ONSEMI NB100LVEP56DTR2

NB100LVEP56
2.5V / 3.3V / 5VECL Dual
Differential 2:1 Multiplexer
The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The
differential data path makes the device ideal for multiplexing low
skew clock or differential data signals. The device features both
individual and common select inputs to address both data path and
random logic applications. Common and individual selects can accept
both ECL and CMOS input voltage levels. Multiple VBB pins are
provided.
The VBB pin, an internally generated voltage supply, is available to
this device only. For single−ended input operation, the unused
differential input is connected to VBB as a switching reference voltage.
VBB may also rebias AC coupled inputs. When used, decouple VBB
and VCC via a 0.01 mF capacitor and limit current sourcing or sinking
to 0.5 mA. When not used, VBB should be left open.
http://onsemi.com
MARKING
DIAGRAMS*
20
20
N100
VP56
ALYW
1
TSSOP−20
DT SUFFIX
CASE 948E
1
• Maximum Input Clock Frequency > 2.5 GHz Typical
• Maximum Input Data Rate > 2.5 Gb/s Typical
24
1
• 525 ps Typical Propagation Delays
• Low Profile QFN Package
• PECL Mode Operating Range:
24
1
QFN−24
MN SUFFIX
CASE 485L
VCC = 2.375 V to 5.5 V with VEE = 0 V
• NECL Mode Operating Range:
A
L
Y
W
VCC = 0 V with VEE = −2.375 V to −5.5 V
• Separate, Common Select, and Individual Select
(Compatible with ECL and CMOS Input Voltage Levels)
• Q Output Will Default LOW with Inputs Open or at VEE
• Multiple VBB Outputs
• Pb−Free Packages are Available*
N100
VP56
ALYW
= Assembly Location
= Wafer Lot
= Year
= Work Week
*For additional information, see Application Note
AND8002/D
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
 Semiconductor Components Industries, LLC, 2004
December, 2004 − Rev. 5
1
Publication Order Number:
NB100LVEP56/D
NB100LVEP56
Table 1. PIN FUNCTION DESCRIPTION
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Pin No.
TSSOP
QFN
Name
I/O
Default
State
14,20
3,9,18,19,
20
VCC
−
−
Positive Supply Voltage. All VCC Pins must be Externally
Connected to Power Supply to Guarantee Proper Operation.
11
15,24
VEE
−
−
Negative Supply Voltage. All VEE Pins must be Externally
Connected to Power Supply to Guarantee Proper Operation.
3,8
6,12
VBB0,
VBB1
−
−
ECL Reference Voltage Output
1
4
D0a
ECL Input
Low
Noninverted Differential Data a Input to MUX 0. Internal 75 kW to
VEE.
2
5
D0a
ECL Input
High
Inverted Differential Data a Input to MUX 0. Internal 75 kW to VEE
and 37 kW to VCC.
4
7
D0b
ECL Input
Low
Noninverted Differential Data b Input to MUX 0. Internal 75 kW to
VEE.
5
8
D0b
ECL Input
High
Inverted Differential Data b Input to MUX 0. Internal 75 kW to VEE
and 37 kW to VCC.
6
10
D1a
ECL Input
Low
Noninverted Differential Data a Input to MUX 1. Internal 75 kW to
VEE.
7
11
D1a
ECL Input
High
Inverted Differential Data a Input to MUX 1. Internal 75 kW to VEE
and 37 kW to VCC.
9
13
D1b
ECL Input
Low
Noninverted Differential Data b Input to MUX 1. Internal 75 kW to
VEE.
10
14
D1b
ECL Input
High
Inverted Differential Data b Input to MUX 1. Internal 75 kW to VEE
and 37 kW to VCC.
19
2
Q0
ECL Output
−
Noninverted Differential Output MUX 0. Typically Terminated with
50 W to VTT = VCC − 2.0 V.
18
1
Q0
ECL Output
−
Inverted Differential Output MUX 0. Typically Terminated with
50 W to VTT = VCC − 2.0 V.
13
17
Q1
ECL Output
−
Noninverted Differential Output MUX 1. Typically Terminated with
50 W to VTT = VCC − 2.0 V.
12
16
Q1
ECL Output
−
Inverted Differential Output MUX 1. Typically Terminated with
50 W to VTT = VCC − 2.0 V.
17
23
SEL0
ECL, CMOS
Input
Low
Noninverted Differential Select Input to MUX 0. Internal 75 W to
VEE.
16
22
COM_SEL
ECL, CMOS
Input
Low
Noninverted Differential Common Select Input to Both MUX.
Internal 75 W to VEE.
15
21
SEL1
ECL, CMOS
Input
Low
Noninverted Differential Select Input to MUX 1. Internal 75 W to
VEE.
N/A
−
EP
−
Description
Exposed Pad. (Note 1)
1. The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a heat sinking conduit.
http://onsemi.com
2
NB100LVEP56
D0a
R1
D0b
R1
1
R2
Q0
Q0
0
D0a
R1
Table 2. TRUTH TABLE
SEL0
R2
R1
D0b
R1
SEL0
SEL1
COM_SEL
Q0, Q0
Q1, Q1
X
L
L
H
H
X
L
H
H
L
H
L
L
L
L
a
b
b
a
a
a
b
a
a
b
COM_SEL
R1
D1a
R1
D1b
R1
SEL1
R1
1
R2
Q1
Q1
0
D1a
R1
VCC
VEE
R2
D1b
R1
COM
VEE SEL0 SEL SEL1 VCC VCC
VCC
Q0
Q0
SEL0
COM_SEL
SEL1
VCC
Q1
Q1
VEE
Figure 1. Logic Diagram
20
19
18
17
16
15
14
13
12
11
24
1
2
3
4
5
6
7
8
9
10
D0a
D0a
VBBO
D0b
D0b
D1a
D1a
VBB1
D1b
D1b
NB100LVEP56
23
22
21
20
Exposed Pad
(EP)
19
Q0
1
18
VCC
Q0
2
17
Q1
VCC
3
16
Q1
D0a
4
15
VEE
D0a
5
14
D1b
VBB0
6
13
D1b
NB100LVEP56
7
Figure 2. TSSOP−20 Lead Pinout (Top View)
8
9
10
11
12
D0b D0b VCC D1a D1a VBB1
Figure 3. QFN−24 Lead Pinout (Top View)
Table 3. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
(R1)
Internal Input Pullup Resistor
ESD Protection
(R2)
Human Body Model
Machine Model
Charged Device Model
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
Flammability Rating
Oxygen Index: 28 to 34
Transistor Count
75 kW
37 kW
> 2 kV
> 150 V
> 2 kV
Level 1
UL 94 V−0 @ 0.125 in
354 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
http://onsemi.com
3
NB100LVEP56
Table 4. MAXIMUM RATINGS
Symbol
Rating
Unit
VCC
Positive Mode Power Supply
Parameter
VEE = 0 V
Condition 1
6
V
VEE
Negative Mode Power Supply
VCC = 0 V
−6
V
VI
Positive Mode Input Voltage
Negative Mode Input Voltage
VEE = 0 V
VCC = 0 V
6
−6
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
IBB
VBB Sink/Source
"0.5
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
JEDEC 51−3 (1S − Single Layer Test Board)
0 lfpm
500 lfpm
TSSOP−20
TSSOP−20
140
50
°C/W
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
JEDEC 51−6 (2S2P−Multi Layer Test Board)
with Filled Thermal Vias
0 lfpm
500 lfpm
QFN−24
QFN−24
37
32
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
TSSOP−20
QFN−24
23 to 41
11
°C/W
Tsol
Wave Solder
265
265
°C
Pb
Pb−Free
Condition 2
VI v VCC
VI w VEE
<2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
Table 5. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 2)
−40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
35
45
55
35
45
55
35
48
58
mA
IEE
Negative Power Supply Current
VOH
Output HIGH Voltage (Note 3)
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV
VOL
Output LOW Voltage (Note 3)
555
775
900
555
775
900
555
775
900
mV
VIH
Input HIGH Voltage (SEL0, SEL1, COM_SEL)
Input HIGH Voltage (D Inputs) (Note 4)
1335
1335
VCC
1620
1335
1335
VCC
1620
1275
1275
VCC
1620
mV
VIL
Input LOW Voltage (SEL0, SEL1, COM_SEL)
Input LOW Voltage (D Inputs) (Note 4)
VEE
555
875
875
VEE
555
875
875
VEE
555
875
875
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 5)
1.2
2.5
1.2
2.5
1.2
2.5
V
IIH
Input HIGH Current (@VIH)
150
mA
IIL
Input LOW Current (@VIL)
150
D
D
SEL
0.5
−150
−150
150
0.5
−150
−150
0.5
−150
−150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −1.3 V.
3. All loading with 50 W to VCC − 2.0 V.
4. Do not use VBB at VCC < 3.0 V.
5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
4
NB100LVEP56
Table 6. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 6)
−40°C
25°C
85°C
Characteristic
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
35
45
55
35
45
55
35
48
58
mA
VOH
Output HIGH Voltage (Note 7)
2155
2280
2405
2155
2280
2405
2155
2280
2405
mV
VOL
Output LOW Voltage (Note 7)
1355
1575
1700
1355
1575
1700
1355
1575
1700
mV
VIH
Input HIGH Voltage (SEL0, SEL1, COM_SEL)
Input HIGH Voltage (D Inputs)
2135
2135
VCC
2420
2135
2135
VCC
2420
2135
2135
VCC
2420
mV
VIL
Input LOW Voltage (SEL0, SEL1, COM_SEL)
Input LOW Voltage (D Inputs)
VEE
1355
1675
1675
VEE
1355
1675
1675
VEE
1355
1675
1675
mV
VBB
Output Reference Voltage (Note 8)
1775
1975
1775
1975
1775
1975
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 9)
3.3
1.2
3.3
1.2
3.3
V
IIH
Input HIGH Current (@VIH)
150
mA
IIL
Input LOW Current (@VIL)
Symbol
1875
1.2
1875
150
D
D
SEL
0.5
−150
−150
1875
150
0.5
−150
−150
0.5
−150
−150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.5 V.
7. All loading with 50 W to VCC − 2.0 V.
8. Single−Ended input operation is limited to VCC w 3.0 V in PECL mode.
9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 7. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 10)
−40°C
25°C
85°C
Characteristic
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
40
50
60
40
50
60
45
55
65
mA
VOH
Output HIGH Voltage (Note 11)
3855
3980
4105
3855
3980
4105
3855
3980
4105
mV
VOL
Output LOW Voltage (Note 11)
3055
3275
3400
3055
3275
3400
3055
3275
3400
mV
VIH
Input HIGH Voltage (SEL0, SEL1, COM_SEL)
Input HIGH Voltage (D Inputs)
3775
3775
VCC
4120
3775
3775
VCC
4120
3775
3775
VCC
4120
mV
VIL
Input LOW Voltage (SEL0, SEL1, COM_SEL)
Input LOW Voltage (D Inputs)
VEE
3055
3375
3375
VEE
3055
3375
3375
VEE
3055
3375
3375
mV
VBB
Output Voltage Reference
3475
3675
3475
3675
3475
3675
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 12)
5.0
1.2
5.0
1.2
5.0
V
IIH
Input HIGH Current (@VIH)
150
mA
IIL
Input LOW Current (@VIL)
Symbol
3575
1.2
150
D
D
SEL
0.5
−150
−150
3575
150
0.5
−150
−150
0.5
−150
−150
3575
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
10. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V.
11. All loading with 50 W to VCC − 2.0 V.
12. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
5
NB100LVEP56
Table 8. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −3.8 V to −2.375 V (Note 13)
−40°C
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
35
45
55
35
45
55
35
48
58
mA
Output HIGH Voltage (Note 14)
−1145
−1020
−895
−1145
−1020
−895
−1145
−1020
−895
mV
Output LOW Voltage (Note 14)
−1945
−1725
−1600
−1945
−1725
−1600
−1945
−1725
−1600
mV
VIH
Input HIGH Voltage
(SEL0, SEL1, COM_SEL)
Input HIGH Voltage (D Inputs)
−1165
−1165
VCC
−880
−1165
−1165
VCC
−880
−1165
−1165
VCC
−880
VIL
Input LOW Voltage
(SEL0, SEL1, COM_SEL)
Input LOW Voltage (D Inputs)
VEE
−1945
−1600
−1600
VEE
−1945
−1600
−1600
VEE
−1945
−1600
−1600
VBB
Output Reference Voltage (Note 15)
−1525
−1325
−1525
−1325
−1525
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 16)
IIH
Input HIGH Current (@VIH)
IIL
Input LOW Current (@VIL)
Symbol
Characteristic
IEE
Negative Power Supply Current
VOH
VOL
−1425
VEE+1.2
0.0
−1425
VEE+1.2
150
D
D
SEL
0.5
−150
−150
0.0
−1425
VEE+1.2
150
0.5
−150
−150
mV
mV
−1325
mV
0.0
V
150
mA
0.5
−150
−150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
13. Input and output parameters vary 1:1 with VCC.
14. All loading with 50 W to VCC − 2.0 V.
15. Single−Ended input operation is limited to VEE from −3.0 V to −5.5 V in NECL mode.
16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 9. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −3.8 V to −5.5 V (Note 17)
−40°C
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
40
50
60
40
50
60
45
55
65
mA
Output HIGH Voltage (Note 18)
−1145
−1020
−895
−1145
−1020
−895
−1145
−1020
−895
mV
Output LOW Voltage (Note 18)
−1945
−1725
−1600
−1945
−1725
−1600
−1945
−1725
−1600
mV
VIH
Input HIGH Voltage
(SEL0, SEL1, COM_SEL)
Input HIGH Voltage (D Inputs)
−1165
−1165
VCC
−880
−1165
−1165
VCC
−880
−1165
−1165
VCC
−880
VIL
Input LOW Voltage
(SEL0, SEL1, COM_SEL)
Input LOW Voltage (D Inputs)
VEE
−1945
−1600
−1625
VEE
−1945
−1600
−1625
VEE
−1945
−1600
−1625
VBB
Output Reference Voltage (Note 19)
−1525
−1325
−1525
−1325
−1525
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 20)
IIH
Input HIGH Current (@VIH)
IIL
Input LOW Current (@VIL)
Symbol
Characteristic
IEE
Negative Power Supply Current
VOH
VOL
−1425
VEE+1.2
0.0
VEE+1.2
150
D
D
SEL
0.5
−150
−150
−1425
0.0
VEE+1.2
150
0.5
−150
−150
−1425
0.5
−150
−150
mV
mV
−1325
mV
0.0
V
150
mA
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
17. Input and output parameters vary 1:1 with VCC.
18. All loading with 50 W to VCC − 2.0 V.
19. Single−Ended input operation is limited to VEE from −3.0 V to −5.5 V in NECL mode.
20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
6
NB100LVEP56
Table 10. AC CHARACTERISTICS VCC = 0 V; VEE = −2.375 V to −3.8 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 21)
−40°C
Symbol
25°C
Min
Typ
fin v 1 GHz
fin = 2 GHz
fin = 2.5 GHz
525
500
400
700
600
500
D to Q, Q
SEL to Q, Q
COM_SEL to Q, Q
375
575
550
500
775
750
625
975
950
10
5
15
50
50
30
50
200
Characteristic
VOUTPP
Output Voltage Amplitude
(See Figure 4)
tPLH,
tPHL
Propagation Delay to Output Differential
tSkew
Pulse Skew (Note 22)
Within Device Input Skew (Note 23)
Within Device Output Skew (Note 24)
Device−to−Device Skew (Note 25)
tJITTER
RMS Random Clock Jitter
(Note 26)
Peak−to−Peak Data Dependent Jitter
(Note 27)
fin = 2.5 GHz
Input Voltage Swing (Differential Configuration)
(Note 28)
tr
tf
Output Rise/Fall Times @ 50 MHz
(20% − 80%)
Q, Q
Min
Typ
550
500
350
700
600
450
400
625
600
525
825
800
85°C
Max
650
1025
1000
Min
Typ
500
400
200
700
500
300
450
700
700
575
900
900
700
1100
1100
10
5
15
50
50
30
50
200
ps
1
ps
mV
10
5
15
50
1
fin =1.5 Gb/s
fin = 2.5 Gb/s
VINPP
Max
1
5
15
10
25
Max
Unit
mV
ps
10
25
150
800
1200
150
800
1200
150
800
1200
60
110
150
60
120
170
90
140
230
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 150 ps (20% − 80%).
22. Pulse Skew |tPLH − tPHL|
23. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.
24. Worst case difference between Q0 and Q1 outputs.
25. Skew is measured between outputs under identical transitions.
26. Additive RMS jitter with 50% Duty Cycle Clock Signal at fin = 2.5 GHz.
27. Additive Peak−to−Peak jitter with input NRZ data at PRBS 231−1 at fin = 2.5 Gb/s.
28. Input voltage swing is a single−ended measurement operating in differential mode.
http://onsemi.com
7
NB100LVEP56
Table 11. AC CHARACTERISTICS VCC = 0 V; VEE = −4.2 V to −5.5 V or VCC = 4.2 V to 5.5 V; VEE = 0 V (Note 29)
−40°C
Symbol
25°C
Min
Typ
fin v 1 GHz
fin = 2 GHz
fin = 2.5 GHz
600
550
400
750
650
550
D to Q, Q
SEL to Q, Q
COM_SEL to Q, Q
375
575
550
500
775
750
625
975
950
5
15
20
50
50
30
50
200
Characteristic
VOUTPP
Output Voltage Amplitude
(See Figure 5)
tPLH,
tPHL
Propagation Delay to Output Differential
tSkew
Pulse Skew (Note 30)
Within Device Input Skew (Note 31)
Within Device Output Skew (Note 32)
Device−to−Device Skew (Note 33)
tJITTER
RMS Random Clock Jitter
(Note 34)
Peak−to−Peak Data Dependent Jitter
(Note 35)
fin = 2.5 GHz
Input Voltage Swing (Differential Configuration)
(Note 36)
tr
tf
Output Rise/Fall Times @ 50 MHz
(20% − 80%)
Q, Q
85°C
Min
Typ
600
500
350
750
600
450
400
625
600
525
825
800
650
1025
1000
5
15
20
50
50
30
50
200
1
fin =1.5 Gb/s
fin = 2.5 Gb/s
VINPP
Max
Max
Min
Typ
600
400
200
750
500
300
450
700
700
575
900
900
700
1100
1100
5
15
20
50
50
30
50
200
ps
1
ps
mV
1
5
15
10
25
Max
Unit
mV
ps
10
20
150
800
1200
150
800
1200
150
800
1200
60
110
150
60
120
170
90
140
230
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
29. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 150 ps (20% − 80%).
30. Pulse Skew |tPLH − tPHL|
31. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.
32. Worst case difference between Q0 and Q1 outputs.
33. Skew is measured between outputs under identical transitions.
34. Additive RMS jitter with 50% Duty Cycle Clock Signal at fin = 2.5 GHz.
35. Additive Peak−to−Peak jitter with input NRZ data at PRBS 231−1 at fin = 2.5 Gb/s.
36. Input voltage swing is a single−ended measurement operating in differential mode.
http://onsemi.com
8
NB100LVEP56
10.0
9.0
Q AMP (mV)
750
7.0
6.0
550
5.0
4.0
450
3.0
RMS JITTER (ps)
8.0
650
2.0
350
JITTER (ps)
250
0.5
1.0
1.0
1.5
2.0
2.5
0.0
INPUT FREQUENCY (GHz)
Figure 4. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at VCC = 2.5 V, 255C
850
750
10.0
9.0
Q AMP (mV)
8.0
7.0
650
6.0
550
5.0
4.0
450
3.0
2.0
350
1.0
JITTER (ps)
250
0.5
1.0
1.5
2.0
2.5
0.0
INPUT FREQUENCY (GHz)
Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at VCC = 5.0 V, 255C
D
VINPP = VIH(D) − VIL(D)
D
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 6. AC Reference Measurement
http://onsemi.com
9
RMS JITTER (ps)
OUTPUT VOLTAGE AMPLITUDE (mV)
OUTPUT VOLTAGE AMPLITUDE (mV)
850
NB100LVEP56
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 7. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
ORDERING INFORMATION
Device
Package
Shipping†
NB100LVEP56DT*
TSSOP−20
(Pb−Free)
75 Units / Rail
NB100LVEP56DTR2*
TSSOP−20
(Pb−Free)
2500 Tape & Reel
QFN−24
92 Units / Rail
NB100LVEP56MNG
QFN−24
(Pb−Free)
92 Units / Rail
NB100LVEP56MNR2
QFN−24
3000 Tape & Reel
QFN−24
(Pb−Free)
3000 Tape & Reel
NB100LVEP56MN
NB100LVEP56MNR2G
*These devices are manufactured with a Pb−Free external lead finish only.
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specification Brochure, BRD8011/D.
http://onsemi.com
10
NB100LVEP56
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1642/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
http://onsemi.com
11
NB100LVEP56
PACKAGE DIMENSIONS
TSSOP−20
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948E−02
ISSUE B
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
S
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
K
K1
11
J J1
B
−U−
PIN 1
IDENT
SECTION N−N
1
10
0.25 (0.010)
N
0.15 (0.006) T U
S
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER
SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
A
−V−
N
F
DETAIL E
−W−
C
D
G
H
DETAIL E
0.100 (0.004)
−T− SEATING
PLANE
http://onsemi.com
12
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
−−− 0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
NB100LVEP56
PACKAGE DIMENSIONS
QFN 24
MN SUFFIX
24 PIN QFN, 4x4
CASE 485L−01
ISSUE O
D
A
PIN 1
IDENTIFICATION
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD
AS WELL AS THE TERMINALS.
B
E
DIM
A
A1
A2
A3
b
D
D2
E
E2
e
L
2X
0.15 C
0.15 C
2X
A2
0.10 C
A
0.08 C
A3
A1
SEATING
PLANE
REF
D2
e
L
7
C
12
6
13
E2
24X
b
1
0.10 C A B
18
24
19
e
0.05 C
http://onsemi.com
13
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.60
0.80
0.20 REF
0.23
0.28
4.00 BSC
2.70
2.90
4.00 BSC
2.70
2.90
0.50 BSC
0.35
0.45
NB100LVEP56
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
14
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NB100LVEP56/D