AMD AM29LV008BB

Am29LV008B
Data Sheet
The Am29LV008B is not offered for new designs. Please contact a Spansion representative for alternates.
The following document contains information on Spansion memory products. Although the document
is marked with the name of the company that originally developed the specification, Spansion will
continue to offer these products to existing customers.
Continuity of Specifications
There is no change to this data sheet as a result of offering the device as a Spansion product. Any
changes that have been made are the result of normal data sheet improvement and are noted in the
document revision summary, where supported. Future routine revisions will occur when appro and
changes will be noted in a revision summary.
Continuity of Ordering Part Numbers
Spansion continues to support existing part numbers beginning with “Am” and “MBM”. To order these
products, please use only the Ordering Part Numbers listed in this document.
For More Information
Please contact your local sales office for additional information about Spansion memory solutions.
Publication Number 21524 Revision D
Amendment 6 Issue Date October 11, 2006
THIS PAGE LEFT INTENTIONALLY BLANK.
DATA SHEET
Am29LV008B
8 Megabit (1 M x 8-Bit)
CMOS 3.0 Volt-only Boot Sector Flash Memory
The Am29LV008B is not offered for new designs. Please contact a Spansion representative for alternates.
DISTINCTIVE CHARACTERISTICS
■ Single power supply operation
— Full voltage range: 2.7 to 3.6 volt read and write
operations for battery-powered applications
— Regulated voltage range: 3.0 to 3.6 volt read and
write operations and for compatibility with high
performance 3.3 volt microprocessors
■ Manufactured on 0.32 µm process technology
— Compatible with 0.5 µm Am29LV008 device
■ High performance
— Full voltage range: access times as fast as 90 ns
— Regulated voltage range: access times as fast as
70 ns
■ Ultra low power consumption (typical values at 5
MHz)
— 200 nA Automatic Sleep mode current
■ Top or bottom boot block configurations
available
■ Embedded Algorithms
— Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
— Embedded Program algorithm automatically
writes and verifies data at specified addresses
■ Minimum 1,000,000 write cycle guarantee per sector
■ 20-year data retention at 125°C
— Reliable operation for the life of the system
■ Package option
— 40-pin TSOP
■ Compatibility with JEDEC standards
— 200 nA standby mode current
— Pinout and software compatible with singlepower supply Flash
— 7 mA read current
— Superior inadvertent write protection
— 15 mA program/erase current
■ Flexible sector architecture
— One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and
fifteen 64 Kbyte sectors
— Supports full chip erase
— Sector Protection features:
A hardware method of locking a sector to prevent
any program or erase operations within that
sector
Sectors can be locked in-system or via
programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
■ Data# Polling and toggle bits
— Provides a software method of detecting program
or erase operation completion
■ Ready/Busy# pin (RY/BY#)
— Provides a hardware method of detecting
program or erase cycle completion
■ Erase Suspend/Erase Resume
— Suspends an erase operation to read data from,
or program data to, a sector that is not being
erased, then resumes the erase operation
■ Hardware reset pin (RESET#)
— Hardware method to reset the device to reading
array data
■ Unlock Bypass Program Command
— Reduces overall programming time when issuing
multiple program command sequences
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication# 21524 Rev: D Amendment: 6
Issue Date: October 11, 2006
DATA SHEET
GENERAL DESCRIPTION
The Am29LV008B is an 8 Mbit, 3.0 volt-only Flash
memory organized as 1,048,576 bytes. The device is
offered in a 40-pin TSOP package. The byte-wide (x8)
data appears on DQ7–DQ0. This device requires only a
single, 3.0 volt VCC supply to perform read, program,
and erase operations. A standard EPROM programmer
can also be used to program and erase the device.
This device is manufactured using AMD’s 0.32 µm
process technology, and offers all the features and benefits of the Am29LV008, which was manufactured using
0 . 5 µ m p r o c e s s t e c h n o l o gy. I n a d d i t i o n , t h e
Am29LV008B features unlock bypass programming
and in-system sector protection/unprotection.
The standard device offers access times of 70, 90, and
120 ns, allowing high speed microprocessors to
operate without wait states. To eliminate bus contention
the device has separate chip enable (CE#), write
enable (WE#) and output enable (OE#) controls.
The device requires only a single 3.0 volt power
supply for both read and write functions. Internally
generated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard. Commands are written to the command register using
standard microprocessor write timings. Register contents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data needed
for the programming and erase operations. Reading
data out of the device is similar to reading from other
Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the Embedded
Program algorithm—an internal algorithm that automatically times the program pulse widths and verifies
proper cell margin. The Unlock Bypass mode facilitates faster programming times by requiring only two
write cycles to program data instead of four.
Device erasure occurs by executing the erase
command sequence. This initiates the Embedded
Erase algorithm—an internal algorithm that automatically preprograms the array (if it is not already
4
programmed) before executing the erase operation.
During erase, the device automatically times the erase
pulse widths and verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and DQ6
(toggle) status bits. After a program or erase cycle has
been completed, the device is ready to read array data
or accept another command.
The sector erase architecture allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low
VCC detector that automatically inhibits write operations during power transitions. The hardware sector
protection feature disables both program and erase
operations in any combination of the sectors of
memory. This can be achieved in-system or via programming equipment.
The Erase Suspend feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The hardware RESET# pin terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the automatic sleep mode.
The system can also place the device into the standby
mode. Power consumption is greatly reduced in both
these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effectiveness.
The device electrically erases all bits within a sector
simultaneously via Fowler-Nordheim tunneling. The
data is programmed using hot electron injection.
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
TABLE OF CONTENTS
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 6
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 8
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 9
Table 1. Am29LV008B Device Bus Operations ................................9
Requirements for Reading Array Data ..................................... 9
Writing Commands/Command Sequences .............................. 9
Program and Erase Operation Status .................................... 10
Standby Mode ........................................................................ 10
Automatic Sleep Mode ........................................................... 10
RESET#: Hardware Reset Pin ............................................... 10
Output Disable Mode .............................................................. 10
Table 2. Am29LV008BT Top Boot Sector Address Table ...............11
Table 3. Am29LV008BB Bottom Boot Sector Address Table .........11
Autoselect Mode ..................................................................... 12
Table 4. Am29LV008B Autoselect Codes (High Voltage Method) ..12
Sector Protection/Unprotection ............................................... 12
Figure 1. In-System Sector Protect/Sector Unprotect Algorithms ... 13
Temporary Sector Unprotect .................................................. 14
Figure 2. Temporary Sector Unprotect Operation........................... 14
Hardware Data Protection ...................................................... 14
Low VCC Write Inhibit .............................................................. 14
Write Pulse “Glitch” Protection ............................................... 14
Logical Inhibit .......................................................................... 14
Power-Up Write Inhibit ............................................................ 14
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 15
Reading Array Data ................................................................ 15
Reset Command ..................................................................... 15
Autoselect Command Sequence ............................................ 15
Byte Program Command Sequence ....................................... 15
Unlock Bypass Command Sequence ..................................... 16
Figure 3. Program Operation .......................................................... 16
Chip Erase Command Sequence ........................................... 16
Sector Erase Command Sequence ........................................ 17
Erase Suspend/Erase Resume Commands ........................... 17
Figure 4. Erase Operation............................................................... 18
Command Definitions ............................................................. 19
Table 5. Am29LV008B Command Definitions .................................19
Write Operation Status . . . . . . . . . . . . . . . . . . . . . 20
DQ7: Data# Polling ................................................................. 20
Figure 5. Data# Polling Algorithm ................................................... 20
RY/BY#: Ready/Busy# ........................................................... 21
DQ6: Toggle Bit I .................................................................... 21
DQ2: Toggle Bit II ................................................................... 21
Reading Toggle Bits DQ6/DQ2 .............................................. 21
Figure 6. Toggle Bit Algorithm......................................................... 22
October 11, 2006 21524D6
DQ5: Exceeded Timing Limits ................................................ 22
DQ3: Sector Erase Timer ....................................................... 22
Table 6. Write Operation Status ..................................................... 23
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 24
Figure 7. Maximum Negative Overshoot Waveform ...................... 24
Figure 8. Maximum Positive Overshoot Waveform........................ 24
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 24
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. ICC1 Current vs. Time (Showing Active and
Automatic Sleep Currents) ............................................................. 26
Figure 10. Typical ICC1 vs. Frequency ........................................... 26
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. Test Setup..................................................................... 27
Table 7. Test Specifications ........................................................... 27
Figure 12. Input Waveforms and Measurement Levels ................. 27
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 28
Read Operations .................................................................... 28
Figure 13. Read Operations Timings ............................................. 28
Hardware Reset (RESET#) .................................................... 29
Figure 14. RESET# Timings .......................................................... 29
Erase/Program Operations ..................................................... 30
Figure 15. Program Operation Timings..........................................
Figure 16. Chip/Sector Erase Operation Timings ..........................
Figure 17. Data# Polling Timings (During Embedded Algorithms).
Figure 18. Toggle Bit Timings (During Embedded Algorithms)......
Figure 19. DQ2 vs. DQ6.................................................................
31
32
33
33
34
Temporary Sector Unprotect .................................................. 34
Figure 20. Temporary Sector Unprotect Timing Diagram .............. 34
Figure 21. Sector Protect/Unprotect Timing Diagram .................... 35
Alternate CE# Controlled Erase/Program Operations ............ 36
Figure 22. Alternate CE# Controlled Write Operation Timings ...... 37
Erase and Programming Performance . . . . . . . 38
Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 38
TSOP Pin Capacitance . . . . . . . . . . . . . . . . . . . . . 38
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 39
TS 040—40-Pin Standard TSOP ............................................ 39
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 40
Revision A (October 1997) ..................................................... 40
Revision B (January 1998) ..................................................... 40
Revision B+1 (March 1998) .................................................... 40
Revision C (January 1999) ..................................................... 40
Revision D (November 19, 1999) ........................................... 40
Revision D+1 (August 14, 2000) ............................................. 40
Revision D+2 (November 10, 2000) ....................................... 40
Revision D+3 (June 11, 2004) ................................................ 40
Revision D4 (February 21, 2006) ............................................ 40
Revision D5 (September 12, 2006) ........................................ 40
Am29LV008B
5
DATA SHEET
PRODUCT SELECTOR GUIDE
Family Part Number
Speed Options
Am29LV008B
Regulated Voltage Range: VCC =3.0–3.6 V
-70R
Full Voltage Range: VCC = 2.7–3.6 V
-90
-120
Max access time, ns (tACC)
70
90
120
Max CE# access time, ns (tCE)
70
90
120
Max OE# access time, ns (tOE)
30
35
50
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
DQ0–DQ7
RY/BY#
VCC
Sector Switches
VSS
Erase Voltage
Generator
RESET#
WE#
Input/Output
Buffers
State
Control
Command
Register
PGM Voltage
Generator
Chip Enable
Output Enable
Logic
CE#
OE#
VCC Detector
Address Latch
STB
Timer
A0–A19
6
Am29LV008B
STB
Data
Latch
Y-Decoder
Y-Gating
X-Decoder
Cell Matrix
21524D6 October 11, 2006
DATA SHEET
CONNECTION DIAGRAMS
A16
A15
A14
A13
A12
A11
A9
A8
WE#
RESET#
NC
RY/BY#
A18
A7
A6
A5
A4
A3
A2
A1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Standard TSOP
PIN CONFIGURATION
A0–A19
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
LOGIC SYMBOL
= 20 addresses
20
DQ0–DQ7 = 8 data inputs/outputs
A0–A19
CE#
= Chip enable
OE#
= Output enable
WE#
= Write enable
CE#
RESET#
= Hardware reset pin, active low
OE#
RY/BY#
= Ready/Busy# output
WE#
VCC
= 3.0 volt-only single power supply
(see Product Selector Guide for speed
options and voltage supply tolerances)
RESET#
VSS
= Device ground
NC
= Pin not connected internally
October 11, 2006 21524D6
A17
VSS
NC
A19
A10
DQ7
DQ6
DQ5
DQ4
VCC
VCC
NC
DQ3
DQ2
DQ1
DQ0
OE#
VSS
CE#
A0
8
DQ0–DQ7
Am29LV008B
RY/BY#
7
DATA SHEET
ORDERING INFORMATION
Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.
Am29LV008B
T
-70R
E
C
TEMPERATURE RANGE
C
= Commercial (0°C to +70°C)
D
= Commercial (0°C to +70°C) with Pb-free package
I
= Industrial (–40°C to +85°C)
F
= Industrial (–40°C to +85°C) with Pb-free package
E
= Extended (–55°C to +125°C)
K
= Extended (–55°C to +125°C) with Pb-free package
PACKAGE TYPE
E
= 40-Pin Thin Small Outline Package (TSOP)
Standard Pinout (TS 040)
SPEED OPTION
See Product Selector Guide and Valid Combinations
BOOT CODE SECTOR ARCHITECTURE
T
=
Top Sector
B
=
Bottom Sector
DEVICE NUMBER/DESCRIPTION
Am29LV008B
8 Megabit (1 M x 8-Bit) CMOS Flash Memory
3.0 Volt-only Read, Program and Erase
Valid Combinations
Valid Combinations
AM29LV008BT-70R,
AM29LV008BB-70R
EC, EI, ED, EF
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and
to check on newly released combinations.
AM29LV008BT-90,
AM29LV008BB-90
EC, EI, EE, ED, EF, EK
AM29LV008BT-120,
AM29LV008BB-120
8
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
DEVICE BUS OPERATIONS
the register serve as inputs to the internal state
machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus
operations, the inputs and control levels they require,
and the resulting output. The following subsections
describe each of these operations in further detail.
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register
itself does not occupy any addressable memory location. The register is composed of latches that store the
commands, along with the address and data information needed to execute the command. The contents of
Table 1.
Operation
Am29LV008B Device Bus Operations
CE#
OE#
WE#
RESET#
Addresses (Note 1)
DQ0–DQ7
Read
L
L
H
H
AIN
DOUT
Write
L
H
L
H
AIN
DIN
VCC ±
0.3 V
X
X
VCC ±
0.3 V
X
High-Z
Output Disable
L
H
H
H
X
High-Z
Reset
X
X
X
L
X
High-Z
DIN, DOUT
Standby
Sector Protect (Note 2)
L
H
L
VID
Sector Address, A6 = L,
A1 = H, A0 = L
Sector Unprotect (Note 2)
L
H
L
VID
Sector Address, A6 = H,
A1 = H, A0 = L
DIN, DOUT
Temporary Sector Unprotect
X
X
X
VID
AIN
DIN
Legend:
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT = Data Out
Notes:
1. Addresses are A19–A0.
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector
Protection/Unprotection” section.
Requirements for Reading Array Data
Writing Commands/Command Sequences
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output
control and gates array data to the output pins. WE#
should remain at VIH.
To write a command or command sequence (which
includes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No
command is necessary in this mode to obtain array
data. Standard microprocessor read cycles that assert
valid addresses on the device address inputs produce
valid data on the device data outputs. The device
remains enabled for read access until the command
register contents are altered.
See “Reading Array Data” for more information. Refer
to the AC Read Operations table for timing specifications and to Figure 13 for the timing waveforms. ICC1 in
the DC Characteristics table represents the active
current specification for reading array data.
October 11, 2006 21524D6
An erase operation can erase one sector, multiple sectors, or the entire device. Tables 2 and 3 indicate the
address space that each sector occupies. A “sector
address” consists of the address bits required to
uniquely select a sector. The “Command Definitions”
section has details on erasing a sector or the entire
chip, or suspending/resuming the erase operation.
After the system writes the autoselect command
sequence, the device enters the autoselect mode. The
system can then read autoselect codes from the
internal register (which is separate from the memory
array) on DQ7–DQ0. Standard read cycle timings apply
in this mode. Refer to the Autoselect Mode and Autosel e c t C o m m a n d S e q u e n c e s e c t i o n s fo r m o r e
information.
ICC2 in the DC Characteristics table represents the
active current specification for the write mode. The “AC
Am29LV008B
9
DATA SHEET
Characteristics” section contains timing specification
tables and timing diagrams for write operations.
Characteristics table represents the automatic sleep
mode current specification.
Program and Erase Operation Status
RESET#: Hardware Reset Pin
During an erase or program operation, the system may
check the status of the operation by reading the status
bits on DQ7–DQ0. Standard read cycle timings and ICC
read specifications apply. Refer to “Write Operation
Status” for more information, and to “AC Characteristics” for timing diagrams.
The RESET# pin provides a hardware method of resetting the device to reading array data. When the
RESET# pin is driven low for at least a period of tRP, the
device immediately terminates any operation in
progress, tristates all output pins, and ignores all
read/write commands for the duration of the RESET#
pulse. The device also resets the internal state
machine to reading array data. The operation that was
interrupted should be reinitiated once the device is
ready to accept another command sequence, to
ensure data integrity.
Standby Mode
When the system is not reading or writing to the device,
it can place the device in the standby mode. In this
mode, current consumption is greatly reduced, and the
outputs are placed in the high impedance state, independent of the OE# input.
The device enters the CMOS standby mode when the
CE# and RESET# pins are both held at VCC ± 0.3 V.
(Note that this is a more restricted voltage range than
VIH.) If CE# and RESET# are held at VIH, but not within
VCC ± 0.3 V, the device will be in the standby mode, but
the standby current will be greater. The device requires
standard access time (tCE) for read access when the
device is in either of these standby modes, before it is
ready to read data.
If the device is deselected during erasure or programming, the device draws active current until the
operation is completed.
In the DC Characteristics table, ICC3 and ICC4 represents the standby current specification.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device
energy consumption. The device automatically enables
this mode when addresses remain stable for tACC + 30
ns. The automatic sleep mode is independent of the
CE#, WE#, and OE# control signals. Standard address
access timings provide new data when addresses are
changed. While in sleep mode, output data is latched
and always available to the system. I CC5 in the DC
10
Current is reduced for the duration of the RESET#
pulse. When RESET# is held at VSS±0.3 V, the device
draws CMOS standby current (ICC4). If RESET# is held
at VIL but not within VSS±0.3 V, the standby current will
be greater.
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash
memory, enabling the system to read the boot-up firmware from the Flash memory.
If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the
internal reset operation is complete, which requires a
time of tREADY (during Embedded Algorithms). The
system can thus monitor RY/BY# to determine whether
the reset operation is complete. If RESET# is asserted
when a program or erase operation is not executing
(RY/BY# pin is “1”), the reset operation is completed
within a time of tREADY (not during Embedded Algorithms). The system can read data t RH after the
RESET# pin returns to VIH.
Refer to the AC Characteristics tables for RESET#
parameters and to Figure 14 for the timing diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is
disabled. The output pins are placed in the high impedance state.
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
Table 2.
Am29LV008BT Top Boot Sector Address Table
Sector
A19
A18
A17
A16
A15
A14
A13
Sector Size
(Kbytes)
Address Range
(in hexadecimal)
SA0
0
0
0
0
X
X
X
64
00000h–0FFFFh
SA1
0
0
0
1
X
X
X
64
10000h–1FFFFh
SA2
0
0
1
0
X
X
X
64
20000h–2FFFFh
SA3
0
0
1
1
X
X
X
64
30000h–3FFFFh
SA4
0
1
0
0
X
X
X
64
40000h–4FFFFh
SA5
0
1
0
1
X
X
X
64
50000h–5FFFFh
SA6
0
1
1
0
X
X
X
64
60000h–6FFFFh
SA7
0
1
1
1
X
X
X
64
70000h–7FFFFh
SA8
1
0
0
0
X
X
X
64
80000h–8FFFFh
SA9
1
0
0
1
X
X
X
64
90000h–9FFFFh
SA10
1
0
1
0
X
X
X
64
A0000h–AFFFFh
SA11
1
0
1
1
X
X
X
64
B0000h–BFFFFh
SA12
1
1
0
0
X
X
X
64
C0000h–CFFFFh
SA13
1
1
0
1
X
X
X
64
D0000h–DFFFFh
SA14
1
1
1
0
X
X
X
64
E0000h–EFFFFh
SA15
1
1
1
1
0
X
X
32
F0000h–F7FFFh
SA16
1
1
1
1
1
0
0
8
F8000h–F9FFFh
SA17
1
1
1
1
1
0
1
8
FA000h–FBFFFh
SA18
1
1
1
1
1
1
X
16
FC000h–FFFFFh
Table 3.
Am29LV008BB Bottom Boot Sector Address Table
Sector
A19
A18
A17
A16
A15
A14
A13
Sector Size
(Kbytes)
Address Range
(in hexadecimal)
SA0
0
0
0
0
0
0
X
16
00000h-03FFFh
SA1
0
0
0
0
0
1
0
8
04000h-05FFFh
SA2
0
0
0
0
0
1
1
8
06000h-07FFFh
SA3
0
0
0
0
1
X
X
32
08000h-0FFFFh
SA4
0
0
0
1
X
X
X
64
10000h-1FFFFh
SA5
0
0
1
0
X
X
X
64
20000h-2FFFFh
SA6
0
0
1
1
X
X
X
64
30000h-3FFFFh
SA7
0
1
0
0
X
X
X
64
40000h-4FFFFh
SA8
0
1
0
1
X
X
X
64
50000h-5FFFFh
SA9
0
1
1
0
X
X
X
64
60000h-6FFFFh
SA10
0
1
1
1
X
X
X
64
70000h-7FFFFh
SA11
1
0
0
0
X
X
X
64
80000h-8FFFFh
SA12
1
0
0
1
X
X
X
64
90000h-9FFFFh
SA13
1
0
1
0
X
X
X
64
A0000h-AFFFFh
SA14
1
0
1
1
X
X
X
64
B0000h-BFFFFh
SA15
1
1
0
0
X
X
X
64
C0000h-CFFFFh
SA16
1
1
0
1
X
X
X
64
D0000h-DFFFFh
SA17
1
1
1
0
X
X
X
64
E0000h-EFFFFh
SA18
1
1
1
1
X
X
X
64
F0000h-FFFFFh
October 11, 2006 21524D6
Am29LV008B
11
DATA SHEET
Autoselect Mode
Table 4. In addition, when verifying sector protection,
the sector address must appear on the appropriate
highest order address bits (see Tables 2 and 3). Table
4 shows the remaining address bits that are don’t care.
When all necessary bits have been set as required, the
programming equipment may then read the corresponding identifier code on DQ7–DQ0.
The autoselect mode provides manufacturer and
device identification, and sector protection verification,
through identifier codes output on DQ7–DQ0. This
mode is primarily intended for programming equipment
to automatically match a device to be programmed with
its corresponding programming algorithm. However,
the autoselect codes can also be accessed in-system
through the command register.
To access the autoselect codes in-system, the host
system can issue the autoselect command via the
command register, as shown in Table 5. This method
does not require VID. See “Command Definitions” for
details on using the autoselect mode.
When using programming equipment, the autoselect
mode requires VID (11.5 V to 12.5 V) on address pin
A9. Address pins A6, A1, and A0 must be as shown in
Table 4.
Am29LV008B Autoselect Codes (High Voltage Method)
CE#
OE#
WE#
A19
to
A13
Manufacturer ID: AMD
L
L
H
X
X
VID
X
L
X
L
L
01h
Device ID: Am29LV008BT
(Top Boot Block)
L
L
H
X
X
VID
X
L
X
L
H
3Eh
Device ID: Am29LV008BB
(Bottom Boot Block)
L
L
H
X
X
VID
X
L
X
L
H
37h
Description
A12
to
A10
A9
A8
to
A7
A6
A5
to
A2
A1
A0
DQ7
to
DQ0
01h
(protected)
Sector Protection Verification
L
L
H
SA
X
VID
X
L
X
H
L
00h
(unprotected)
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The hardware sector unprotection feature re-enables both
program and erase operations in previously protected
sectors.
The device is shipped with all sectors unprotected.
AMD offers the option of programming and protecting
sectors at its factory prior to shipping the device
through AMD’s ExpressFlash™ Service. Contact an
AMD representative for details.
It is possible to determine whether a sector is protected
or unprotected. See “Autoselect Mode” for details.
Sector protection/unprotection can be implemented via
two methods.
12
The primary method requires VID on the RESET# pin
only, and can be implemented either in-system or via
programming equipment. Figure 2 shows the algorithms and Figure 21 shows the waveform. This
method uses standard microprocessor bus cycle
timing. For sector unprotect, all unprotected sectors
must first be protected prior to the first sector unprotect
write cycle.
The alternate method intended only for programming
equipment requires VID on address pin A9 and OE#.
This method is compatible with programmer routines
written for earlier 3.0 volt-only AMD flash devices.
Details on this method are provided in a supplement,
publication number 20875. Contact an AMD representative to request a copy.
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
START
START
Protect all sectors:
The indicated portion
of the sector protect
algorithm must be
performed for all
unprotected sectors
prior to issuing the
first sector
unprotect address
PLSCNT = 1
RESET# = VID
Wait 1 μs
Temporary Sector
Unprotect Mode
No
PLSCNT = 1
RESET# = VID
Wait 1 μs
No
First Write
Cycle = 60h?
First Write
Cycle = 60h?
Yes
Yes
Set up sector
address
No
All sectors
protected?
Sector Protect:
Write 60h to sector
address with
A6 = 0, A1 = 1,
A0 = 0
Yes
Set up first sector
address
Sector Unprotect:
Write 60h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Wait 150 µs
Increment
PLSCNT
Temporary Sector
Unprotect Mode
Verify Sector
Protect: Write 40h
to sector address
with A6 = 0,
A1 = 1, A0 = 0
Reset
PLSCNT = 1
Read from
sector address
with A6 = 0,
A1 = 1, A0 = 0
Wait 15 ms
Verify Sector
Unprotect: Write
40h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Increment
PLSCNT
No
No
PLSCNT
= 25?
Yes
Yes
No
Yes
Device failed
Protect another
sector?
PLSCNT
= 1000?
No
Yes
Remove VID
from RESET#
Device failed
Write reset
command
Sector Protect
Algorithm
Read from
sector address
with A6 = 1,
A1 = 1, A0 = 0
Data = 01h?
Set up
next sector
address
No
Data = 00h?
Yes
Last sector
verified?
No
Yes
Sector Protect
complete
Sector Unprotect
Algorithm
Remove VID
from RESET#
Write reset
command
Sector Unprotect
complete
Figure 1.
October 11, 2006 21524D6
In-System Sector Protect/Sector Unprotect Algorithms
Am29LV008B
13
DATA SHEET
Temporary Sector Unprotect
Hardware Data Protection
This feature allows temporary unprotection of previously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the
RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by
selecting the sector addresses. Once VID is removed
from the RESET# pin, all the previously protected
sectors are protected again. Figure 2 shows the algorithm, and Figure 20 shows the timing diagrams, for this
feature.
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadver tent writes (refer to Table 5 for
command definitions). In addition, the following hardware data protection measures prevent accidental
erasure or programming, which might otherwise be
caused by spurious system level signals during VCC
power-up and power-down transitions, or from system
noise.
Low VCC Write Inhibit
When V CC is less than V LKO, the device does not
accept any write cycles. This protects data during VCC
power-up and power-down. The command register and
all internal program/erase circuits are disabled, and the
device resets. Subsequent writes are ignored until VCC
is greater than VLKO. The system must provide the
proper signals to the control pins to prevent unintentional writes when VCC is greater than VLKO.
START
RESET# = VID
(Note 1)
Write Pulse “Glitch” Protection
Perform Erase or
Program Operations
Noise pulses of less than 5 ns (typical) on OE#, CE# or
WE# do not initiate a write cycle.
Logical Inhibit
RESET# = VIH
Write cycles are inhibited by holding any one of OE# =
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,
CE# and WE# must be a logical zero while OE# is a
logical one.
Temporary Sector
Unprotect Completed
(Note 2)
Power-Up Write Inhibit
If WE# = CE# = VIL and OE# = VIH during power up, the
device does not accept commands on the rising edge
of WE#. The internal state machine is automatically
reset to reading array data on power-up.
Note:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once
again.
Figure 2.
14
Temporary Sector Unprotect Operation
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
COMMAND DEFINITIONS
Writing specific address and data commands or
sequences into the command register initiates device
operations. Table 5 defines the valid register command
sequences. Writing incorrect address and data
values or writing them in the improper sequence
resets the device to reading array data.
All addresses are latched on the falling edge of WE# or
CE#, whichever happens later. All data is latched on
the rising edge of WE# or CE#, whichever happens
first. Refer to the appropriate timing diagrams in the
“AC Characteristics” section.
Reading Array Data
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command must
be written to return to reading array data (also applies
to autoselect during Erase Suspend).
If DQ5 goes high during a program or erase operation,
writing the reset command returns the device to
reading array data (also applies dur ing Erase
Suspend).
Autoselect Command Sequence
The device is automatically set to reading array data
after device power-up. No commands are required to
retrieve data. The device is also ready to read array
data after completing an Embedded Program or
Embedded Erase algorithm.
After the device accepts an Erase Suspend command,
the device enters the Erase Suspend mode. The
system can read array data using the standard read
timings, except that if it reads at an address within
erase-suspended sectors, the device outputs status
data. After completing a programming operation in the
Erase Suspend mode, the system may once again
read array data with the same exception. See “Erase
Suspend/Erase Resume Commands” for more information on this mode.
The system must issue the reset command to reenable the device for reading array data if DQ5 goes
high, or while in the autoselect mode. See the “Reset
Command” section, next.
See also “Requirements for Reading Array Data” in the
“Device Bus Operations” section for more information.
The Read Operations table provides the read parameters, and Figure 13 shows the timing diagram.
Reset Command
Writing the reset command to the device resets the
device to reading array data. Address bits are don’t
care for this command.
The reset command may be written between the
sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ignores reset commands until the operation is
complete.
The reset command may be written between the
sequence cycles in a program command sequence
before programming begins. This resets the device to
reading array data (also applies to programming in
Erase Suspend mode). Once programming begins,
October 11, 2006 21524D6
however, the device ignores reset commands until the
operation is complete.
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected.
Table 5 shows the address and data requirements. This
method is an alternative to that shown in Table 4, which
is intended for PROM programmers and requires VID
on address bit A9.
The autoselect command sequence is initiated by
writing two unlock cycles, followed by the autoselect
command. The device then enters the autoselect
mode, and the system may read at any address any
number of times, without initiating another command
sequence.
A read cycle at address XX00h retrieves the manufacturer code. A read cycle at address XX01h returns the
device code. A read cycle containing a sector address
(SA) and the address 02h returns 01h if that sector is
protected, or 00h if it is unprotected. Refer to Tables 2
and 3 for valid sector addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Byte Program Command Sequence
Programming is a four-bus-cycle operation. The
program command sequence is initiated by writing two
unlock write cycles, followed by the program set-up
command. The program address and data are written
next, which in turn initiate the Embedded Program
algorithm. The system is not required to provide further
controls or timings. The device automatically provides
internally generated program pulses and verifies the
programmed cell margin. Table 5 shows the address
and data requirements for the byte program command
sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and
addresses are no longer latched. The system can
determine the status of the program operation by using
DQ7, DQ6, or RY/BY#. See “Write Operation Status”
for information on these status bits.
Am29LV008B
15
DATA SHEET
Any commands written to the device during the
Embedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the programmin g o pe ra ti on . T he B y te P ro gra m c om ma nd
sequence should be reinitiated once the device has
reset to reading array data, to ensure data integrity.
START
Write Program
Command Sequence
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed
from a “0” back to a “1”. Attempting to do so may halt
the operation and set DQ5 to “1”, or cause the Data#
Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the
data is still “0”. Only erase operations can convert a “0”
to a “1”.
Embedded
Program
algorithm
in progress
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to
program bytes or words to the device faster than using
the standard program command sequence. The unlock
bypass command sequence is initiated by first writing
two unlock cycles. This is followed by a third write cycle
containing the unlock bypass command, 20h. The
device then enters the unlock bypass mode. A twocycle unlock bypass program command sequence is all
that is required to program in this mode. The first cycle
in this sequence contains the unlock bypass program
command, A0h; the second cycle contains the program
address and data. Additional data is programmed in
the same manner. This mode dispenses with the initial
two unlock cycles required in the standard program
command sequence, resulting in faster total programming time. The Command Definitions table shows the
requirements for the command sequence.
During the unlock bypass mode, only the Unlock
Bypass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset
command sequence. The first cycle must contain the
data 90h; the second cycle the data 00h. Addresses
are don’t care for both cycles. The device then returns
to reading array data.
Figure 3 illustrates the algorithm for the program operation. See the Erase/Program Operations table in “AC
Characteristics” for parameters, and Figure 15 for
timing diagrams.
Data Poll
from System
Verify Data?
No
Yes
Increment Address
No
Last Address?
Yes
Programming
Completed
Note: See Table 5 for program command sequence.
Figure 3.
Program Operation
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any controls or timings during these operations. Table 5 shows
the address and data requirements for the chip erase
command sequence.
Any commands wr itten to the chip dur ing the
Embedded Erase algorithm are ignored. Note that a
hardware reset during the chip erase operation immediately terminates the operation. The Chip Erase
command sequence should be reinitiated once the
16
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
device has returned to reading array data, to ensure
data integrity.
The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. See “Write
Operation Status” for information on these status bits.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched.
Figure 4 illustrates the algorithm for the erase operation. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to Figure 16 for
timing diagrams.
operation. The Sector Erase command sequence
should be reinitiated once the device has returned to
reading array data, to ensure data integrity.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched. The system can determine the
status of the erase operation by using DQ7, DQ6, DQ2,
or RY/BY#. Refer to “Write Operation Status” for information on these status bits.
Figure 4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations tables in
the “AC Characteristics” section for parameters, and to
Figure 16 for timing waveforms.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. Table 5 shows the address and data
requirements for the sector erase command sequence.
The device does not require the system to preprogram
the memory prior to erase. The Embedded Erase algorithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or
timings during these operations.
After the command sequence is written, a sector erase
time-out of 50 µs begins. During the time-out period,
additional sector addresses and sector erase commands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of
sectors may be from one sector to all sectors. The time
between these additional cycles must be less than 50
µs, otherwise the last address and command might not
be accepted, and erasure may begin. It is recommended that processor interrupts be disabled during
this time to ensure all commands are accepted. The
interrupts can be re-enabled after the last Sector Erase
command is written. If the time between additional
sector erase commands can be assumed to be less
than 50 µs, the system need not monitor DQ3. Any
command other than Sector Erase or Erase
Suspend during the time-out period resets the
device to reading array data. The system must
rewrite the command sequence and any additional
sector addresses and commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See the “DQ3: Sector Erase
Timer” section.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a hardware reset during the
sector erase operation immediately terminates the
October 11, 2006 21524D6
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data
from, or program data to, any sector not selected for
erasure. This command is valid only during the sector
erase operation, including the 50 µs time-out period
during the sector erase command sequence. The
Erase Suspend command is ignored if written during
the chip erase operation or Embedded Program algorithm. Writing the Erase Suspend command during the
Sector Erase time-out immediately terminates the
time-out period and suspends the erase operation.
Addresses are “don’t-cares” when writing the Erase
Suspend command.
When the Erase Suspend command is written during a
sector erase operation, the device requires a maximum
of 20 µs to suspend the erase operation. However,
when the Erase Suspend command is written during
the sector erase time-out, the device immediately terminates the time-out period and suspends the erase
operation.
After the erase operation has been suspended, the
system can read array data from or program data to
any sector not selected for erasure. (The device “erase
suspends” all sectors selected for erasure.) Normal
read and write timings and command definitions apply.
Reading at any address within erase-suspended
sectors produces status data on DQ7–DQ0. The
system can use DQ7, or DQ6 and DQ2 together, to
determine if a sector is actively erasing or is erase-suspended. See “Write Operation Status” for information
on these status bits.
After an erase-suspended program operation is complete, the system can once again read array data within
non-suspended sectors. The system can determine
the status of the program operation using the DQ7 or
DQ6 status bits, just as in the standard program operation. See “Wr ite Operation Status” for more
information.
The system may also write the autoselect command
sequence when the device is in the Erase Suspend
Am29LV008B
17
DATA SHEET
mode. The device allows reading autoselect codes
even at addresses within erasing sectors, since the
codes are not stored in the memory array. When the
device exits the autoselect mode, the device reverts to
the Erase Suspend mode, and is ready for another
valid operation. See “Autoselect Command Sequence”
for more information.
START
Write Erase
Command Sequence
The system must write the Erase Resume command
(address bits are “don’t care”) to exit the erase suspend
mode and continue the sector erase operation. Further
writes of the Resume command are ignored. Another
Erase Suspend command can be written after the
device has resumed erasing.
Data Poll
from System
No
Embedded
Erase
algorithm
in progress
Data = FFh?
Yes
Erasure Completed
Notes:
1. See Table 5 for erase command sequence.
2. See “DQ3: Sector Erase Timer” for more information.
Figure 4.
18
Am29LV008B
Erase Operation
21524D6 October 11, 2006
DATA SHEET
Command Definitions
Table 5.
Am29LV008B Command Definitions
Cycles
Bus Cycles (Notes 2-4)
Addr
Read (Note 5)
1
RA
Reset (Note 6)
Command
Sequence
(Note 1)
First
Second
Data
RD
Addr
Data
Third
Addr
Fourth
Data Addr
Data
1
XXX
F0
Manufacturer ID
4
555
AA
2AA
55
555
90
X00
01
Device ID, Top Boot Block
4
555
AA
2AA
55
555
90
X01
3E
555
AA
2AA
55
555
90
X01
37
AutoDevice ID, Bottom Boot Block 4
select
(Note 7)
Sector Protect Verify
4
(Note 8)
555
AA
2AA
55
555
90
(SA)
X02
00
PA
PD
Fifth
Sixth
Addr Data
Addr
Data
01
Program
4
555
AA
2AA
55
555
A0
Unlock Bypass
3
555
AA
2AA
55
555
20
Unlock Bypass Program (Note 9)
2
XXX
A0
PA
PD
Unlock Bypass Reset (Note 10)
2
XXX
90
XXX
00
Chip Erase
6
555
AA
2AA
55
555
80
555
AA
2AA
55
555
10
2AA
55
555
80
555
AA
2AA
55
SA
30
Sector Erase
6
555
AA
Erase Suspend (Note 11)
1
XXX
B0
Erase Resume (Note 12)
1
XXX
30
Legend:
PD = Data to be programmed at location PA. Data latches on the
rising edge of WE# or CE# pulse, whichever happens first.
X = Don’t care
RA = Address of the memory location to be read.
SA = Address of the sector to be verified (in autoselect mode) or
erased. Address bits A19–A13 uniquely select any sector.
RD = Data read from location RA during read operation.
PA = Address of the memory location to be programmed.
Addresses latch on the falling edge of the WE# or CE# pulse,
whichever happens later.
Notes:
1. See Table 1 for description of bus operations.
8. The data is 00h for an unprotected sector and 01h for a
protected sector. See “Autoselect Command Sequence” for
more information.
2. All values are in hexadecimal.
3. Except when reading array or autoselect data, all bus cycles
are write operations.
4. Address bits A19–A11 are don’t cares for unlock and
command cycles.
5. No unlock or command cycles required when reading array
data.
9. The Unlock Bypass command is required prior to the Unlock
Bypass Program command.
10. The Unlock Bypass Reset command is required to return to
reading array data when the device is in the unlock bypass
mode.
6. The Reset command is required to return to reading array
data when device is in the autoselect mode, or if DQ5 goes
high (while the device is providing status data).
11. The system may read and program in non-erasing sectors, or
enter the autoselect mode, when in the Erase Suspend
mode. The Erase Suspend command is valid only during a
sector erase operation.
7. The fourth cycle of the autoselect command sequence is a
read cycle.
12. The Erase Resume command is valid only during the Erase
Suspend mode.
October 11, 2006 21524D6
Am29LV008B
19
DATA SHEET
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6,
DQ7, and RY/BY#. Table 6 and the following subsections describe the functions of these bits. DQ7,
RY/BY#, and DQ6 each offer a method for determining
whether a program or erase operation is complete or in
progress. These three bits are discussed first.
Table 6 shows the outputs for Data# Polling on DQ7.
Figure 5 shows the Data# Polling algorithm.
START
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in progress
or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the
final WE# pulse in the program or erase command
sequence.
Read DQ7–DQ0
Addr = VA
Yes
DQ7 = Data?
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to
programming during Erase Suspend. When the
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid status
information on DQ7. If a program address falls within a
protected sector, Data# Polling on DQ7 is active for
approximately 1 µs, then the device returns to reading
array data.
No
No
Yes
Read DQ7–DQ0
Addr = VA
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7.
This is analogous to the complement/true datum output
described for the Embedded Program algorithm: the
erase function changes all the bits in a sector to “1”;
prior to this, the device outputs the “complement,” or
“0.” The system must provide an address within any of
the sectors selected for erasure to read valid status
information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 µs, then
the device returns to reading array data. If not all
selected sectors are protected, the Embedded Erase
algorithm erases the unprotected sectors, and ignores
the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at DQ7–
DQ0 on the following read cycles. This is because DQ7
may change asynchronously with DQ0–DQ6 while
Output Enable (OE#) is asserted low. Figure 17, Data#
Polling Timings (During Embedded Algorithms), in the
“AC Characteristics” section illustrates this.
20
DQ5 = 1?
DQ7 = Data?
Yes
No
FAIL
PASS
Notes:
1. VA = Valid address for programming. During a sector
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
2. DQ7 should be rechecked even if DQ5 = “1” because
DQ7 may change simultaneously with DQ5.
Am29LV008B
Figure 5.
Data# Polling Algorithm
21524D6 October 11, 2006
DATA SHEET
RY/BY#: Ready/Busy#
The RY/BY# is a dedicated, open-drain output pin that
indicates whether an Embedded Algorithm is in
progress or complete. The RY/BY# status is valid after
the rising edge of the final WE# pulse in the command
sequence. Since RY/BY# is an open-drain output,
several RY/BY# pins can be tied together in parallel
with a pull-up resistor to VCC.
If the output is low (Busy), the device is actively erasing
or programming. (This includes programming in the
Erase Suspend mode.) If the output is high (Ready),
the device is ready to read array data (including during
the Erase Suspend mode), or is in the standby mode.
Table 6 shows the outputs for RY/BY#. Figures 13, 14,
15 and 16 shows RY/BY# for read, reset, program, and
erase operations, respectively.
DQ6: Toggle Bit I
Toggle Bit I on DQ6 indicates whether an Embedded
Program or Erase algorithm is in progress or complete,
or whether the device has entered the Erase Suspend
mode. Toggle Bit I may be read at any address, and is
valid after the rising edge of the final WE# pulse in the
command sequence (prior to the program or erase
operation), and during the sector erase time-out.
During an Embedded Program or Erase algorithm
operation, successive read cycles to any address
cause DQ6 to toggle. (The system may use either OE#
or CE# to control the read cycles.) When the operation
is complete, DQ6 stops toggling.
After an erase command sequence is written, if all
sectors selected for erasing are protected, DQ6 toggles
for approximately 100 µs, then returns to reading array
data. If not all selected sectors are protected, the
Embedded Erase algorithm erases the unprotected
sectors, and ignores the selected sectors that are
protected.
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erasesuspended. When the device is actively erasing (that is,
the Embedded Erase algorithm is in progress), DQ6
toggles. When the device enters the Erase Suspend
mode, DQ6 stops toggling. However, the system must
also use DQ2 to determine which sectors are erasing
or erase-suspended. Alternatively, the system can use
DQ7 (see the subsection on DQ7: Data# Polling).
If a program address falls within a protected sector,
DQ6 toggles for approximately 1 µs after the program
command sequence is written, then returns to reading
array data.
DQ6 also toggles during the erase-suspend-program
mode, and stops toggling once the Embedded
Program algorithm is complete.
October 11, 2006 21524D6
Table 6 shows the outputs for Toggle Bit I on DQ6.
Refer to Figure 6 shows the toggle bit algorithm and to
Figure 18 in the “AC Characteristics” section for the
timing diagrams. Figure 19 shows the differences
between DQ2 and DQ6 in graphical form. See also the
subsection on “DQ2: Toggle Bit II”.
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that have been selected for erasure. (The system may use either OE# or CE# to
control the read cycles.) But DQ2 cannot distinguish
whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the
device is actively erasing, or is in Erase Suspend, but
cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and
mode information. Refer to Table 6 to compare outputs
for DQ2 and DQ6.
Figure 6 shows the toggle bit algorithm in flowchart
form, and the section “DQ2: Toggle Bit II” explains the
algorithm. See also the DQ6: Toggle Bit I subsection.
Refer to Figure 18 for the toggle bit timing diagram.
Figure 19 shows the differences between DQ2 and
DQ6 in graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 6 for the following discussion. Whenever the system initially begins reading toggle bit
status, it must read DQ7–DQ0 at least twice in a row to
determine whether a toggle bit is toggling. Typically, the
system would note and store the value of the toggle bit
after the first read. After the second read, the system
would compare the new value of the toggle bit with the
first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can
read array data on DQ7–DQ0 on the following read
cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the
system also should note whether the value of DQ5 is
high (see the section on DQ5). If it is, the system
should then determine again whether the toggle bit is
toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer
toggling, the device has successfully completed the
program or erase operation. If it is still toggling, the
device did not completed the operation successfully,
and the system must write the reset command to return
to reading array data.
Am29LV008B
21
DATA SHEET
The remaining scenario is that the system initially
determines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor the
toggle bit and DQ5 through successive read cycles,
determining the status as described in the previous
paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to
determine the status of the operation (top of Figure 6).
START
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under
these conditions DQ5 produces a “1.” This is a failure
condition that indicates the program or erase cycle was
not successfully completed.
The DQ5 failure condition may appear if the system
tries to program a “1” to a location that is previously programmed to “0.” Only an erase operation can change
a “0” back to a “1.” Under this condition, the device
halts the operation, and when the operation has
exceeded the timing limits, DQ5 produces a “1.”
Under both these conditions, the system must issue the
reset command to return the device to reading array
data.
Read DQ7–DQ0
DQ3: Sector Erase Timer
(Note 1)
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not an
erase operation has begun. (The sector erase timer
does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire timeout also applies after each additional sector erase command. When the time-out is complete, DQ3 switches
from “0” to “1.” The system may ignore DQ3 if the
system can guarantee that the time between additional sector erase commands will always be less than
5 0 μ s. See also the “Sector Erase Command
Sequence” section.
Read DQ7–DQ0
Toggle Bit
= Toggle?
No
Yes
No
DQ5 = 1?
After the sector erase command sequence is written,
the system should read the status on DQ7 (Data#
Polling) or DQ6 (Toggle Bit I) to ensure the device has
accepted the command sequence, and then read DQ3.
If DQ3 is “1”, the internally controlled erase cycle has
begun; all further commands (other than Erase Suspend) are ignored until the erase operation is complete.
If DQ3 is “0”, the device will accept additional sector
erase commands. To ensure the command has been
accepted, the system software should check the status
of DQ3 prior to and following each subsequent sector
erase command. If DQ3 is high on the second status
check, the last command might not have been
accepted. Table 6 shows the outputs for DQ3.
Yes
Read DQ7–DQ0
Twice
Toggle Bit
= Toggle?
(Notes
1, 2)
No
Yes
Program/Erase
Operation Not
Complete, Write
Reset Command
Program/Erase
Operation Complete
Notes:
1. Read toggle bit twice to determine whether or not it is
toggling. See text.
2. Recheck toggle bit because it may stop toggling as DQ5
changes to “1” . See text.
Figure 6.
22
Toggle Bit Algorithm
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
Table 6. Write Operation Status
DQ7
(Note 2)
DQ6
DQ5
(Note 1)
DQ3
DQ2
(Note 2)
RY/BY#
DQ7#
Toggle
0
N/A
No toggle
0
Embedded Erase Algorithm
0
Toggle
0
1
Toggle
0
Reading within Erase
Suspended Sector
1
No toggle
0
N/A
Toggle
1
Reading within Non-Erase
Suspended Sector
Data
Data
Data
Data
Data
1
Erase-Suspend-Program
DQ7#
Toggle
0
N/A
N/A
0
Operation
Standard
Mode
Erase
Suspend
Mode
Embedded Program Algorithm
Notes:
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.
See “DQ5: Exceeded Timing Limits” for more information.
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
October 11, 2006 21524D6
Am29LV008B
23
DATA SHEET
ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C
Ambient Temperature
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C
Voltage with Respect to Ground
VCC (Note 1) . . . . . . . . . . . . . . . . –0.5 V to +4.0 V
A9, OE#, and
RESET# (Note 2). . . . . . . . . . . .–0.5 V to +12.5 V
20 ns
+0.8 V
–0.5 V
–2.0 V
20 ns
All other pins (Note 1) . . . . . –0.5 V to VCC+0.5 V
Figure 7. Maximum Negative
Overshoot Waveform
Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes:
1. Minimum DC voltage on input or I/O pins is –0.5 V. During
voltage transitions, input or I/O pins may undershoot VSS
to –2.0 V for periods of up to 20 ns. See Figure 7.
Maximum DC voltage on input or I/O pins is VCC +0.5 V.
During voltage transitions, input or I/O pins may overshoot
to VCC +2.0 V for periods up to 20 ns. See Figure 8.
2. Minimum DC input voltage on pins A9, OE#, and RESET#
is –0.5 V. During voltage transitions, A9, OE#, and
RESET# may undershoot VSS to –2.0 V for periods of up
to 20 ns. See Figure 7. Maximum DC input voltage on pin
A9 is +12.5 V which may overshoot to 14.0 V for periods
up to 20 ns.
20 ns
20 ns
VCC
+2.0 V
VCC
+0.5 V
2.0 V
3. No more than one output may be shorted to ground at a
time. Duration of the short circuit should not be greater
than one second.
20 ns
20 ns
Figure 8. Maximum Positive
Overshoot Waveform
Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only; functional operation of the device at
these or any other conditions above those indicated in the
operational sections of this data sheet is not implied.
Exposure of the device to absolute maximum rating
conditions for extended periods may affect device reliability.
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA) . . . . . . . . . . . 0°C to +70°C
Industrial (I) Devices
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C
Extended (E) Devices
Ambient Temperature (TA) . . . . . . . . –55°C to +125°C
VCC Supply Voltages
VCC for regulated voltage range. . . . .+3.0 V to +3.6 V
VCC for full voltage range . . . . . . . . . .+2.7 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.
24
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
DC CHARACTERISTICS
CMOS Compatible
Parameter
Description
Test Conditions
ILI
Input Load Current
VIN = VSS to VCC,
VCC = VCC max
ILIT
A9 Input Load Current
VCC = VCC max; A9 = 12.5 V
ILO
Output Leakage Current
VOUT = VSS to VCC,
VCC = VCC max
ICC1
VCC Active Read Current
(Notes 1, 2)
CE# = VIL, OE# = VIH
ICC2
VCC Active Write Current
(Notes 2, 3, 5)
ICC3
VCC Standby Current (Note 2)
ICC4
VCC Standby Current During Reset
RESET# = VSS ± 0.3 V
(Note 2)
ICC5
Automatic Sleep Mode (Notes 2, 4)
VIL
Input Low Voltage
VIH
Input High Voltage
VID
Voltage for Autoselect and
Temporary Sector Unprotect
VCC = 3.3 V
VOL
Output Low Voltage
IOL = 4.0 mA, VCC = VCC min
VOH1
Output High Voltage
VOH2
VLKO
Min
Typ
Max
Unit
±1.0
µA
35
µA
±1.0
µA
5 MHz
7
12
1 MHz
2
4
CE# = VIL, OE# = VIH
15
30
mA
CE#, RESET# = VCC ± 0.3 V
0.2
5
µA
0.2
5
µA
0.2
5
µA
–0.5
0.8
V
0.7 x VCC
VCC + 0.3
V
11.5
12.5
V
0.45
V
mA
VIH = VCC ± 0.3 V;
VIL = VSS ± 0.3 V
IOH = –2.0 mA, VCC = VCC min
0.85 VCC
IOH = –100 µA, VCC = VCC min
VCC–0.4
Low VCC Lock-Out Voltage (Note 4)
2.3
V
2.5
V
Notes:
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. Typical VCC is 3.0 V.
2. Maximum ICC specifications are tested with VCC = VCCmax.
3. ICC active while Embedded Erase or Embedded Program is in progress.
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns.
5. Not 100% tested.
October 11, 2006 21524D6
Am29LV008B
25
DATA SHEET
DC CHARACTERISTICS (continued)
Zero Power Flash
Supply Current in mA
20
15
10
5
0
0
500
1000
1500
2000
2500
3000
3500
4000
Time in ns
Note: Addresses are switching at 1 MHz
Figure 9.
ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)
10
Supply Current in mA
8
3.6 V
6
2.7 V
4
2
0
1
2
3
Frequency in MHz
4
5
Note: T = 25 °C
Figure 10.
26
Typical ICC1 vs. Frequency
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
TEST CONDITIONS
Table 7.
Test Specifications
3.3 V
Test Condition
2.7 kΩ
Device
Under
Test
Output Load
Unit
1 TTL gate
Output Load Capacitance, CL
(including jig capacitance)
CL
-90,
-120
-70R
30
100
pF
6.2 kΩ
Input Rise and Fall Times
5
ns
0.0–3.0
V
Input timing measurement
reference levels
1.5
V
Output timing measurement
reference levels
1.5
V
Input Pulse Levels
Note: Diodes are IN3064 or equivalent
Figure 11.
Test Setup
Key to Switching Waveforms
WAVEFORM
INPUTS
OUTPUTS
Steady
Changing from H to L
Changing from L to H
3.0 V
Don’t Care, Any Change Permitted
Changing, State Unknown
Does Not Apply
Center Line is High Impedance State (High Z)
1.5 V
Input
Measurement Level
1.5 V
Output
0.0 V
Figure 12.
October 11, 2006 21524D6
Input Waveforms and Measurement Levels
Am29LV008B
27
DATA SHEET
AC CHARACTERISTICS
Read Operations
Parameter
Speed Options
JEDEC
Std
tAVAV
tRC
Read Cycle Time (Note 1)
tAVQV
tACC
Address to Output Delay
tELQV
tCE
Chip Enable to Output Delay
tGLQV
tOE
tEHQZ
tGHQZ
tAXQX
Description
Test Setup
-70R
-90
-120
Unit
Min
70
90
120
ns
CE# = VIL
OE# = VIL
Max
70
90
120
ns
OE# = VIL
Max
70
90
120
ns
Output Enable to Output Delay
Max
30
35
50
ns
tDF
Chip Enable to Output High Z (Note 1)
Max
25
30
30
ns
tDF
Output Enable to Output High Z (Note 1)
Max
25
30
30
ns
Read
Min
0
ns
Toggle and
Data# Polling
Min
10
ns
Min
0
ns
tOEH
Output Enable
Hold Time (Note 1)
tOH
Output Hold Time From Addresses, CE# or OE#,
Whichever Occurs First (Note 1)
Notes:
1. Not 100% tested.
2. See Figure 11 and Table 7 for test specifications.
tRC
Addresses Stable
Addresses
tACC
CE#
tDF
tOE
OE#
tOEH
WE#
tCE
tOH
HIGH Z
HIGH Z
Output Valid
Outputs
RESET#
RY/BY#
0V
Figure 13.
28
Read Operations Timings
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
AC CHARACTERISTICS
Hardware Reset (RESET#)
Parameter
JEDEC
Std
Description
Test Setup
All Speed Options
Unit
tREADY
RESET# Pin Low (During Embedded
Algorithms) to Read or Write (See Note)
Max
20
µs
tREADY
RESET# Pin Low (NOT During Embedded
Algorithms) to Read or Write (See Note)
Max
500
ns
tRP
RESET# Pulse Width
Min
500
ns
tRH
RESET# High Time Before Read (See Note)
Min
50
ns
tRPD
RESET# Low to Standby Mode
Min
20
µs
tRB
RY/BY# Recovery Time
Min
0
ns
Note: Not 100% tested.
RY/BY#
CE#, OE#
tRH
RESET#
tRP
tReady
Reset Timings NOT during Embedded Algorithms
Reset Timings during Embedded Algorithms
tReady
RY/BY#
tRB
CE#, OE#
RESET#
tRP
Figure 14.
October 11, 2006 21524D6
RESET# Timings
Am29LV008B
29
DATA SHEET
AC CHARACTERISTICS
Erase/Program Operations
Parameter
Speed Option
JEDEC
Std
Description
-70R
-90
-120
Unit
tAVAV
tWC
Write Cycle Time (Note 1)
Min
70
90
120
ns
tAVWL
tAS
Address Setup Time
Min
tWLAX
tAH
Address Hold Time
Min
45
45
50
ns
tDVWH
tDS
Data Setup Time
Min
35
45
50
ns
tWHDX
tDH
Data Hold Time
Min
0
ns
tOES
Output Enable Setup Time
Min
0
ns
Read Recovery Time Before Write
(OE# High to WE# Low)
Min
0
ns
0
ns
tGHWL
tGHWL
tELWL
tCS
CE# Setup Time
Min
0
ns
tWHEH
tCH
CE# Hold Time
Min
0
ns
tWLWH
tWP
Write Pulse Width
Min
tWHWL
tWPH
Write Pulse Width High
Min
30
ns
tWHWH1
tWHWH1 Programming Operation (Note 2)
Typ
9
µs
tWHWH2
tWHWH2 Sector Erase Operation (Note 2)
Typ
0.7
sec
35
35
50
ns
tVCS
VCC Setup Time (Note 1)
Min
50
µs
tRB
Recovery Time from RY/BY#
Min
0
ns
Program/Erase Valid to RY/BY# Delay
Max
90
ns
tBUSY
Notes:
1. Not 100% tested.
2. See the “Erase and Programming Performance” section for more information.
30
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
AC CHARACTERISTICS
Program Command Sequence (last two cycles)
tAS
tWC
Addresses
Read Status Data (last two cycles)
555h
PA
PA
PA
tAH
CE#
tCH
OE#
tWHWH1
tWP
WE#
tWPH
tCS
tDS
tDH
A0h
Data
PD
Status
tBUSY
DOUT
tRB
RY/BY#
VCC
tVCS
Note: PA = program address, PD = program data, DOUT is the true data at the program address.
Figure 15.
October 11, 2006 21524D6
Program Operation Timings
Am29LV008B
31
DATA SHEET
AC CHARACTERISTICS
Erase Command Sequence (last two cycles)
tAS
tWC
2AAh
Addresses
Read Status Data
VA
SA
VA
555h for chip erase
tAH
CE#
tCH
OE#
tWP
WE#
tWPH
tCS
tWHWH2
tDS
tDH
Data
55h
In
Progress
30h
Complete
10 for Chip Erase
tBUSY
tRB
RY/BY#
tVCS
VCC
Note: SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”).
Figure 16.
32
Chip/Sector Erase Operation Timings
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
AC CHARACTERISTICS
tRC
Addresses
VA
VA
VA
tACC
tCE
CE#
tCH
tOE
OE#
tOEH
tDF
WE#
tOH
High Z
DQ7
Complement
Complement
DQ0–DQ6
Status Data
Status Data
Valid Data
True
High Z
Valid Data
True
tBUSY
RY/BY#
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data
read cycle.
Figure 17. Data# Polling Timings (During Embedded Algorithms)
tRC
Addresses
VA
VA
VA
VA
tACC
tCE
CE#
tCH
tOE
OE#
tOEH
tDF
WE#
tOH
High Z
DQ6/DQ2
tBUSY
Valid Status
Valid Status
(first read)
(second read)
Valid Status
Valid Data
(stops toggling)
RY/BY#
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read
cycle, and array data read cycle.
Figure 18.
October 11, 2006 21524D6
Toggle Bit Timings (During Embedded Algorithms)
Am29LV008B
33
DATA SHEET
AC CHARACTERISTICS
Enter
Embedded
Erasing
Erase
Suspend
Erase
WE#
Enter Erase
Suspend Program
Erase
Resume
Erase
Suspend
Program
Erase Suspend
Read
Erase
Erase Suspend
Read
Erase
Complete
DQ6
DQ2
Note: The system may use CE# or OE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an
erase-suspended sector.
Figure 19. DQ2 vs. DQ6
Temporary Sector Unprotect
Parameter
JEDEC
Std
Description
All Speed Options
Unit
tVIDR
VID Rise and Fall Time (See Note)
Min
500
ns
tRSP
RESET# Setup Time for Temporary Sector
Unprotect
Min
4
µs
Note: Not 100% tested.
12 V
RESET#
0 or 3 V
0 or 3 V
tVIDR
tVIDR
Program or Erase Command Sequence
CE#
WE#
tRSP
RY/BY#
Figure 20.
34
Temporary Sector Unprotect Timing Diagram
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
AC CHARACTERISTICS
VID
VIH
RESET#
SA, A6,
A1, A0
Valid*
Valid*
Sector Protect/Unprotect
Data
60h
Valid*
Verify
60h
40h
Status
Sector Protect: 100 µs
Sector Unprotect: 10 ms
1 µs
CE#
WE#
OE#
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.
Figure 21.
October 11, 2006 21524D6
Sector Protect/Unprotect Timing Diagram
Am29LV008B
35
DATA SHEET
AC CHARACTERISTICS
Alternate CE# Controlled Erase/Program Operations
Parameter
Speed Option
JEDEC
Std
Description
-70R
-90
-120
Unit
tAVAV
tWC
Write Cycle Time (Note 1)
Min
70
90
120
ns
tAVEL
tAS
Address Setup Time
Min
tELAX
tAH
Address Hold Time
Min
45
45
50
ns
tDVEH
tDS
Data Setup Time
Min
35
45
50
ns
tEHDX
tDH
Data Hold Time
Min
0
ns
tOES
Output Enable Setup Time
Min
0
ns
tGHEL
tGHEL
Read Recovery Time Before Write
(OE# High to WE# Low)
Min
0
ns
tWLEL
tWS
WE# Setup Time
Min
0
ns
tEHWH
tWH
WE# Hold Time
Min
0
ns
tELEH
tCP
CE# Pulse Width
Min
tEHEL
tCPH
CE# Pulse Width High
Min
30
ns
tWHWH1
tWHWH1
Programming Operation
(Note 2)
Typ
9
µs
tWHWH2
tWHWH2
Sector Erase Operation (Note 2)
Typ
0.7
sec
0
35
35
ns
50
ns
Notes:
1. Not 100% tested.
2. See the “Erase and Programming Performance” section for more information.
36
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
AC CHARACTERISTICS
555 for program
2AA for erase
PA for program
SA for sector erase
555 for chip erase
Data# Polling
Addresses
PA
tWC
tAS
tAH
tWH
WE#
tGHEL
OE#
tCP
CE#
tWS
tWHWH1 or 2
tCPH
tBUSY
tDS
tDH
DQ7#
Data
tRH
A0 for program
55 for erase
DOUT
PD for program
30 for sector erase
10 for chip erase
RESET#
RY/BY#
Notes:
1. PA = Program Address, PD = Program Data, DQ7# = complement of the data written to the device, DOUT is the data written
to the device.
2. Figure indicates the last two bus cycles of the command sequence.
Figure 22.
October 11, 2006 21524D6
Alternate CE# Controlled Write Operation Timings
Am29LV008B
37
DATA SHEET
ERASE AND PROGRAMMING PERFORMANCE
Parameter
Typ (Note 1)
Max (Note 2)
Unit
Sector Erase Time
0.7
15
s
Chip Erase Time
14
Byte Programming Time
9
300
µs
9
27
s
Chip Programming Time
(Note 3)
s
Comments
Excludes 00h programming
prior to erasure (Note 4)
Excludes system level
overhead (Note 5)
Notes:
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,
programming typicals assume checkerboard pattern.
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles.
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes
program faster than the maximum program times listed.
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.
5. System-level overhead is the time required to execute the four-bus-cycle sequence for the program command. See Table 5
for further information on command definitions.
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.
LATCHUP CHARACTERISTICS
Description
Min
Max
Input voltage with respect to VSS on all pins except I/O pins
(including A9, OE#, and RESET#)
–1.0 V
12.5 V
Input voltage with respect to VSS on all I/O pins
–1.0 V
VCC + 1.0 V
–100 mA
+100 mA
VCC Current
Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.
TSOP PIN CAPACITANCE
Parameter
Symbol
Parameter Description
Test Setup
Typ
Max
Unit
CIN
Input Capacitance
VIN = 0
6
7.5
pF
COUT
Output Capacitance
VOUT = 0
8.5
12
pF
CIN2
Control Pin Capacitance
VIN = 0
7.5
9
pF
Notes:
1. Sampled, not 100% tested.
2. Test conditions TA = 25°C, f = 1.0 MHz.
DATA RETENTION
Parameter
Test Conditions
Min
Unit
150°C
10
Years
125°C
20
Years
Minimum Pattern Data Retention Time
38
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
PHYSICAL DIMENSIONS*
TS 040—40-Pin Standard TSOP
Dwg rev AA; 10/99
* For reference only. BSC is an ANSI standard for Basic Space Centering.
October 11, 2006 21524D6
Am29LV008B
39
DATA SHEET
REVISION SUMMARY
Revision A (October 1997)
Revision C (January 1999)
First release.
Global
Updated for CS39S process technology.
Revision B (January 1998)
Distinctive Characteristics
Distinctive Characteristics
Changed typical read and program/erase current
specifications.
Added:
■ 20-year data retention at 125°C
— Reliable operation for the life of the system
Device now has a guaranteed minimum endurance of
1,000,000 write cycles.
DC Characteristics—CMOS Compatible
Figure of In-System Sector Protect/Unprotect
Algorithm
ICC1, ICC2, ICC3, ICC4, ICC5: Added Note 2 “Maximum
ICC specifications are tested with VCC = VCCmax”.
Corrected A6 to 0, Changed wait specification to 150 µs
on sector protect and 15 ms on sector unprotect.
ICC3, ICC4: Deleted VCC = VCCmax.
Revision D (November 19, 1999)
DC Characteristics
Changed typical read and program/erase current
specifications.
AC Characteristics
Alternate CE# Controlled Erase/Program Operations:
Changed tCP to 35 ns for 70R, 80, and 90 speed options.
AC Characteristics—Figure 15. Program
Operations Timing and Figure 16. Chip/Sector
Erase Operations
Deleted tGHWL and changed OE# waveform to start at
high.
Physical Dimensions
Erase and Programming Performance
Replaced figures with more detailed illustrations.
Device now has a guaranteed minimum endurance of
1,000,000 write cycles.
Revision D+1 (August 14, 2000)
Revision B+1 (March 1998)
Global
Figure of In-System Sector Protect/Unprotect
Algorithms
Deleted 80 ns speed option.
In the sector protect algorithm, added a “Reset
PLSCNT=1” box in the path from “Protect another
sector?” back to setting up the next sector address.
Deleted burn-in option.
DC Characteristics
Command Definitions
Changed Note 1 to indicate that OE# is at VIH for the
listed current.
Reset Command: Deleted reference to Figure 14, RESET# Timings, which is only applicable to the hardware
reset function.
Ordering Information
AC Characteristics
Erase/Program Operations; Alternate CE# Controlled
Erase/Program Operations: Corrected the notes reference for tWHWH1 and tWHWH2. These parameters are
100% tested. Corrected the note reference for tVCS.
This parameter is not 100% tested.
Temporary Sector Unprotect Table
Added note reference for tVIDR. This parameter is not
100% tested.
Revision D+2 (November 10, 2000)
Revision D+3 (June 11, 2004)
Ordering Information
Added Pb-Free OPNs.
Revision D4 (February 21, 2006)
Global
Removed Reverse TSOP option.
Revision D5 (September 12, 2006)
Figure 21, Sector Protect/Unprotect Timing
Diagram
Erase and Program Operations table
A valid address is not required for the first write cycle;
only the data 60h.
Changed tBUSY to a maximum specification.
Erase and Programming Performance
In Note 2, the worst case endurance is now 1 million cycles.
40
Am29LV008B
21524D6 October 11, 2006
DATA SHEET
Revision D6 (October 11, 2006)
Global
Added notice on product availability.
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion Inc. will not be liable
to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating
conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign
Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.
Trademarks
Copyright © 1997–2005 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc. ExpressFlash is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are
for identification purposes only and may be trademarks of their respective companies.
Copyright © 2006 Spansion Inc. All Rights Reserved. Spansion, the Spansion logo, MirrorBit, ORNAND, HD-SIM, and combinations thereof are
trademarks of Spansion Inc. Other names are for informational purposes only and may be trademarks of their respective owners.
October 11, 2006 21524D6
Am29LV008B
41