ONSEMI NBSG16VSMNG

NBSG16VS
2.5V/3.3VSiGe Differential
Receiver/Driver with
Variable Output Swing
Description
The NBSG16VS is a differential receiver/driver targeted for high
frequency applications that require variable output swing. The device
is functionally equivalent to the EP16VS device with much higher
bandwidth and lower EMI capabilities. This device may be used for
applications driving VCSEL lasers.
Inputs incorporate internal 50 termination resistors and accept
NECL (Negative ECL), PECL (Positive ECL), LVTTL, LVCMOS,
CML, or LVDS. The output amplitude is varied by applying a voltage
to the VCTRL input pin. Outputs are variable swing ECL from 100 mV
to 750 mV amplitude, optimized for operation from VCC − VEE =
3.0 V to 3.465 V.
The VBB and VMM pins are internally generated voltage supplies
available to this device only. The VBB is used as a reference voltage
for single−ended NECL or PECL inputs and the VMM pin is used as a
reference voltage for LVCMOS inputs. For single−ended input
operation, the unused complementary differential input is connected to
VBB or VMM as a switching reference voltage. VBB or VMM may also
rebias AC coupled inputs. When used, decouple VBB and VMM via a
0.01 F capacitor and limit current sourcing or sinking to 0.5 mA.
When not used, VBB and VMM outputs should be left open.
Features
•
•
•
•
•
•
•
•
•
•
•
Maximum Input Clock Frequency up to 12 GHz Typical
Maximum Input Data Rate up to 12 Gb/s Typical
40 ps Typical Rise and Fall Times (VCTRL = VCC − 1 V)
120 ps Typical Propagation Delay (VCTRL = VCC − 1 V)
Variable Swing PECL Output with Operating Range: VCC = 2.375 V to
3.465 V with VEE = 0 V
Variable Swing NECL Output with NECL Inputs with
Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V
Output Level (100 mV to 750 mV Peak−to−Peak Output;
VCC − VEE = 3.0 V to 3.465 V), Differential Output Only
50 Internal Input Termination Resistors
Compatible with Existing 2.5 V/3.3 V EP Devices
VBB and VMM Reference Voltage Output
Pb−Free Packages are Available
© Semiconductor Components Industries, LLC, 2006
July, 2006 − Rev. 7
1
http://onsemi.com
MARKING DIAGRAMS*
SG
11
ALYW
FCBGA−16
BA SUFFIX
CASE 489
ÇÇ
ÇÇ
16
1
QFN−16
MN SUFFIX
CASE 485G
A
L
Y
W
G
SG
16VS
ALYWG
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 12 of this data sheet.
Publication Order Number:
NBSG16VS/D
NBSG16VS
1
2
VEE
NC
3
4
VEE
16
A
B
D
VTD
VCTRL
VBB VMM
VEE
15
13
14
Exposed Pad (EP)
VEE
VCC
VTD
1
D
2
12
VCC
11
Q
Q
NBSG16VS
C
D
VTD
VCC
Q
D
VEE
VBB
VMM
VEE
D
3
10
Q
VTD
4
9
VCC
5
VEE
Figure 1. BGA−16 Pinout (Top View)
6
7
8
NC VCTRL VEE
Figure 2. QFN−16 Pinout (Top View)
Table 1. PIN DESCRIPTION
Pin
BGA
QFN
Name
I/O
C2
1
VTD
−
C1
2
D
ECL, CML,
LVCMOS,
LVDS,
LVTTL
Input
Inverted Differential Input. Internal 75 k to VEE and 36.5 k to VCC.
B1
3
D
ECL, CML,
LVCMOS,
LVDS,
LVTTL
Input
Noninverted Differential Input. Internal 75 k to VEE.
B2
4
VTD
−
Internal 50 Termination Pin. See Table 2.
A1,D1,A4,
D4
5,8,13,16
VEE
−
Negative Supply Voltage
A2
6
NC
−
No Connect
A3
7
VCTRL
B3,C3
9,12
VCC
−
B4
10
Q
RSECL
Output
Noninverted Differential Output. Typically Terminated with 50 to
VTT = VCC − 2 V
C4
11
Q
RSECL
Output
Inverted Differential Output. Typically Terminated with 50 to VTT = VCC − 2 V
D3
14
VMM
−
LVCMOS Reference Voltage Output. (VCC − VEE)/2
D2
15
VBB
−
ECL Reference Voltage Output
N/A
−
EP
−
Exposed Pad. (Note 2)
Description
Internal 50 Termination Pin. See Table 2.
Output Amplitude Swing Control. Bypass Pin to VCC through 0.1 F Capacitor.
Positive Supply Voltage
1. The NC pin is electrically connected to the die and must be left open.
2. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad on package
bottom (see case drawing) must be attached to a heat−sinking conduit.
3. In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage, and if no signal
is applied then the device will be susceptible to self−oscillation.
http://onsemi.com
2
NBSG16VS
+3.3 V
VCC
+
0.1 F
VCTRL
VCTRL
VTD
VCC
50 Q
D
D
Q
D
D
Q OUT
Q OUT
75
K
75
K
50 Q OUT
Q OUT
50 Q
50 VMM
36.5
K
VTD
VMM
36.5
K
50 VCTRL VCC
RVAR
50 75
K
75
K
Q
VTD
140 140 VBB
VBB
VTD
VCC − 2 V
VEE
VEE
Figure 3. Logic Diagram/
Voltage Source Implementation
Figure 4. Alternative Voltage Source Implementation
Table 2. INTERFACING OPTIONS
INTERFACING OPTIONS
CONNECTIONS
CML
Connect VTD and VTD to VCC
LVDS
Connect VTD and VTD Together
AC−COUPLED
Bias VTD and VTD Inputs within
Common Mode Range (VIHCMR)
RSECL, PECL, NECL
Standard ECL Termination Techniques
LVTTL
An external voltage should be applied to the unused
complementary differential input. Nominal voltage is
1.5 V for LVTTL.
LVCMOS
VMM should be connected to the unused
complementary differential input.
http://onsemi.com
3
NBSG16VS
Table 3. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor (D, D)
75 k
Internal Input Pullup Resistor (D)
36.5 k
ESD Protection
Human Body Model
Machine Model
Moisture Sensitivity (Note 4)
FCBGA−16
QFN−16
Flammability Rating
> 2 kV
> 100 V
Pb Pkg
Pb−Free Pkg
Level 3
Level 1
N/A
Level 1
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Transistor Count
192
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
4. For additional information, see Application Note AND8003/D.
Table 4. MAXIMUM RATINGS
Rating
Unit
VCC
Symbol
Positive Power Supply
Parameter
VEE = 0 V
Condition 1
3.6
V
VEE
Negative Power Supply
VCC = 0 V
−3.6
V
VI
Positive Input
Negative Input
VEE = 0 V
VCC = 0 V
3.6
−3.6
V
V
VINPP
Differential Input Voltage
2.8
|VCC − VEE|
V
V
IOUT
Output Current
Continuous
Surge
25
50
mA
mA
IIN
Input Current Through RT (50 Resistor)
Static
Surge
45
80
mA
mA
IBB
VBB Sink/Source
1
mA
IMM
VMM Sink/Source
1
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
JA
Thermal Resistance (Junction−to−Ambient)
(Note 5)
0 lfpm
500 lfpm
0 lfpm
500 lfpm
16 FCBGA
16 FCBGA
16 QFN
16 QFN
108
86
41.6
35.2
°C/W
°C/W
°C/W
°C/W
JC
Thermal Resistance (Junction−to−Case)
2S2P (Note 5)
2S2P (Note 6)
16 FCBGA
16 QFN
5.0
4.0
°C/W
°C/W
Tsol
Wave Solder
225
225
°C
|D − D|
Condition 2
VI v VCC
VI w VEE
VCC − VEE w 2.8 V
VCC − VEE t 2.8 V
Pb
Pb−Free
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
5. JEDEC standard 51−6 multilayer board − 2S2P (2 signal, 2 power).
6. JEDEC standards multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.
http://onsemi.com
4
NBSG16VS
Table 5. DC CHARACTERISTICS, INPUT WITH VARIABLE PECL OUTPUT VCC = 2.5 V; VEE = 0 V (Note 7)
−40°C
Symbol
Characteristic
IEE
Negative Power Supply Current
VOH
Output HIGH Voltage (Note 8)
VOL
Output LOW Voltage (Note 8)
(Max Swing)
(VCTRL = VCC − 600 mV)
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
18
25
32
18
25
32
18
25
32
mA
1315
1440
1565
1305
1430
1555
1305
1430
1555
mV
645
1090
765
1210
885
1330
605
1035
725
1155
845
1275
600
1010
720
1130
840
1250
mV
VIH
Input HIGH Voltage
(Single−Ended) (Notes 10 and 11)
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
mV
VIL
Input LOW Voltage
(Single−Ended) (Notes 10 and 12)
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
mV
VBB
PECL Output Voltage Reference
1080
1140
1200
1080
1140
1200
1080
1140
1200
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 9)
(Differential Configuration)
2.5
1.2
2.5
1.2
2.5
V
VMM
CMOS Output Voltage Reference
(VCC − VEE)/2
1.2
mV
1100
1250
1400
1100
1250
1400
1100
1250
1400
45
50
55
45
50
55
45
50
55
RTIN
Internal Input Termination Resistor
IIH
Input HIGH Current (@ VIH)
30
100
30
100
30
100
A
IIL
Input LOW Current (@ VIL)
25
50
25
50
25
50
A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
*Typicals used for testing purposes.
7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −0.965 V.
8. All loading with 50 to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
10. VTHR is the voltage applied to the complementary input, typically VBB or VMM. VTHR(MIN) = VIHCMR + 75 mV. VTHR(MAX) = VIHCMR − 75 mV.
11. VIH cannot exceed VCC.
12. VIL always w VEE.
http://onsemi.com
5
NBSG16VS
Table 6. DC CHARACTERISTICS, INPUT WITH VARIABLE PECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 18)
−40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
20
27
34
20
27
34
20
27
34
mA
VOH
Output HIGH Voltage (Note 13)
2095
2220
2345
2085
2210
2335
2075
2200
2325
mV
VOL
Output LOW Voltage (Note 13)
(Max Swing)
(VCTRL = VCC − 600 mV)
1275
1750
1395
1870
1515
1990
1285
1730
1405
1850
1525
1970
1295
1715
1415
1835
1535
1955
VIH
Input HIGH Voltage
(Single−Ended) (Notes 15 and 16)
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
mV
VIL
Input LOW Voltage
(Single−Ended) (Notes 15 and 17)
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
mV
VBB
PECL Output Voltage Reference
1880
1940
2000
1880
1940
2000
1880
1940
2000
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 14)
(Differential Configuration)
3.3
1.2
3.3
1.2
3.3
V
VMM
CMOS Output Voltage Reference
(VCC − VEE)/2
mV
1.2
mV
1500
1650
1800
1500
1650
1800
1500
1650
1800
45
50
55
45
50
55
45
50
55
RTIN
Internal Input Termination Resistor
IIH
Input HIGH Current (@ VIH)
30
100
30
100
30
100
A
IIL
Input LOW Current (@ VIL)
25
50
25
50
25
50
A
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
*Typicals used for testing purposes.
13. All loading with 50 to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
15. VTHR is the voltage applied to the complementary input, typically VBB or VMM. VTHR(MIN) = VIHCMR + 75 mV. VTHR(MAX) = VIHCMR − 75 mV.
16. VIH cannot exceed VCC.
17. VIL always w VEE.
18. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.165 V.
http://onsemi.com
6
NBSG16VS
Table 7. DC CHARACTERISTICS, NECL INPUT WITH VARIABLE NECL OUTPUT
VCC = 0 V; VEE = −3.465 V to −2.375 V (Note 19)
−40°C
Symbol
Characteristic
IEE
Negative Power Supply Current
VOH
Output HIGH Voltage (Note 20)
−3.465 V v VEE v −3.0 V
−3.0 V t VEE v −2.375 V
VOL
Output LOW Voltage (Note 20)
−3.465 V v VEE v −3.0 V
(Max Swing)
(VCTRL = VCC − 600 mV)
−3.0 V t VEE v −2.375 V
(Max Swing)
(VCTRL = VCC − 600 mV)
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
20
27
34
20
27
34
20
27
34
mA
−1205
−1185
−1080
−1060
−955
−935
−1215
−1195
−1090
−1070
−965
−945
−1225
−1195
−1100
−1070
−975
−945
−2000
−1560
−1910
−1440
−1820
−1320
−1990
−1580
−1900
−1460
−1810
−1340
−1980
−1595
−1890
−1475
−1800
−1355
−1855
−1410
−1620
−1215
−1290
−1000
−1895
−1460
−1705
−1290
−1425
−1100
−1900
−1490
−1730
−1330
−1470
−1150
mV
mV
mV
VIH
Input HIGH Voltage
(Single−Ended) (Notes 22 and 23)
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
VTHR
+ 75
VCC −
1000*
VCC
mV
VIL
Input LOW Voltage
(Single−Ended) (Notes 22 and 24)
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
VIH −
2500
VCC −
1400*
VTHR
− 75
mV
VBB
NECL Output Voltage Reference
−1420
−1360
−1300
−1420
−1360
−1300
−1420
−1360
−1300
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 21)
(Differential Configuration)
0.0
V
VMM
CMOS Output Voltage Reference
(Note 25)
VMMT
− 150
VMMT
VMMT
+ 150
VMMT
− 150
VMMT
VMMT
+ 150
VMMT
− 150
VMMT
VMMT
+ 150
mV
RTIN
Internal Input Termination Resistor
45
50
55
45
50
55
45
50
55
IIH
Input HIGH Current (@ VIH)
30
100
30
100
30
100
A
IIL
Input LOW Current (@ VIL)
25
50
25
50
25
50
A
VEE+1.2
0.0
VEE+1.2
0.0
VEE+1.2
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
*Typicals used for testing purposes.
19. Input and output parameters vary 1:1 with VCC.
20. All loading with 50 to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
21. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
22. VTHR is the voltage applied to the complementary input, typically VBB or VMM. VTHR(MIN) = VIHCMR + 75 mV. VTHR(MAX) = VIHCMR − 75 mV.
23. VIH cannot exceed VCC.
24. VIL always w VEE.
25. VMM typical = |VCC−VEE| / 2 + VEE = VMMT.
http://onsemi.com
7
NBSG16VS
Table 8. AC CHARACTERISTICS for FCBGA−16 VCC = 0 V; VEE = −3.465 V to −3.0 V or VCC = 3.0 V to 3.465 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 8) (Note 26)
tPLH,
tPHL
Propagation Delay to Output Differential
(VCTRL = VCC − 2 V) D → Q, Q
(VCTRL = VCC − 1 V) D → Q, Q
tSKEW
Duty Cycle Skew (Note 27)
tJITTER
RMS Random Clock Jitter
Min
Typ
10.7
(Note 29)
12
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 28)
tr
tf
Output Rise/Fall Times (20% − 80%)
@ 1 GHz
(VCTRL = VCC − 2 V) Q, Q
(VCTRL = VCC − 1 V) Q, Q
Max
Min
Typ
10.7
(Note 29)
12
85°C
Max
Min
Typ
10.7
(Note 29)
12
Max
Unit
GHz
ps
100
100
125
120
145
140
3
0.8
100
100
125
120
145
140
10
3
2
0.8
100
100
125
120
145
140
10
3
10
2
0.8
2
ps
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
25°C
TBD
75
TBD
2600
75
TBD
2600
75
2600
mV
ps
30
30
45
40
55
50
30
30
45
40
55
50
30
30
45
40
55
50
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
26. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V. Input edge rates 40 ps (20% − 80%).
27. tSKEW = |tPLH−tPHL| for a nominal 50% differential clock input waveform. See Figure 10.
28. VINPP(MAX) cannot exceed VCC − VEE (applicable only when VCC − VEE t 2600 mV).
29. Conditions include input amplitude of 500 mV and VCTRL = VCC − 2 V. Minimum output amplitude guarantee of 100 mV (see Output P−P
Spec in Figure 8).
Table 9. AC CHARACTERISTICS for FCBGA−16 VCC = 0 V; −3.0 V tVEE v −2.375 V or 2.375 V v VCC t 3.0 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 9) (Note 30)
tPLH,
tPHL
Propagation Delay to Output Differential
(VCTRL = VCC − 2 V) D → Q, Q
(VCTRL = VCC − 1 V) D → Q, Q
tSKEW
Duty Cycle Skew (Note 31)
tJITTER
RMS Random Clock Jitter
Typ
10.7
(Note 33)
12
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 32)
tr
tf
Output Rise/Fall Times (20% − 80%)
@ 1 GHz
(VCTRL = VCC − 2 V) Q, Q
(VCTRL = VCC − 1 V) Q, Q
Max
Min
Typ
10.7
(Note 33)
12
85°C
Max
Min
Typ
10.7
(Note 33)
12
Max
Unit
GHz
ps
100
100
125
120
145
140
3
0.9
100
100
125
120
145
140
10
3
3
0.9
100
100
125
120
145
140
10
3
10
3
0.9
3
ps
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
25°C
Min
TBD
75
TBD
2600
75
TBD
2600
75
2600
mV
ps
25
22
50
45
70
60
25
22
50
45
70
60
25
22
50
45
70
60
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
30. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V. Input edge rates 40 ps (20% − 80%).
31. tSKEW = |tPLH−tPHL| for a nominal 50% differential clock input waveform. See Figure 10.
32. VINPP(MAX) cannot exceed VCC − VEE (applicable only when VCC − VEE t 2600 mV).
33. Conditions include input amplitude of 500 mV and VCTRL = VCC − 2 V. Minimum output amplitude guarantee of 100 mV (see Output P−P
Spec in Figure 9).
http://onsemi.com
8
NBSG16VS
Table 10. AC CHARACTERISTICS for QFN−16 VCC = 0 V; VEE = −3.465 V to −3.0 V or VCC = 3.0 V to 3.465 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 8) (Note 34)
tPLH,
tPHL
Propagation Delay to
Output Differential
(VCTRL = VCC − 2 V) D → Q, Q
(VCTRL = VCC − 1 V) D → Q, Q
tSKEW
Duty Cycle Skew (Note 35)
tJITTER
RMS Random Clock Jitter
Min
Typ
10
(Note 37)
12
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 36)
tr
tf
Output Rise/Fall Times (20% − 80%)
@ 1 GHz
(VCTRL = VCC − 2 V) Q, Q
(VCTRL = VCC − 1 V) Q, Q
Max
Min
Typ
10
(Note 37)
12
85°C
Max
Min
Typ
10
(Note 37)
12
Max
Unit
GHz
ps
100
100
140
135
180
180
3
0.5
100
100
140
135
180
180
20
3
2
0.5
100
80
140
135
180
220
15
3
10
2
0.5
2
ps
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
25°C
TBD
75
TBD
2600
75
TBD
2600
75
2600
mV
ps
30
30
45
40
55
50
30
30
45
40
55
50
30
30
45
40
55
50
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
34. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V. Input edge rates 40 ps (20% − 80%).
35. tSKEW = |tPLH−tPHL| for a nominal 50% differential clock input waveform. See Figure 10.
36. VINPP(MAX) cannot exceed VCC − VEE (applicable only when VCC − VEE t 2600 mV).
37. Conditions include input amplitude of 500 mV and VCTRL = VCC − 2 V. Minimum output amplitude guarantee of 100 mV (see Output P−P
Spec in Figure 8).
Table 11. AC CHARACTERISTICS for QFN−16 VCC = 0 V; −3.0 V tVEE v −2.375 V or 2.375 V v VCC t 3.0 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 9) (Note 38)
tPLH,
tPHL
Propagation Delay to
Output Differential
(VCTRL = VCC − 2 V) D → Q, Q
(VCTRL = VCC − 1 V) D → Q, Q
tSKEW
Duty Cycle Skew (Note 39)
tJITTER
RMS Random Clock Jitter
Typ
10
(Note 41)
12
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 40)
tr
tf
Output Rise/Fall Times (20% − 80%)
@ 1 GHz
(VCTRL = VCC − 2 V) Q, Q
(VCTRL = VCC − 1 V) Q, Q
Max
Min
Typ
10
(Note 41)
12
85°C
Max
Min
Typ
10
(Note 41)
12
Max
Unit
GHz
ps
100
100
140
135
180
180
3
0.5
100
100
140
135
180
180
20
3
3
0.5
80
100
140
135
180
220
15
3
10
3
0.5
3
ps
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
25°C
Min
TBD
75
TBD
2600
75
TBD
2600
75
2600
mV
ps
25
22
50
45
70
60
25
22
50
45
70
60
25
22
50
45
70
60
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
38. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V. Input edge rates 40 ps (20% − 80%).
39. tSKEW = |tPLH−tPHL| for a nominal 50% differential clock input waveform. See Figure 10.
40. VINPP(MAX) cannot exceed VCC − VEE (applicable only when VCC − VEE t 2600 mV).
41. Conditions include input amplitude of 500 mV and VCTRL = VCC − 2 V. Minimum output amplitude guarantee of 100 mV (see Output P−P
Spec in Figure 9).
http://onsemi.com
9
NBSG16VS
100
OUTPUT AMPLITUDE (%)
90
80
70
60
50
40
30
20
10
0
VCC − 0.0
VCC − 0.5
VCC − 1.0
VCC − 1.5
VCC − 2.0
VCTRL (V)
Figure 5. Output Amplitude % vs. VCTRL (pin #A3)
VOH
AMPLITUDE DECREASES
OUTPUT AMPLITUDE
MIN. AMPLITUDE REGION
MAX. AMPLITUDE REGION
VOL
2.375 V v VCC − VEE < 3.0 V
3.0 V v VCC − VEE v 3.465 V
VCC − 1.3
VCC − 0.0
VCC − 0.5
VCC − 1.0
VCC − 1.5
VCC − 2.0
VCTRL (V)
Figure 6. Output Amplitude vs. VCTRL (pin #A3)
3.40
3.20
VOLTAGE (V)
3.00
VCTRL
2.80
2.60
2.40
2.20
2.00
Q/Q
1.80
1.60
0
2
4
6
8
10
12
14
16
18
20
TIME (ns)
Figure 7. Output Response Under Amplitude Modulation of VCTRL
(Conditions Include VCC − VEE = 3.3 V at 255C, fIN (VCTRL) = 200 MHz, and fIN (D, D) = 2 GHz)
http://onsemi.com
10
NBSG16VS
9
800
8
VCTRL = VCC − 2 V
700
7
600
JITTEROUT ps (RMS)
OUTPUT VOLTAGE AMPLITUDE (mV)
900
6
VCTRL = VCC − 1 V
500
5
VCTRL = VCC − 0 V
400
4
OUTPUT P−P SPEC
(AMPLITUDE GUARANTEE)
300
3
200
2
100
1
RMS JITTER
0
1
2
3
4
5
6
7
8
9
10
11
12
0
INPUT FREQUENCY (GHz)
Figure 8. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at Ambient Temperature (Typical)
9
8
VCTRL = VCC − 2 V
700
7
600
VCTRL = VCC − 1 V
6
500
5
400
300
VCTRL = VCC − 0 V
OUTPUT P−P SPEC
(AMPLITUDE GUARANTEE)
3
200
2
100
1
RMS JITTER
0
4
JITTEROUT ps (RMS)
OUTPUT VOLTAGE AMPLITUDE (mV)
800
1
2
3
4
5
6
7
8
9
10
11
12
0
INPUT FREQUENCY (GHz)
Figure 9. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at Ambient Temperature (Typical)
D
VINPP = VIH(D) − VIL(D)
D
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 10. AC Reference Measurement
http://onsemi.com
11
NBSG16VS
Q
Zo = 50 D
Receiver
Device
Driver
Device
Q
Zo = 50 D
50 50 VTT
VTT = VCC − 2.0 V
Figure 11. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
ORDERING INFORMATION
Package
Shipping†
NBSG16VSBA
FCBGA−16
100 Units / Tray (Contact Sales Representative)
NBSG16VSBAR2
FCBGA−16
100 / Tape & Reel
QFN−16
123 Units / Rail
NBSG16VSMNG
QFN−16
(Pb−Free)
123 Units / Rail
NBSG16VSMNR2
QFN−16
3000 / Tape & Reel
QFN−16
(Pb−Free)
3000 / Tape & Reel
Device
NBSG16VSMN
NBSG16VSMNR2G
Board
Description
NBSG16VSBAEVB
NBSG16VSBA Evaluation Board
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
12
NBSG16VS
PACKAGE DIMENSIONS
FCBGA−16
BA SUFFIX
PLASTIC 4X4 (mm) BGA FLIP CHIP PACKAGE
CASE 489−01
ISSUE O
LASER MARK FOR PIN 1
IDENTIFICATION IN
THIS AREA
−X−
D
M
−Y−
K
E
M
0.20
3X
e
4
3
2
FEDUCIAL FOR PIN A1
IDENTIFICATION IN THIS AREA
1
A
3
B
b
16 X
C
D
S
VIEW M−M
0.15
M
Z X Y
0.08
M
Z
5
0.15 Z
A
A2
A1
16 X
4
−Z−
0.10 Z
DETAIL K
ROTATED 90 _ CLOCKWISE
http://onsemi.com
13
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSION b IS MEASURED AT THE MAXIMUM
SOLDER BALL DIAMETER, PARALLEL TO DATUM
PLANE Z.
4. DATUM Z (SEATING PLANE) IS DEFINED BY THE
SPHERICAL CROWNS OF THE SOLDER BALLS.
5. PARALLELISM MEASUREMENT SHALL EXCLUDE
ANY EFFECT OF MARK ON TOP SURFACE OF
PACKAGE.
DIM
A
A1
A2
b
D
E
e
S
MILLIMETERS
MIN
MAX
1.40 MAX
0.25
0.35
1.20 REF
0.30
0.50
4.00 BSC
4.00 BSC
1.00 BSC
0.50 BSC
NBSG16VS
PACKAGE DIMENSIONS
16 PIN QFN
CASE 485G−01
ISSUE C
D
PIN 1
LOCATION
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM
MINIMUM SPACING BETWEEN LEAD TIP
AND FLAG
A
B
ÇÇ
ÇÇ
E
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
0.15 C
TOP VIEW
0.15 C
(A3)
0.10 C
A
16 X
0.08 C
SIDE VIEW
SEATING
PLANE
A1
SOLDERING FOOTPRINT*
C
D2
16X
0.575
0.022
e
L
5
NOTE 5
K
12
1
16
16X
1.50
0.059
3.25
0.128
e
13
b
0.10 C A B
0.05 C
EXPOSED PAD
9
E2
16X
3.25
0.128
0.30
0.012
EXPOSED PAD
8
4
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.18
0.30
3.00 BSC
1.65
1.85
3.00 BSC
1.65
1.85
0.50 BSC
0.18 TYP
0.30
0.50
0.50
0.02
BOTTOM VIEW
NOTE 3
0.30
0.012
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and solderin
details, please download the ON Semiconductor Soldering an
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
14
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NBSG16VS/D