f = Parameter in GHz
Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as
a guarantee that all devices have identical characteristic curves. TA = 25 °C.
Data Sheet
27
Revision 1.1, 2012-11-07
BFP420F
Simulation Data
6
Simulation Data
For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please
consult our website and download the latest versions before actually starting your design.
You find the BFP420F SPICE GP model on the official homepage of Infineon RF transistors in MWO- and ADSformat, which you can import into these circuit simulation tools very quickly and conveniently. The model already
contains the package parasitics and is ready to use for DC- and high frequency simulations. The terminals of the
model circuit correspond to the pin configuration of the device.
The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP420F SPICE
GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP
model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure
(including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have
been extracted.
Data Sheet
28
Revision 1.1, 2012-11-07
BFP420F
Package Information TSFP-4-1
7
Package Information TSFP-4-1
0.2 ±0.05
2
10° MAX.
1
3
1.2 ±0.05
0.2 ±0.05
4
0.55 ±0.04
0.8 ±0.05
1.4 ±0.05
0.2 ±0.05
0.15 ±0.05
0.5 ±0.05
0.5 ±0.05
TSFP-4-1, -2-PO V04
Figure 7-1 Package Outline
0.9
0.45
0.35
0.5
0.5
TSFP-4-1, -2-FP V04
Figure 7-2 Package Footprint
Figure 7-3 Marking Description (Marking BFP420F: AMs)
0.2
Pin 1
8
1.4
4
0.7
1.55
TSFP-4-1, -2-TP V05
Figure 7-4 Tape Dimensions
Data Sheet
29
Revision 1.1, 2012-11-07
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG
Similar pages