IRF IRFH5250PBF Or-ing mosfet for 12v (typical) bus in-rush current Datasheet

IRFH5250PbF
HEXFET® Power MOSFET
VDS
RDS(on) max
(@VGS = 10V)
Qg (typical)
RG (typical)
ID
(@Tmb = 25°C)
25
V
1.15
mΩ
52
1.3
nC
Ω
100
h
A
PQFN 5X6 mm
Applications
• OR-ing MOSFET for 12V (typical) Bus in-Rush Current
• Battery Operated DC Motor Inverter MOSFET
Features and Benefits
Benefits
Features
Low RDSon (<1.15 mΩ)
Low Thermal Resistance to PCB (<0.8°C/W)
100% Rg tested
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
Package Type
IRFH5250TRPbF
IRFH5250TR2PBF
results in
⇒
Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
PQFN 5mm x 6mm
Tape and Reel
4000
PQFN 5mm x 6mm
Tape and Reel
400
Note
EOL notice # 259
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
25
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
45
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
31
ID @ Tmb = 25°C
Continuous Drain Current, VGS @ 10V
100
ID @ Tmb = 100°C
Continuous Drain Current, VGS @ 10V
100
IDM
Pulsed Drain Current
PD @TA = 25°C
PD @Tmb = 25°C
g
Power Dissipation g
c
3.6
160
g
TJ
Operating Junction and
TSTG
Storage Temperature Range
V
A
400
Power Dissipation
Linear Derating Factor
h
h
Units
0.029
-55 to + 150
W
W/°C
°C
Notes  through † are on page 9
1
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Output Charge
Gate Resistance
Min.
25
–––
–––
–––
1.35
–––
–––
–––
–––
–––
181
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.02
0.9
1.4
1.80
-6.3
–––
–––
–––
–––
–––
110
52
13
7.8
17
15
25
36
1.3
VGS(th)
ΔVGS(th)
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
IGSS
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
28
46
30
19
7174
1758
828
Max.
–––
–––
1.15
1.75
2.35
–––
5.0
150
100
-100
–––
–––
78
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
V
V/°C
mΩ
V
mV/°C
μA
nA
S
nC
nC
nC
Ω
ns
pF
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 50A
VGS = 4.5V, ID = 50A
VDS = VGS, ID = 150μA
e
e
VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 13V, ID = 50A
VGS = 10V, VDS = 13V, ID = 50A
VDS = 13V
VGS = 4.5V
ID = 50A
VDS = 16V, VGS = 0V
VDD = 13V, VGS = 4.5V
ID = 50A
RG =1.8Ω
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy
Avalanche Current
EAS
IAR
c
Typ.
–––
–––
d
Units
mJ
A
Max.
468
50
Diode Characteristics
Parameter
IS
Min.
Continuous Source Current
(Body Diode)
Pulsed Source Current
ISM
(Body Diode)
c
Typ.
Max.
100
h
–––
–––
–––
–––
400
Conditions
Units
MOSFET symbol
A
D
showing the
integral reverse
G
S
p-n junction diode.
e
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 50A, VGS = 0V
trr
Reverse Recovery Time
–––
37
56
ns
TJ = 25°C, IF = 50A, VDD = 13V
Q rr
Reverse Recovery Charge
–––
68
102
nC
di/dt = 200A/μs
ton
Forward Turn-On Time
e
Time is dominated by parasitic Inductance
Thermal Resistance
Typ.
Max.
RθJ-mb
Junction-to-Mounting Base
Parameter
0.8
RθJC (Top)
Junction-to-Case
f
0.5
–––
15
RθJA
Junction-to-Ambient
–––
35
–––
21
RθJA (<10s)
2
g
Junction-to-Ambient g
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
Units
°C/W
May 19, 2015
IRFH5250PbF
1000
1000
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
100
10
2.7V
2.7V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
10
1
10
0.1
100
1000
100
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
≤60μs PULSE WIDTH
0.1
ID = 50A
VGS = 10V
1.4
1.2
1.0
0.8
0.6
1
1.5
2
2.5
3
3.5
4
4.5
5
-60 -40 -20 0
Fig 4. Normalized On-Resistance Vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 50A
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Crss
12.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
100
1
10
0
100
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
www.irf.com © 2015 International Rectifier
20
40
60
80
100
120
140
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
3
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
10
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1.6
0.1
VSD, Source-to-Drain Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
350
VGS(th) , Gate threshold Voltage (V)
3.0
300
ID, Drain Current (A)
10msec
Limited by Package
DC
1
VGS = 0V
0.1
100μsec
1msec
100
Limited By Package
250
200
150
100
50
0
25
50
75
100
125
150
2.5
2.0
1.5
ID = 1.0A
ID = 1.0mA
ID = 500μA
ID = 150μA
1.0
0.5
-75 -50 -25
TC , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current Vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage Vs. Temperature
1
Thermal Response ( ZthJC ) °C/W
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
4
2000
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFH5250PbF
ID = 50A
ID
18A
24A
BOTTOM 50A
1800
TOP
1600
3
1400
1200
2
1000
T J = 125°C
1
T J = 25°C
0
2
4
6
8
10
12
14
16
18
800
600
400
200
0
20
25
VGS, Gate -to -Source Voltage (V)
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 125°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 125°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanch Current vs. Pulsewidth
5
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
tp
Fig 16a. Unclamped Inductive Test
Circuit
RD
VDS
VGS
Fig 16b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
RG
+
-VDD
10%
V10V
GS
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
td(on)
Fig 17a. Switching Time Test Circuit
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
S
VCC
Vgs(th)
Qgs1 Qgs2
Fig 18a. Gate Charge Test Circuit
6
www.irf.com © 2015 International Rectifier
Qgd
Qgodr
Fig 18b. Gate Charge Waveform
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
PQFN 5x6 Outline "B" Package Details
PQFN 5x6 Outline "G" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136:
http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
7
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
PQFN 5x6 Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
XXXX
XYWWX
XXXXX
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
PQFN 5x6 Tape and Reel
REEL DIMENSIONS
TAPE DIMENSIONS
CODE
Ao
Bo
Ko
W
P1
DES CRIPTION
Dimens ion design to accommodate the component width
Dimens ion design to accommodate the component lenght
Dimension design to accommodate the component thicknes s
Overall width of the carrier tape
Pitch between succes sive cavity centers
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
Note: All dimens ion are nominal
Package
T ype
Reel
Diameter
(Inch)
QTY
Reel
Width
W1
(mm)
Ao
(mm)
Bo
(mm)
Ko
(mm)
P1
(mm)
W
(mm)
Pin 1
Quadrant
5 X 6 PQF N
13
4000
12.4
6.300
5.300
1.20
8.00
12
Q1
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
IRFH5250PbF
Qualification information†
Indus trial
Qualification level
(per JE DE C JE S D47F
Moisture Sensitivity Level
RoHS compliant
†
††
†††
PQFN 5mm x 6mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.37mH, RG = 25Ω, IAS = 50A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at T J of approximately 90°C.
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production
test capability
Revision History
Date
12/16/2013
4/28/2015
5/19/2015
Comments
• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)
• Updated data sheet with new IR corporate template
• Updated package outline for “option B” and added package outline for “option G” on page 7
• Updated tape and reel on page 8.
• Updated package outline for “option G” on page 7.
• Updated "IFX logo" on page 1 and page 9.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
9
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
May 19, 2015
Similar pages