Kersemi IRF9540N Advanced process technology Datasheet

IRF9540N
TO-220AB
l
l
l
l
l
l
Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
P-Channel
Fully Avalanche Rated
Power MOSFET
Description
D
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
VDSS = -100V
RDS(on) = 0.117Ω
G
ID = -23A
S
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ -10V
Continuous Drain Current, VGS @ -10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
-23
-16
-76
140
0.91
± 20
430
-11
14
-5.0
-55 to + 175
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
2014-8-9
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
1
Typ.
Max.
Units
–––
0.50
–––
1.1
–––
62
°C/W
www.kersemi.com
IRF9540N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
-100
–––
–––
-2.0
5.3
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
-0.11
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
15
67
51
51
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
1300
400
240
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = -250µA
––– V/°C Reference to 25°C, ID = -1mA
0.117
Ω
VGS = -10V, ID = -11A „
-4.0
V
VDS = V GS, ID = -250µA
–––
S
VDS = -50V, ID = -11A
-25
VDS = -100V, VGS = 0V
µA
-250
VDS = -80V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
97
ID = -11A
15
nC
VDS = -80V
51
VGS = -10V, See Fig. 6 and 13 „
–––
VDD = -50V
–––
ID = -11A
ns
–––
RG = 5.1Ω
–––
RD = 4.2Ω, See Fig. 10 „
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
VGS = 0V
–––
pF
VDS = -25V
–––
ƒ = 1.0MHz, See Fig. 5
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Q rr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– -23
showing the
A
G
integral reverse
––– ––– -76
p-n junction diode.
S
––– ––– -1.6
V
TJ = 25°C, IS = -11A, VGS = 0V „
––– 150 220
ns
TJ = 25°C, IF = -11A
––– 830 1200 nC
di/dt = -100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 7.1mH
ƒ ISD ≤ -11A, di/dt ≤ -470A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
RG = 25Ω, IAS = -11A. (See Figure 12)
2014-8-9
2
www.kersemi.com
IRF9540N
100
100
VGS
- 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOT TOM - 4.5V
VGS
- 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
TOP
-ID , Drain-to-Source Current (A )
-ID , D rain-to-S ou rc e C urre nt (A )
TO P
10
-4 .5V
2 0µ s P U LS E W ID TH
T Jc = 2 5°C
A
1
0.1
1
10
10
-4 .5V
2 0µ s P U LS E W ID TH
T JC = 1 75 °C
1
100
0.1
1
-VD S , D rain-to-S ourc e V oltage (V )
Fig 2. Typical Output Characteristics
2.5
R D S (on) , Drain-to-S ource O n Resistance
(N orm alized)
-I D , D rain-to -So urc e C urre nt (A )
100
TJ = 25 °C
TJ = 1 7 5°C
10
1
V DS = -2 5 V
2 0µ s P U L S E W ID TH
4
5
6
7
8
9
10
A
-VG S , Ga te -to-Source Volta ge (V)
I D = -19 A
2.0
1.5
1.0
0.5
VG S = -1 0V
0.0
-60
-40
-20
0
20
40
60
80
Fig 4. Normalized On-Resistance
Vs. Temperature
3
A
100 120 140 160 180
T J , Junction T em perature (°C )
Fig 3. Typical Transfer Characteristics
2014-8-9
A
100
-VD S , D rain-to-S ource V oltage (V )
Fig 1. Typical Output Characteristics
0.1
10
www.kersemi.com
IRF9540N
V GS
C is s
C rs s
C o ss
C , Capacitance (pF)
2500
2000
=
=
=
=
20
0V ,
f = 1M H z
C g s + C g d , Cd s S H O R T E D
C gd
C d s + C gd
-V G S , G ate-to-S ource V oltage (V )
3000
C iss
1500
C oss
1000
C rss
500
0
10
V D S = -80 V
V D S = -50 V
V D S = -20 V
16
12
8
4
FO R TE S T CIR C U IT
S E E FIG U R E 1 3
0
A
1
I D = -1 1A
100
0
-VD S , D rain-to-S ourc e V oltage (V )
40
60
80
A
100
Q G , Total G ate C harge (nC )
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
1000
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R D S (o n)
-I D , D rain C urrent (A )
-I S D , Reverse D rain Current (A )
20
10
T J = 17 5°C
T J = 2 5°C
1
V G S = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
A
1.6
10 0µs
10
1m s
T C = 25 °C
T J = 17 5°C
S ing le P u lse
1
1
10m s
A
10
100
1000
-VD S , D rain-to-S ourc e V oltage (V )
-VS D , S ourc e-to-D rain V oltage (V )
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
2014-8-9
100
4
www.kersemi.com
IRF9540N
RD
VDS
25
VGS
D.U.T.
RG
-
I D , Drain Current (A)
20
+
VDD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15
Fig 10a. Switching Time Test Circuit
10
td(on)
5
tr
t d(off)
tf
VGS
10%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
90%
VDS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
P DM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
2014-8-9
5
www.kersemi.com
IRF9540N
L
VDS
D .U .T
RG
tp
VD D
A
IA S
-2 0 V
E A S , S ingle Pulse Avalanc he E nergy (m J)
1200
D R IV E R
0 .0 1Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
IAS
TOP
1000
B O T TO M
ID
-4 .7A
-8 .1A
-11 A
800
600
400
200
0
A
25
50
75
100
125
150
175
S tarting T J , J unc tion T em perature (°C )
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V (BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
-10V
QGS
QGD
D.U.T.
+VDS
VGS
VG
-3mA
IG
Charge
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
2014-8-9
ID
Current Sampling Resistors
6
www.kersemi.com
IRF9540N
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
D=
Period
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 14. For P-Channel HEXFETS
2014-8-9
7
www.kersemi.com
IRF9540N
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2.87 (.11 3)
2.62 (.10 3)
10 .54 (.4 15)
10 .29 (.4 05)
-B -
3 .7 8 (.149 )
3 .5 4 (.139 )
4.69 ( .18 5 )
4.20 ( .16 5 )
-A -
1 .32 (.05 2)
1 .22 (.04 8)
6.47 (.25 5)
6.10 (.24 0)
4
1 5.24 (.60 0)
1 4.84 (.58 4)
1.15 (.04 5)
M IN
1
2
1 4.09 (.55 5)
1 3.47 (.53 0)
4.06 (.16 0)
3.55 (.14 0)
3X
3X
L E A D A S S IG NM E NT S
1 - GATE
2 - D R A IN
3 - S O U RC E
4 - D R A IN
3
1 .4 0 (.0 55 )
1 .1 5 (.0 45 )
0.93 (.03 7)
0.69 (.02 7)
0 .3 6 (.01 4)
3X
M
B A M
0.55 (.02 2)
0.46 (.01 8)
2 .92 (.11 5)
2 .64 (.10 4)
2.54 (.10 0)
2X
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82.
2 C O N TR O L LIN G D IM E N S IO N : IN C H
3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B .
4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
: IS
TH IS A
ISN AIR
N F IR
E X AEMXPA LMEP :L ETH
1 0F1
1 00 1 0
W ITAHS SAESMS BE LMYB L Y
W ITH
C EO D9EB 1M
9B1M
L O TL OCTO D
A
INRTE
A TIO
IN TE
N ARTNIO
N A LN A L
R
E
C
TIF
R E C TIFIE R IE R
10 1 0
IR F IR
1 0F10
L O GL O G O
9 2 4962 4 6
9B 9B1 M 1 M
A S SAESMSBE LMYB L Y
C EO D E
L OTL O TC O D
2014-8-9
8
A
NB
U EMRB E R
P A RPTA RNTU M
D A TE
D A TE
C O DC EO D E
(Y
Y
W
(Y Y W W ) W )
Y Y Y=Y Y=E AYRE A R
W WW =W W= EW
E KE E K
www.kersemi.com
Similar pages