ONSEMI EMC3DXV5T5

EMC2DXV5T1,
EMC3DXV5T1,
EMC4DXV5T1,
EMC5DXV5T1
Preferred Devices
Dual Common
Base−Collector Bias
Resistor Transistors
http://onsemi.com
3
2
R1
NPN and PNP Silicon Surface Mount
Transistors with Monolithic Bias
Resistor Network
R2
Q2
R2
Q1
The BRT (Bias Resistor Transistor) contains a single transistor with
a monolithic bias network consisting of two resistors; a series base
resistor and a base−emitter resistor. These digital transistors are
designed to replace a single device and its external resistor bias
network. The BRT eliminates these individual components by
integrating them into a single device. In the EMC2DXV5T1 series,
two complementary BRT devices are housed in the SOT−553 package
which is ideal for low power surface mount applications where board
space is at a premium.
Features
•
•
•
•
1
R1
4
5
5
1
SOT−553
CASE 463B
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
These are Pb−Free Devices
MARKING DIAGRAM
MAXIMUM RATINGS (TA = 25°C unless otherwise noted, common for Q1
and Q2, − minus sign for Q1 (PNP) omitted)
Symbol
Value
Unit
Collector-Base Voltage
Rating
VCBO
50
Vdc
Collector-Emitter Voltage
VCEO
50
Vdc
IC
100
mAdc
Collector Current
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
Ux M G
G
Ux = Specific Device Code
x = C, 3, E, or 5
M = Date Code
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Preferred devices are recommended choices for future use
and best overall value.
© Semiconductor Components Industries, LLC, 2004
October, 2005 − Rev. 4
1
Publication Order Number:
EMC2DXV5T1/D
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
357 (Note 1)
2.9 (Note 1)
mW
mW/°C
350 (Note 1)
°C/W
500 (Note 1)
4.0 (Note 1)
mW
mW/°C
RqJA
250 (Note 1)
°C/W
TJ, Tstg
−55 to +150
°C
ONE JUNCTION HEATED
Total Device Dissipation
TA = 25°C
Derate above 25°C
PD
Thermal Resistance, Junction-to-Ambient
RqJA
BOTH JUNCTIONS HEATED
Total Device Dissipation
TA = 25°C
Derate above 25°C
PD
Thermal Resistance, Junction-to-Ambient
Junction and Storage Temperature
1. FR−4 @ Minimum Pad
DEVICE ORDERING INFORMATION, MARKING AND RESISTOR VALUES
Transistor 1 − PNP
Device
Marking
R1 (K)
R2 (K)
Transistor 2 − NPN
R1 (K)
R2 (K)
Package
EMC2DXV5T1
SOT−553*
EMC2DXV5T1G
SOT−553*
EMC2DXV5T5
UC
22
22
22
22
SOT−553*
EMC3DXV5T1
SOT−553*
EMC3DXV5T1G
SOT−553*
U3
10
10
10
10
SOT−553*
EMC4DXV5T1
SOT−553*
EMC4DXV5T5
SOT−553*
UE
10
47
47
47
SOT−553*
EMC5DXV5T1
SOT−553*
EMC5DXV5T1G
SOT−553*
U5
4.7
10
47
47
EMC5DXV5T5G
4000 / Tape & Reel
8000 / Tape & Reel
4000 / Tape & Reel
SOT−553*
EMC4DXV5T5G
EMC5DXV5T5
8000 / Tape & Reel
SOT−553*
EMC3DXV5T5G
EMC4DXV5T1G
4000 / Tape & Reel
SOT−553*
EMC2DXV5T5G
EMC3DXV5T5
Shipping †
8000 / Tape & Reel
4000 / Tape & Reel
SOT−553*
SOT−553*
8000 / Tape & Reel
PD , POWER DISSIPATION (MILLIWATTS)
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
250
200
150
100
50
0
−50
RqJA = 833°C/W
0
50
100
TA, AMBIENT TEMPERATURE (°C)
Figure 1. Derating Curve
http://onsemi.com
2
150
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
nAdc
Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0)
ICEO
−
−
500
nAdc
IEBO
−
−
−
−
−
−
−
−
0.2
0.5
0.2
1.0
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
60
35
80
20
100
60
140
35
−
−
−
−
VCE(SAT)
−
−
0.25
Vdc
Characteristic
Q1 TRANSISTOR: PNP
OFF CHARACTERISTICS
Emitter-Base Cutoff Current
(VEB = 6.0, IC = 5.0 mA)
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1
EMC5DXV5T1
ON CHARACTERISTICS
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1
EMC5DXV5T1
Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
VOH
4.9
−
−
Vdc
R1
15.4
7.0
3.3
22
10
4.7
28.6
13
6.1
kW
R1/R2
0.8
0.8
0.17
0.38
1.0
1.0
0.21
0.47
1.2
1.2
0.25
0.56
Collector-Base Cutoff Current (VCB = 50 V, IE = 0)
ICBO
−
−
100
Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0)
ICEO
−
−
500
nAdc
Emitter-Base Cutoff Current
(VEB = 6.0, IC = 5.0 mA)
IEBO
−
−
−
−
−
−
0.2
0.5
0.1
mAdc
Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0)
V(BR)CBO
50
−
−
Vdc
Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0)
V(BR)CEO
50
−
−
Vdc
hFE
60
35
80
100
60
140
−
−
−
VCE(SAT)
−
−
0.25
Vdc
Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
−
−
0.2
Vdc
Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW)
VOH
4.9
−
−
Vdc
kW
Input Resistor
EMC2DXV5T1
EMC3DXV5T1, EMC4DXV5T1
EMC5DXV5T1
Resistor Ratio
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1
EMC5DXV5T1
Q2 TRANSISTOR: NPN
OFF CHARACTERISTICS
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1, EMC5DXV5T1
nAdc
ON CHARACTERISTICS
DC Current Gain
(VCE = 10 V, IC = 5.0 mA)
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1, EMC5DXV5T1
Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)
Input Resistor
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1, EMC5DXV5T1
R1
15.4
7.0
33
22
10
47
28.6
13
61
Resistor Ratio
EMC2DXV5T1
EMC3DXV5T1
EMC4DXV5T1, EMC5DXV5T1
R1/R2
0.8
0.8
0.8
1.0
1.0
1.0
1.2
1.2
1.2
http://onsemi.com
3
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1000
10
VCE = 10 V
IC/IB = 10
1
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS
TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 PNP TRANSISTOR
25°C
TA=−25°C
75°C
0.1
0.01
0
20
IC, COLLECTOR CURRENT (mA)
1
10
Figure 3. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
3
2
1
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
TA=−25°C
10
1
0.1
0.01
0.001
50
Figure 4. Output Capacitance
100
25°C
75°C
f = 1 MHz
lE = 0 mA
TA = 25°C
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
0
VO = 5 V
0
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
10
25°C
75°C
1
0
10
8
9
Figure 5. Output Current versus Input Voltage
TA=−25°C
0.1
100
IC, COLLECTOR CURRENT (mA)
Figure 2. VCE(sat) versus IC
0
25°C
−25°C
100
10
50
40
TA=75°C
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 6. Input Voltage versus Output Current
http://onsemi.com
4
50
10
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1
1000
IC/IB = 10
VCE = 10 V
TA=−25°C
25°C
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 NPN TRANSISTOR
0.1
75°C
0.01
0.001
0
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
−25°C
100
10
50
1
10
IC, COLLECTOR CURRENT (mA)
Figure 7. VCE(sat) versus IC
Figure 8. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
2
1
0
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
25°C
75°C
f = 1 MHz
IE = 0 mA
TA = 25°C
1
0.1
0.01
0.001
50
TA=−25°C
10
VO = 5 V
0
1
2
3
5
6
7
4
Vin, INPUT VOLTAGE (V)
10
VO = 0.2 V
TA=−25°C
25°C
75°C
1
0.1
0
10
8
9
10
Figure 10. Output Current versus Input Voltage
Figure 9. Output Capacitance
V in , INPUT VOLTAGE (VOLTS)
C ob, CAPACITANCE (pF)
4
3
100
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 11. Input Voltage versus Output
Current
http://onsemi.com
5
50
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1000
1
VCE = 10 V
IC/IB = 10
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 PNP TRANSISTOR
TA=−25°C
0.1
25°C
75°C
0.01
20
40
IC, COLLECTOR CURRENT (mA)
0
TA=75°C
10
50
25°C
100
−25°C
1
10
IC, COLLECTOR CURRENT (mA)
Figure 12. VCE(sat) versus IC
Figure 13. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
lE = 0 mA
TA = 25°C
2
1
0
0
10
TA=−25°C
1
0.1
0.01
VO = 5 V
0
Figure 14. Output Capacitance
100
25°C
75°C
10
0.001
50
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
3
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=−25°C
25°C
75°C
1
0
10
8
9
Figure 15. Output Current versus Input
Voltage
10
0.1
100
20
30
IC, COLLECTOR CURRENT (mA)
40
Figure 16. Input Voltage versus Output
Current
http://onsemi.com
6
50
10
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1000
1
VCE = 10 V
IC/IB = 10
25°C
TA=−25°C
0.1
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 NPN TRANSISTOR
75°C
0.01
0.001
0
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
25°C
−25°C
100
10
50
10
1
IC, COLLECTOR CURRENT (mA)
Figure 17. VCE(sat) versus IC
Figure 18. DC Current Gain
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
IE = 0 mA
TA = 25°C
2
1
75°C
25°C
TA=−25°C
10
1
0.1
0.01
VO = 5 V
0
0
0.001
50
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
Figure 19. Output Capacitance
2
0
4
6
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=−25°C
10
25°C
75°C
1
0.1
0
10
8
10
Figure 20. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
4
3
100
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 21. Input Voltage versus Output
Current
http://onsemi.com
7
50
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1
180
IC/IB = 10
hFE , DC CURRENT GAIN (NORMALIZED)
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS −EMC4DXV5T1 PNP TRANSISTOR
TA=−25°C
25°C
0.1
75°C
0.01
0.001
0
20
40
60
IC, COLLECTOR CURRENT (mA)
25°C
140
−25°C
120
100
80
60
40
20
0
80
TA=75°C
VCE = 10 V
160
1
2
4
6
Figure 22. VCE(sat) versus IC
100
IC, COLLECTOR CURRENT (mA)
3.5
Cob , CAPACITANCE (pF)
TA=75°C
f = 1 MHz
lE = 0 V
TA = 25°C
4
3
2.5
2
1.5
1
0.5
0
2
4
6
8 10 15 20 25 30 35
VR, REVERSE BIAS VOLTAGE (V)
40
45
25°C
−25°C
10
VO = 5 V
1
50
Figure 24. Output Capacitance
0
2
4
6
Vin, INPUT VOLTAGE (V)
10
+12 V
VO = 0.2 V
V in , INPUT VOLTAGE (VOLTS)
8
Figure 25. Output Current versus Input Voltage
10
25°C
75°C
TA=−25°C
Typical Application
for PNP BRTs
1
0.1
80 90 100
Figure 23. DC Current Gain
4.5
0
8 10 15 20 40 50 60 70
IC, COLLECTOR CURRENT (mA)
LOAD
0
10
20
30
IC, COLLECTOR CURRENT (mA)
40
50
Figure 26. Input Voltage versus Output Current
Figure 27. Inexpensive, Unregulated Current Source
http://onsemi.com
8
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
1000
1
VCE = 10 V
IC/IB = 10
TA=75°C
0.1
0.01
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC5DXV5T1 PNP TRANSISTOR
25°C
−25°C
0
10
20
30
40
IC, COLLECTOR CURRENT (mA)
50
100
10
1
60
1
10
1000
100
IC, COLLECTOR CURRENT (mA)
Figure 29. DC Current Gain
12
100
IC, COLLECTOR CURRENT (mA)
f = 1 MHz
IE = 0 mA
TA = 25°C
10
C ob , CAPACITANCE (pF)
25°C
−25°C
Figure 28. VCE(sat) versus IC
8
6
4
SERIES 1
2
0
TA=75°C
0
5
10
20
30
15
25
35
VR, REVERSE BIAS VOLTAGE (V)
40
1
VO = 5 V
0.1
0.01
45
Figure 30. Output Capacitance
75°C
10
TA=−25°C
25°C
0
2
4
6
8
Vin, INPUT VOLTAGE (V)
10
12
Figure 31. Output Current versus Input Voltage
http://onsemi.com
9
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
10
1000
VCE = 10 V
IC/IB = 10
hFE , DC CURRENT GAIN
VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS)
TYPICAL ELECTRICAL CHARACTERISTICS − EMC4DXV5T1, EMC5DXV5T1 NPN TRANSISTOR
1
25°C
TA=−25°C
75°C
0.1
0.01
0
25°C
−25°C
100
10
50
20
40
IC, COLLECTOR CURRENT (mA)
TA=75°C
10
IC, COLLECTOR CURRENT (mA)
1
Figure 32. VCE(sat) versus IC
1
100
IC, COLLECTOR CURRENT (mA)
0.4
TA=−25°C
10
1
0.1
0.01
0.2
0
25°C
75°C
0.6
0
10
20
30
40
VR, REVERSE BIAS VOLTAGE (V)
0.001
50
Figure 34. Output Capacitance
VO = 5 V
0
2
4
6
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA=−25°C
10
25°C
75°C
1
0.1
0
10
8
10
Figure 35. Output Current versus Input Voltage
100
V in , INPUT VOLTAGE (VOLTS)
C ob , CAPACITANCE (pF)
Figure 33. DC Current Gain
f = 1 MHz
IE = 0 mA
TA = 25°C
0.8
100
20
30
40
IC, COLLECTOR CURRENT (mA)
50
Figure 36. Input Voltage versus Output Current
http://onsemi.com
10
EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1
PACKAGE DIMENSIONS
SOT−553
XV5 SUFFIX
CASE 463B−01
ISSUE B
D
−X−
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
A
L
4
1
e
2
3
E
−Y−
HE
b 5 PL
0.08 (0.003)
c
M
MILLIMETERS
NOM
MAX
0.55
0.60
0.22
0.27
0.13
0.18
1.60
1.70
1.20
1.30
0.50 BSC
0.10
0.20
0.30
1.50
1.60
1.70
DIM
A
b
c
D
E
e
L
HE
X Y
MIN
0.50
0.17
0.08
1.50
1.10
INCHES
NOM
0.022
0.009
0.005
0.063
0.047
0.020 BSC
0.004
0.008
0.059
0.063
MIN
0.020
0.007
0.003
0.059
0.043
MAX
0.024
0.011
0.007
0.067
0.051
0.012
0.067
SOLDERING FOOTPRINT*
0.3
0.0118
0.45
0.0177
1.35
0.0531
1.0
0.0394
0.5
0.5
0.0197 0.0197
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
11
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
EMC2DXV5T1/D