ONSEMI MC33202P

MC33201, MC33202,
MC33204, NCV33202,
NCV33204
Low Voltage, Rail−to−Rail
Operational Amplifiers
http://onsemi.com
The MC33201/2/4 family of operational amplifiers provide
rail−to−rail operation on both the input and output. The inputs can be
driven as high as 200 mV beyond the supply rails without phase
reversal on the outputs, and the output can swing within 50 mV of each
rail. This rail−to−rail operation enables the user to make full use of the
supply voltage range available. It is designed to work at very low
supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V
and ground. Output current boosting techniques provide a high output
current capability while keeping the drain current of the amplifier to a
minimum. Also, the combination of low noise and distortion with a
high slew rate and drive capability make this an ideal amplifier for
audio applications.
PDIP−8
P, VP SUFFIX
CASE 626
8
1
8
1
• Low Voltage, Single Supply Operation
•
•
•
•
•
•
•
•
•
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over−driven Input Signals
High Output Current (ISC = 80 mA, Typ)
Low Supply Current (ID = 0.9 mA, Typ)
600 Output Drive Capability
Extended Operating Temperature Ranges
(−40° to +105°C and −55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
Pb−Free Packages are Available
8
1
SOIC−8
D, VD SUFFIX
CASE 751
Micro8
DM SUFFIX
CASE 846A
PDIP−14
P, VP SUFFIX
CASE 646
14
1
14
SOIC−14
D, VD SUFFIX
CASE 751A
1
14
1
TSSOP−14
DTB SUFFIX
CASE 948G
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 11 of this data sheet.
 Semiconductor Components Industries, LLC, 2004
March, 2004 − Rev. 12
1
Publication Order Number:
MC33201/D
MC33201, MC33202, MC33204, NCV33202, NCV33204
PIN CONNECTIONS
MC33201
All Case Styles
NC 1
8
2
7
MC33204
All Case Styles
Output 1 1
NC
2
VCC
Inputs 1
Inputs
3
6
Output
VEE 4
5
NC
1
4
3
12
11
5
10
6
2
3
Output 1 1
2
Inputs 1
1
3
VEE 4
9
8
Output 2 7
MC33202
All Case Styles
13
VCC 4
Inputs 2
(Top View)
14 Output 4
Inputs 4
VEE
Inputs 3
Output 3
(Top View)
8
VCC
7
Output 2
6
2
Inputs 2
5
(Top View)
VCC
VCC
VEE
VCC
Vin−
Vout
VCC
Vin+
VEE
This device contains 70 active transistors (each amplifier).
Figure 1. Circuit Schematic
(Each Amplifier)
http://onsemi.com
2
MC33201, MC33202, MC33204, NCV33202, NCV33204
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+13
V
Input Differential Voltage Range
VIDR
Note 1
V
Common Mode Input Voltage Range (Note 2)
VCM
VCC + 0.5 V to
VEE − 0.5 V
V
Output Short Circuit Duration
ts
Note 3
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
− 65 to +150
°C
Maximum Power Dissipation
PD
Note 3
mW
Supply Voltage (VCC to VEE)
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic
VCC = 2.0 V
VCC = 3.3 V
VCC = 5.0 V
Input Offset Voltage
VIO (max)
MC33201
MC33202, NCV33202
MC33204
± 8.0
±10
±12
± 8.0
±10
±12
± 6.0
± 8.0
±10
Output Voltage Swing
VOH (RL = 10 k)
VOL (RL = 10 k)
1.9
0.10
3.15
0.15
4.85
0.15
Power Supply Current
per Amplifier (ID)
1.125
1.125
1.125
Unit
mV
Vmin
Vmax
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND.
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Figure
Symbol
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = − 40° to +105°C
MC33201V: TA = − 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = − 40° to +105°C
MC33202V: TA = − 55° to +125°C
NCV33202V: TA = − 55° to +125°C (Note 4)
MC33204: TA = + 25°C
MC33204: TA = − 40° to +105°C
MC33204V: TA = − 55° to +125°C
3
VIO
Input Offset Voltage Temperature Coefficient (RS = 50 )
TA = − 40° to +105°C
TA = − 55° to +125°C
4
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = − 40° to +105°C
TA = − 55° to +125°C
5, 6
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = − 40° to +105°C
TA = − 55° to +125°C
−
Common Mode Input Voltage Range
−
Min
Typ
Max
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
6.0
9.0
13
8.0
11
14
14
10
13
17
−
−
2.0
2.0
−
−
−
−
−
80
100
−
200
250
500
−
−
−
5.0
10
−
50
100
200
VEE
−
VCC
mV
VIO/T
V/°C
IIB
nA
IIO
VICR
Unit
nA
V
1. The differential input voltage of each amplifier is limited by two internal parallel back−to−back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage
on either input must not exceed either supply rail by more than 500 mV.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
4. NCV33202 and NCV33204 are qualified for automotive use.
http://onsemi.com
3
MC33201, MC33202, MC33204, NCV33202, NCV33204
DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = − 5.0 V)
RL = 10 k
RL = 600 Output Voltage Swing (VID = ± 0.2 V)
RL = 10 k
RL = 10 k
RL = 600 RL = 600 Figure
Symbol
Min
Typ
Max
7
AVOL
50
25
300
250
−
−
VOH
VOL
VOH
VOL
4.85
−
4.75
−
4.95
0.05
4.85
0.15
−
0.15
−
0.25
60
90
−
500
25
−
50
80
−
−
−
0.9
0.9
1.125
1.125
Unit
kV/V
8, 9, 10
V
Common Mode Rejection (Vin = 0 V to 5.0 V)
11
CMR
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/GND to 3.0 V/GND
12
PSRR
Output Short Circuit Current (Source and Sink)
13, 14
ISC
Power Supply Current per Amplifier (VO = 0 V)
TA = − 40° to +105°C
TA = − 55° to +125°C
15
ID
dB
V/V
mA
mA
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Slew Rate
(VS = ± 2.5 V, VO = − 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0)
Figure
Symbol
16, 26
SR
Min
Typ
Max
0.5
1.0
−
Unit
V/s
Gain Bandwidth Product (f = 100 kHz)
17
GBW
−
2.2
−
MHz
Gain Margin (RL = 600 , CL = 0 pF)
20, 21, 22
AM
−
12
−
dB
Phase Margin (RL = 600 , CL = 0 pF)
20, 21, 22
M
−
65
−
Deg
CS
−
90
−
dB
BWP
−
28
−
kHz
−
−
0.002
0.008
−
−
−
100
−
Rin
−
200
−
k
Cin
−
8.0
−
pF
−
−
25
20
−
−
−
−
0.8
0.2
−
−
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100)
23
Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD ≤ 1 %)
Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
24
THD
%
ZO
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
Differential Input Resistance (VCM = 0 V)
Differential Input Capacitance (VCM = 0 V)
Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz
f = 1.0 kHz
25
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25
http://onsemi.com
4
en
in
nV/
Hz
pA/
Hz
2500
40
PERCENTAGE OF AMPLIFIERS (%)
PD(max) , MAXIMUM POWER DISSIPATION (mW
MC33201, MC33202, MC33204, NCV33202, NCV33204
8 and 14 Pin DIP Pkg
2000
TSSOP−14 Pkg
1500
SO−14 Pkg
1000
SOIC−8
Pkg
500
0
−55 −40 −25
0
25
50
85
TA, AMBIENT TEMPERATURE (°C)
30
25
20
15
10
5.0
0
−10 −8.0 −6.0 −4.0 −2.0
0
2.0 4.0 6.0
VIO, INPUT OFFSET VOLTAGE (mV)
125
Figure 2. Maximum Power Dissipation
versus Temperature
I IB , INPUT BIAS CURRENT (nA)
30
160
120
20
10
0
−50 −40 −30 −20
−10
0
10
20
30
40
VCC = +5.0 V
VEE = Gnd
VCM = 0 V to 0.5 V
80
VCM > 1.0 V
40
0
−55 −40 −25
50
TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/°C)
IO
A VOL , OPEN LOOP VOLTAGE GAIN (kV/V)
100
50
0
−50
−100
VCC = 12 V
VEE = Gnd
TA = 25°C
−200
0
2.0
4.0
6.0
8.0
10
VCM, INPUT COMMON MODE VOLTAGE (V)
25
70
85
125
Figure 5. Input Bias Current
versus Temperature
150
−150
0
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
I IB , INPUT BIAS CURRENT (nA)
10
200
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
40
−250
8.0
Figure 3. Input Offset Voltage Distribution
50
PERCENTAGE OF AMPLIFIERS (%)
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
35
300
260
220
180
140
VCC = +5.0 V
VEE = Gnd
RL = 600 VO = 0.5 V to 4.5 V
100
−55 −40 −25
12
Figure 6. Input Bias Current
versus Common Mode Voltage
0
25
70
85
TA, AMBIENT TEMPERATURE (°C)
105
Figure 7. Open Loop Voltage Gain versus
Temperature
http://onsemi.com
5
125
MC33201, MC33202, MC33204, NCV33202, NCV33204
RL = 600 TA = 25°C
10
8.0
6.0
4.0
2.0
0
±1.0
VCC
VSAT, OUTPUT SATURATION VOLTAGE (V)
VO, OUTPUT VOLTAGE (Vpp )
12
±2.0
±3.0
±4.0
±5.0
VCC,VEE SUPPLY VOLTAGE (V)
±6.0
TA = −55°C
TA = 125°C
VCC − 0.4 V
TA = −55°C
CMR, COMMON MODE REJECTION (dB)
VO, OUTPUT VOLTAGE (Vpp )
6.0
VCC = +6.0 V
VEE = −6.0 V
RL = 600 AV = +1.0
TA = 25°C
5.0
60
40
VCC = +6.0 V
VEE = −6.0 V
TA = −55° to +125°C
20
0
10
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
PSR, POWER SUPPLY REJECTION (dB)
PSR+
80
60
PSR−
40
VCC = +6.0 V
VEE = −6.0 V
TA = −55° to +125°C
0
1.0 k
10 k
f, FREQUENCY (Hz)
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
100
100
VEE
20
15
80
1.0 M
120
10
10
IL, LOAD CURRENT (mA)
100
Figure 10. Output Voltage
versus Frequency
20
VEE + 0.2 V
Figure 9. Output Saturation Voltage
versus Load Current
9.0
10 k
100 k
f, FREQUENCY (Hz)
TA = 25°C
TA = 125°C
0
12
0
1.0 k
VEE + 0.4 V
VCC = +5.0 V
VEE = −5.0 V
Figure 8. Output Voltage Swing
versus Supply Voltage
3.0
VCC − 0.2 V
TA = 25°C
100 k
1.0 M
100
Source
80
60
Sink
40
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
20
0
0
1.0
2.0
3.0
4.0
5.0
Vout, OUTPUT VOLTAGE (V)
Figure 12. Power Supply Rejection
versus Frequency
Figure 13. Output Short Circuit Current
versus Output Voltage
http://onsemi.com
6
6.0
I CC , SUPPLY CURRENT PER AMPLIFIER (mA)
150
125
VCC = +5.0 V
VEE = Gnd
100
Source
75
Sink
50
25
0
−55 −40 −25
0
25
70 85
TA, AMBIENT TEMPERATURE (°C)
105
125
2.0
1.6
TA = 125°C
1.2
TA = 25°C
0.8
TA = −55°C
0.4
0
±0
±1.0
Figure 14. Output Short Circuit Current
versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
+Slew Rate
1.0
−Slew Rate
0.5
25
70
85
105
0
−55 −40 −25
0
25
70
85
105
Figure 16. Slew Rate
versus Temperature
Figure 17. Gain Bandwidth Product
versus Temperature
40
VS = ±6.0 V
TA = 25°C
RL = 600 80
30
120
1A
2A
10
A
1.0
TA, AMBIENT TEMPERATURE (°C)
50
−30
10 k
2.0
TA, AMBIENT TEMPERATURE (°C)
70
−10
VCC = +2.5 V
VEE = −2.5 V
f = 100 kHz
3.0
125
2B
1A − Phase, CL = 0 pF
1B − Gain, CL = 0 pF
2A − Phase, CL = 300 pF
2B − Gain, CL = 300 pF
100 k
1B
1.0 M
160
200
, EXCESS PHASE (DEGREES)
, OPEN LOOP VOLTAGE GAIN (dB)
VOL
0
4.0
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
SR, SLEW RATE (V/µ s)
VCC = +2.5 V
VEE = −2.5 V
VO = ±2.0 V
0
−55 −40 −25
±6.0
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
2.0
1.5
±2.0
±3.0
±4.0
±5.0
VCC, VEE, SUPPLY VOLTAGE (V)
70
30
1A
10
−10
1A − Phase, VS = ±6.0 V
1B − Gain, VS = ±6.0 V
2A − Phase, VS = ±1.0 V
2B − Gain, VS = ±1.0 V
f, FREQUENCY (Hz)
100 k
1B
120
Figure 18. Voltage Gain and Phase
versus Frequency
200
1.0 M
Figure 19. Voltage Gain and Phase
versus Frequency
http://onsemi.com
160
2B
f, FREQUENCY (Hz)
7
80
2A
−30
10 k
240
10 M
40
CL = 0 pF
TA = 25°C
RL = 600 50
125
240
10 M
, EXCESS PHASE (DEGREES)
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
MC33201, MC33202, MC33204, NCV33202, NCV33204
MC33201, MC33202, MC33204, NCV33202, NCV33204
75
50
50
30
VCC = +6.0 V
VEE = −6.0 V
RL = 600 CL = 100 pF
40
30
20
20
10
10
Gain Margin
0
−55 −40 −25
0
25
70
85
105
60
60
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
45
30
30
15
0
0
125
10
100
16
60
Gain Margin
12
10
40
8.0
30
6.0
20
4.0
10
2.0
0
10
THD, TOTAL HARMONIC DISTORTION (%)
14
10
1.0
0
1.0 k
100
AV = 10
60
VCC = +6.0 V
VEE = −6.0 V
VO = 8.0 Vpp
TA = 25°C
30
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 22. Gain and Phase Margin
versus Capacitive Load
Figure 23. Channel Separation
versus Frequency
VCC = +5.0 V
TA = 25°C
VO = 2.0 Vpp
VEE = −5.0 V
RL = 600 AV = 100
AV = 10
0.01
0.001
10
90
CL, CAPACITIVE LOAD (pF)
AV = 1000
0.1
AV = 100
120
0
100
AV = 1.0
100
1.0 k
10 k
100 k
en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
50
0
100 k
150
CS, CHANNEL SEPARATION (dB)
Phase Margin
10 k
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
A , GAIN MARGIN (dB)
M
M , PHASE MARGIN (DEGREES)
70
1.0 k
RT, DIFFERENTIAL SOURCE RESISTANCE ()
Figure 20. Gain and Phase Margin
versus Temperature
VCC = +6.0 V
VEE = −6.0 V
RL = 600 AV = 100
TA = 25°C
15
Gain Margin
TA, AMBIENT TEMPERATURE (°C)
80
45
50
5.0
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
40
30
3.0
Noise Voltage
20
Noise Current
0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
http://onsemi.com
8
2.0
1.0
10
f, FREQUENCY (Hz)
Figure 24. Total Harmonic Distortion
versus Frequency
4.0
0
100 k
i n , INPUT REFERRED NOISE CURRENT (pA/ Hz)
40
M , PHASE MARGIN (DEGREES)
60
A , GAIN MARGIN (dB)
M
M , PHASE MARGIN (DEGREES)
60
75
Phase Margin
Phase Margin
A , GAIN MARGIN (dB)
M
70
70
MC33201, MC33202, MC33204, NCV33202, NCV33204
DETAILED OPERATING DESCRIPTION
Circuit Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail−to−rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide
common mode input voltage range even with low supply
voltages. Operation is guaranteed over an extended
temperature range and at supply voltages of 2.0 V, 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Rail−to−rail performance is achieved at the input of the
amplifiers by using parallel NPN−PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP stage is on. When the inputs are more than 800
mV greater than VEE, the NPN stage is on. This switching of
input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross−coupling
techniques have been used to keep this change to a minimum.
In addition to its rail−to−rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
VCC = +6.0 V
VEE = −6.0 V
RL = 600 CL = 100 pF
TA = 25°C
VCC = +6.0 V
VEE = −6.0 V
RL = 600 CL = 100 pF
TA = 25°C
V , OUTPUT VOLTAGE (50 mV/DIV)
O
V , OUTPUT VOLTAGE (2.0 mV/DIV)
O
General Information
t, TIME (5.0 s/DIV)
t, TIME (10 s/DIV)
V , OUTPUT VOLTAGE (2.0 V/DIV)
O
Figure 26. Noninverting Amplifier Slew Rate
Figure 27. Small Signal Transient Response
VCC = +6.0 V
VEE = −6.0 V
RL = 600 CL = 100 pF
AV = 1.0
TA = 25°C
t, TIME (10 s/DIV)
Figure 28. Large Signal Transient Response
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must be
the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad
geometry, the packages will self−align when subjected to a
solder reflow process.
http://onsemi.com
9
MC33201, MC33202, MC33204, NCV33202, NCV33204
ORDERING INFORMATION
Operational
Amplifier Function
Single
Dual
Operating
Temperature Range
Package
Shipping†
TA= −40° to +105°C
SOIC−8
98 Units / Rail
MC33201DR2
SOIC−8
2500 Units / Tape & Reel
MC33201P
PDIP−8
50 Units / Rail
Device
MC33201D
MC33201VD
TA = −55° to 125°C
SOIC−8
98 Units / Rail
MC33202D
TA= −40 ° to +105°C
SOIC−8
98 Units / Rail
MC33202DG
SOIC−8
(Pb−Free)
MC33202DR2
SOIC−8
SOIC−8
(Pb−Free)
MC33202DR2G
Dual
MC33202DMR2
TA= −40 ° to +105°C
Micro−8
4000 Units / Tape & Reel
PDIP−8
50 Units / Rail
SOIC−8
98 Units / Rail
MC33202VDR2
SOIC−8
2500 Units / Tape & Reel
NCV33202VDR2*
SOIC−8
2500 Units / Tape & Reel
MC33202VP
PDIP−8
50 Units / Rail
SO−14
55 Units / Rail
MC33204DR2
SO−14
2500 Units / Tape & Reel
MC33204DTB
TSSOP−14
96 Units / Rail
MC33204DTBR2
TSSOP−14
2500 Units / Tape & Reel
PDIP−14
25 Units / Rail
SO−14
55 Units / Rail
MC33204VDR2
SO−14
2500 Units / Tape & Reel
NCV33204DR2*
SO−14
2500 Units / Tape & Reel
TSSOP−14
2500 Units / Tape & Reel
PDIP−14
25 Units / Rail
MC33202P
MC33202VD
Quad
2500 Units / Tape & Reel
MC33204D
TA = −55° to 125°C
TA= −40 ° to +105°C
MC33204P
MC33204VD
TA = −55° to 125°C
NCV33204DTBR2*
MC33204VP
*NCV33202 and NCV33204 are qualified for automotive use.
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
10
MC33201, MC33202, MC33204, NCV33202, NCV33204
MARKING DIAGRAMS
8
8
3320x
ALYW
1
8
320xV
ALYW
*
1
1
MC3320xP
AWL
YYWW
14
*
1
3202
AYW
1
MC33204VP
AWLYYWW
*This marking diagram applies to NCV3320x
http://onsemi.com
11
1
MC33
204
ALYW
1
x
= 1 or 2
A
= Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
MC33204D
AWLYWW
TSSOP−14
DTB SUFFIX
CASE 948G
14
14
14
SO−14
D SUFFIX
CASE 751A
14
PDIP−14
VP SUFFIX
CASE 646
MC33204P
AWLYYWW
1
8
MC33202VP
AWL
YYWW
PDIP−14
P SUFFIX
CASE 646
14
Micro−8
DM SUFFIX
CASE 846A
8
1
SO−14
VD SUFFIX
CASE 751A
MC33204VD
AWLYWW
PDIP−8
VP SUFFIX
CASE 626
PDIP−8
P SUFFIX
CASE 626
SOIC−8
VD SUFFIX
CASE 751
SOIC−8
D SUFFIX
CASE 751
1
MC33
204V
ALYW
1
*
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
PDIP−8
P, VP SUFFIX
CASE 626−05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
−B−
1
4
F
−A−
NOTE 2
L
C
J
−T−
N
SEATING
PLANE
D
H
M
K
G
0.13 (0.005)
M
T A
M
B
M
http://onsemi.com
12
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
−−−
10
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
−−−
10
0.030
0.040
MC33201, MC33202, MC33204, NCV33202, NCV33204
SOIC−8
D, VD SUFFIX
CASE 751−07
ISSUE AA
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDAARD IS 751−07
−X−
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
K
−Y−
G
C
N
X 45 SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
DIM
A
B
C
D
G
H
J
K
M
N
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm inches
SOIC−8
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
13
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
Micro8
DM SUFFIX
CASE 846A−02
ISSUE F
−A−
−B−
K
PIN 1 ID
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.
G
D 8 PL
0.08 (0.003)
M
T B
A
S
DIM
A
B
C
D
G
H
J
K
L
S
SEATING
−T− PLANE
0.038 (0.0015)
C
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
SOURCE
SOURCE
SOURCE
GATE
DRAIN
DRAIN
DRAIN
DRAIN
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
L
J
H
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
SOURCE 1
GATE 1
SOURCE 2
GATE 2
DRAIN 2
DRAIN 2
DRAIN 1
DRAIN 1
N−SOURCE
N−GATE
P−SOURCE
P−GATE
P−DRAIN
P−DRAIN
N−DRAIN
N−DRAIN
SOLDERING FOOTPRINT*
8X
1.04
0.041
0.38
0.015
3.20
0.126
6X
8X
4.24
0.167
0.65
0.0256
5.28
0.208
SCALE 8:1
mm inches
Micro8
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
−−−
1.10
0.25
0.40
0.65 BSC
0.05
0.15
0.13
0.23
4.75
5.05
0.40
0.70
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
−−−
0.043
0.010
0.016
0.026 BSC
0.002
0.006
0.005
0.009
0.187
0.199
0.016
0.028
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
PDIP−14
P, VP SUFFIX
CASE 646−06
ISSUE M
14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
N
C
−T−
SEATING
PLANE
J
K
H
D 14 PL
G
M
0.13 (0.005)
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
−−−
10
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
18.80
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
−−−
10
0.38
1.01
M
SOIC−14
D, VD SUFFIX
CASE 751A−03
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
14
8
−B−
1
P 7 PL
0.25 (0.010)
7
G
M
B
M
F
R X 45 C
−T−
SEATING
PLANE
0.25 (0.010)
M
T B
J
M
K
D 14 PL
S
A
S
http://onsemi.com
15
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.228
0.244
0.010
0.019
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
TSSOP−14
DTB SUFFIX
CASE 948G−01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE −W−.
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
−V−
ÉÉ
ÇÇ
ÇÇ
ÉÉ
K1
J J1
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
G
H
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0
8
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
−−−
0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.020
0.024
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0
8
Micro8 is a trademark of International Rectifier.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
16
For additional information, please contact your
local Sales Representative.
MC33201/D