ONSEMI LM833D

Order this document by LM833/D
The LM833 is a standard low–cost monolithic dual general–purpose
operational amplifier employing Bipolar technology with innovative
high–performance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate, 0.3 mV
input offset voltage with 2.0 µV/°C temperature coefficient of input offset
voltage. The LM833 output stage exhibits no deadband crossover distortion,
large output voltage swing, excellent phase and gain margins, low open loop
high frequency output impedance and symmetrical source/sink AC
frequency response.
The LM833 is specified over the automotive temperature range and is
available in the plastic DIP and SO–8 packages (P and D suffixes). For an
improved performance dual/quad version, see the MC33079 family.
•
•
•
•
•
•
•
•
DUAL OPERATIONAL
AMPLIFIER
SEMICONDUCTOR
TECHNICAL DATA
Low Voltage Noise: 4.5 nV/ ǸHz
8
1
High Gain Bandwidth Product: 15 MHz
N SUFFIX
PLASTIC PACKAGE
CASE 626
High Slew Rate: 7.0 V/µs
Low Input Offset Voltage: 0.3 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
Low Distortion: 0.002%
Excellent Frequency Stability
8
Dual Supply Operation
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Output 1
MAXIMUM RATINGS
Rating
Supply Voltage (VCC to VEE)
Input Differential Voltage Range (Note 1)
Symbol
Value
Unit
VS
+36
V
VIDR
30
V
VIR
±15
Output Short Circuit Duration (Note 2)
tSC
Indefinite
Operating Ambient Temperature Range
TA
–40 to +85
°C
Operating Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
–60 to +150
°C
Maximum Power Dissipation (Notes 2 and 3)
PD
500
mW
Input Voltage Range (Note 1)
2
3
VCC
7
Output 2
6
2
VEE
4
Inputs 2
5
(Top View)
ORDERING INFORMATION
Device
Operating
Temperature Range
LM833D
Package
Plastic DIP
LM833N
TA = – 40° to +85°C
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
1
8
Inputs 1
V
NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see power dissipation performance characteristic).
3. Maximum value at TA ≤ 85°C.
1
SO–8
Rev 0
1
LM833
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
VIO
–
0.3
5.0
mV
∆VIO/∆T
–
2.0
–
µV/°C
Input Offset Current (VCM = 0 V, VO = 0 V)
IIO
–
10
200
nA
Input Bias Current (VCM = 0 V, VO = 0 V)
IIB
–
300
1000
nA
Common Mode Input Voltage Range
VICR
–
–12
+14
–14
+12
–
V
Large Signal Voltage Gain (RL = 2.0 kΩ, VO = ±10 V
AVOL
90
110
–
dB
Output Voltage Swing:
RL = 2.0 kΩ, VID = 1.0 V
RL = 2.0 kΩ, VID = 1.0 V
RL = 10 kΩ, VID = 1.0 V
RL = 10 kΩ, VID = 1.0 V
VO+
VO–
VO+
VO–
10
–
12
–
13.7
–14.1
13.9
–14.7
–
–10
–
–12
Common Mode Rejection (Vin = ±12 V)
CMR
80
100
–
dB
Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V)
PSR
80
115
–
dB
ID
–
4.0
8.0
mA
Unit
Input Offset Voltage (RS = 10 Ω, VO = 0 V)
Average Temperature Coefficient of Input Offset Voltage
RS = 10 Ω, VO = 0 V, TA = Tlow to Thigh
V
Power Supply Current (VO = 0 V, Both Amplifiers)
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, AV = +1.0)
SR
5.0
7.0
–
V/µs
GBW
10
15
–
MHz
Unity Gain Frequency (Open Loop)
fU
–
9.0
–
MHz
Unity Gain Phase Margin (Open Loop)
θm
–
60
–
Deg
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz)
en
–
4.5
–
nVń ǸHz
Equivalent Input Noise Current (f = 1.0 kHz)
in
–
0.5
–
pAń ǸHz
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%)
BWP
–
120
–
kHz
Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
–
0.002
–
%
CS
–
–120
–
dB
Gain Bandwidth Product (f = 100 kHz)
Channel Separation (f = 20 Hz to 20 kHz)
Figure 2. Input Bias Current versus Temperature
800
1000
IIB , INPUT BIAS CURRENT (nA)
PD , MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation
versus Temperature
600
400
200
0
–50
2
0
50
100
TA, AMBIENT TEMPERATURE (°C)
150
800
VCC = +15 V
VEE = –15 V
VCM = 0 V
600
400
200
0
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
MOTOROLA ANALOG IC DEVICE DATA
LM833
Figure 3. Input Bias Current versus
Supply Voltage
Figure 4. Supply Current versus
Supply Voltage
10
TA = 25°C
IS , SUPPLY CURRENT (mA)
I IB , INPUT BIAS CURRENT (nA)
800
600
400
200
0
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
8.0
6.0
VEE
2.0
0
AVOL, DC VOLTAGE GAIN (dB)
AVOL, DC VOLTAGE GAIN (dB)
100
95
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
100
90
80
5.0
125
100
45
80
20
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
TA = 25°C
Gain
135
0
1.0
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
90
1.0 M
180
10 M
GBW, GAIN BANDWIDTH PRODUCT (MHz)
0
Phase
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
20
Figure 8. Gain Bandwidth Product
versus Temperature
∅ , EXCESS PHASE (DEGREES)
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
120
40
20
RL = 2.0 kΩ
TA = 25°C
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency
60
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
110
105
–25
5.0
Figure 6. DC Voltage Gain versus
Supply Voltage
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
90
–55
VO
+
Figure 5. DC Voltage Gain
versus Temperature
110
RL = ∞
TA = 25°C
4.0
0
20
VCC
IS
20
15
10
5.0
0
–55
VCC = +15 V
VEE = –15 V
f = 100 kHz
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
3
LM833
Figure 9. Gain Bandwidth Product versus
Supply Voltage
Figure 10. Slew Rate versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
30
10
SR, SLEW RATE (V/ µs)
f = 100 kHz
TA = 25°C
20
10
0
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
8.0
Falling
Rising
6.0
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
AV = +1.0
4.0
2.0
–55
20
Figure 11. Slew Rate versus Supply Voltage
SR, SLEW RATE (V/ µ s)
8.0
RL = 2.0k Ω
AV = +1.0
TA = 25°C
Falling
4.0
+
–
Vin
2.0
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
VO
RL
100
125
35
Rising
6.0
–
+
Figure 12. Output Voltage versus Frequency
VO, OUTPUT VOLTAGE (Vpp )
10
–25
Vin
VO
RL
30
25
20
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
THD 1.0%
TA = 25°C
15
v
10
5.0
0
5.0
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
0
20
10
VO, OUTPUT VOLTAGE (Vpp )
20
15
RL = 10 kΩ
TA = 25°C
VO +
10
5.0
0
–5.0
–10
VO –
–15
–20
5.0
4
10
15
VCC, |VEE|, SUPPLY VOLTAGE (V)
1.0 k
10 k
1.0 M
f, FREQUENCY (Hz)
10 M
100 k
Figure 14. Output Saturation Voltage
versus Temperature
V sat , OUTPUT SATURATION VOLTAGE |V|
Figure 13. Maximum Output Voltage
versus Supply Voltage
100
20
15
+Vsat
–Vsat
14
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
13
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
MOTOROLA ANALOG IC DEVICE DATA
LM833
PSR, POWER SUPPLY REJECTION (dB)
140
∆VCC
VCC = +15 V
VEE = –15 V
TA = 25°C
120
–
ADM
+
100
80
Figure 16. Common Mode Rejection
versus Frequency
CMR, COMMON MODE REJECTION (dB)
Figure 15. Power Supply Rejection
versus Frequency
–PSR
∆VO
∆VEE
+PSR
60
40
20
+PSR = 20 Log
–PSR = 20 Log
0
100
1.0 k
(
(
∆VO/ADM
∆VCC
∆VO/ADM
∆VEE
)
)
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
160
140
CMR = 20 Log
80
60
40
1.0 k
–
+
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
TA = 25°C
VO
RL
0.01
VO = 1.0 Vrms
10 M
VO = 3.0 Vrms
100
1.0 k
10 k
VCC = +15 V
VEE = –15 V
RS = 100 Ω
TA = 25°C
2.0
1.0
10
100 k
Figure 19. Input Referred Noise Current
versus Frequency
100
2.0
100
VCC = +15 V
VEE = –15 V
TA = 25°C
1.0
0.7
0.5
0.4
0.3
100
1.0 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
10 k
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 20. Input Referred Noise Voltage
versus Source Resistance
e n, INPUT NOISE VOLTAGE (nV/√ Hz )
i n , INPUT NOISE CURRENT (pA/√ Hz )
1.0 M
5.0
f, FREQUENCY (Hz)
0.2
10
10 k
100 k
f, FREQUENCY (Hz)
10
e n, INPUT NOISE VOLTAGE (nV/√ Hz )
THD, TOTAL HARMONIC DISTORTION (%)
VCC = +15 V
VEE = –15 V
VCM = 0 V
∆VCM = ±1.5 V
TA = 25°C
Figure 18. Input Referred Noise Voltage
versus Frequency
1.0
0.001
10
∆VO
∆VCM
× ADM
∆V0
100
Figure 17. Total Harmonic Distortion
versus Frequency
0.1
–
ADM
+
120
20
100
10 M
∆VCM
100 k
VCC = +15 V
VEE = –15 V
Vn(total) = (inRS)2 +en2 + Ǹ
4KTRS
TA = 25°C
10
1.0
1.0
10
100
1.0 k
10 k
100 k
1.0 M
RS, SOURCE RESISTANCE (Ω)
5
LM833
Figure 21. Inverting Amplifier
Figure 22. Noninverting Amplifier Slew Rate
VO , OUTPUT VOLTAGE (5.0 V/DIV)
VO , OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
CL = 0 pF
AV = –1.0
TA = 25°C
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
CL = 0 pF
AV = +1.0
TA = 25°C
t, TIME (2.0 µs/DIV)
t, TIME (2.0 µs/DIV)
VO , OUTPUT VOLTAGE (10 mV/DIV)
Figure 23. Noninverting Amplifier Overshoot
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
CL = 0 pF
AV = +1.0
TA = 25°C
t, TIME (200 ns/DIV)
6
MOTOROLA ANALOG IC DEVICE DATA
LM833
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
0.13 (0.005)
T A
M
M
B
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
S
A
S
MOTOROLA ANALOG IC DEVICE DATA
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
7
LM833
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
8
◊
*LM833/D*
MOTOROLA ANALOG IC DEVICE
DATA
LM833/D