ONSEMI 2N6283

Order this document
by 2N6282/D
SEMICONDUCTOR TECHNICAL DATA
! !$
# !
. . . designed for general–purpose amplifier and low–frequency switching applications.
• High DC Current Gain @ IC = 10 Adc —
hFE = 2400 (Typ) — 2N6282, 2N6283, 2N6284
hFE = 4000 (Typ) — 2N6285, 2N6286, 2N6287
• Collector–Emitter Sustaining Voltage —
VCEO(sus) = 60 Vdc (Min) — 2N6282, 2N6285
VCEO(sus) = 80 Vdc (Min) — 2N6283, 2N6286
VCEO(sus) = 100 Vdc (Min) — 2N6284, 2N6287
• Monolithic Construction with Built–In Base–Emitter Shunt Resistors
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*MAXIMUM RATINGS
Rating
Collector–Emitter Voltage
Symbol
2N6282
2N6285
2N6283
2N6286
2N6284
2N6287
Unit
VCEO
60
80
100
Vdc
Collector–Base Voltage
VCB
60
80
100
Vdc
Emitter–Base Voltage
VEB
5.0
Vdc
IC
20
40
Adc
Collector Current — Continuous
Peak
Base Current
IB
0.5
Adc
Total Device Dissipation @ TC = 25_C
Derate above 25_C
PD
160
0.915
Watts
W/_C
TJ,Tstg
– 65 to + 200
_C
Operating and Storage Junction
Temperature Range
*THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Symbol
Max
Unit
RθJC
1.09
_C/W
!"
!"
*Motorola Preferred Device
DARLINGTON
20 AMPERE
COMPLEMENTARY
SILICON
POWER TRANSISTORS
60, 80, 100 VOLTS
160 WATTS
CASE 1–07
TO–204AA
(TO–3)
* Indicates JEDEC Registered Data.
PD, POWER DISSIPATION (WATTS)
160
140
120
100
80
60
40
20
0
0
25
50
100
125
75
150
TC, CASE TEMPERATURE (°C)
175
200
Figure 1. Power Derating
Preferred devices are Motorola recommended choices for future use and best overall value.
 Motorola, Inc. 1995
Motorola Bipolar Power Transistor Device Data
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Max
60
80
100
—
—
—
—
—
—
1.0
1.0
1.0
—
—
0.5
5.0
—
2.0
750
100
18,000
—
—
—
2.0
3.0
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage
(IC = 0.1 Adc, IB = 0)
VCEO(sus)
Vdc
2N6282, 2N6285
2N6283, 2N6286
2N6284, 2N6287
Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)
(VCE = 50 Vdc, IB = 0)
ICEO
mAdc
2N6282, 2N6285
2N6283, 2N6286
2N6284, 2N6287
Collector Cutoff Current
(VCE = Rated VCB, VBE(off) = 1.5 Vdc)
(VCE = Rated VCB, VBE(off) = 1.5 Vdc, TC = 150_C)
ICEX
Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)
IEBO
mAdc
mAdc
ON CHARACTERISTICS (1)
DC Current Gain
(IC = 10 Adc, VCE = 3.0 Vdc)
(IC = 20 Adc, VCE = 3.0 Vdc)
hFE
—
Collector–Emitter Saturation Voltage
(IC = 10 Adc, IB = 40 mAdc)
(IC = 20 Adc, IB = 200 mAdc)
VCE(sat)
Vdc
Base–Emitter On Voltage
(IC = 10 Adc, VCE = 3.0 Vdc)
VBE(on)
—
2.8
Vdc
Base–Emitter Saturation Voltage
(IC = 20 Adc, IB = 200 mAdc)
VBE(sat)
—
4.0
Vdc
|hfe|
4.0
—
MHz
—
—
400
600
300
—
DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small–Signal Short–Circuit
Forward Current Transfer Ratio
(IC = 10 Adc, VCE = 3.0 Vdc, f = 1.0 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
Cob
pF
2N6282,83,84
2N6285,86,87
Small–Signal Current Gain
(IC = 10 Adc, VCE = 3.0 Vdc, f = 1.0 kHz)
hfe
—
* Indicates JEDEC Registered Data.
(1) Pulse test: Pulse Width = 300 µs, Duty Cycle = 2%
10
7.0
5.0
VCC
– 30 V
[
[
[
V1
APPROX
– 12 V
25 µs
v
tr, tf 10 ns
DUTY CYCLE = 1.0%
ts
2N6282/84 (NPN)
2N6285/87 (PNP)
3.0
SCOPE
[
+ 4.0 V
FOR td AND tr, D1 IS DISCONNECTED
AND V2 = 0
FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES
Figure 2. Switching Times Test Circuit
2
RC
t, TIME ( µs)
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1 MUST BE FAST RECOVERY TYPE e.g.,
1N5825 USED ABOVE IB 100 mA
MSD6100 USED BELOW IB 100 mA
TUT
RB
V2
APPROX
+ 8.0 V
D1
51
8.0 k
50
0
2.0
tf
tr
1.0
0.7
0.5
0.3 VCC = 30 Vdc
I /I = 250
0.2 C B
IB1 = IB2
td @ VBE(off) = 0 V
T = 25°C
0.1 J
0.5 0.7 1.0
2.0 3.0
0.2 0.3
5.0 7.0 10
IC, COLLECTOR CURRENT (AMP)
Figure 3. Switching Times
Motorola Bipolar Power Transistor Device Data
20
r(t), EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
RθJC(t) = r(t) RθJC
RθJC = 1.09°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) RθJC(t)
0.05
0.02
0.05
0.03
0.01
0.02
SINGLE PULSE
0.01
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0 5.0
10
t, TIME OR PULSE WIDTH (ms)
20
30
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
50
100
200 300
500
1000
Figure 4. Thermal Response
ACTIVE–REGION SAFE OPERATING AREA
0.1 ms
0.5 ms
10
1.0 ms
5.0
5.0 ms
dc
2.0
1.0
TJ = 200°C
0.5
0.2
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMAL LIMITATION @ TC = 25°C
SINGLE PULSE
0.1
2.0
5.0
10
20
50
20
0.5 ms
10
1.0 ms
5.0
5.0 ms
dc
2.0
TJ = 200°C
1.0
0.5
0.2
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMAL LIMITATION @ TC = 25°C
SINGLE PULSE
0.1
100
0.1 ms
IC, COLLECTOR CURRENT (AMP)
20
0.05
50
50
0.1 ms
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
50
0.05
2.0
5.0
10
20
50
20
0.5 ms
10
1.0 ms
5.0
5.0 ms
dc
2.0
1.0
TJ = 200°C
0.5
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMAL LIMITATION @ TC = 25°C
SINGLE PULSE
0.2
0.1
100
0.05
2.0
5.0
10
20
50
100
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 5. 2N6282, 2N6285
Figure 6. 2N6283, 2N6286
Figure 7. 2N6284, 2N6287
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e. the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figures 5, 6 and 7 is based on TJ(pk) = 200_C; TC is variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided TJ(pk) < 200_C. TJ(pk) may be calculated from the data in Figure 4. At high case
temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by
second breakdown.
1000
TJ = 25°C
VCE = 3.0 Vdc
IC = 10 A
5000
2000
1000
500
200
100
TJ = 25°C
700
C, CAPACITANCE (PF)
hFE, SMALL–SIGNAL CURRENT GAIN
10,000
500
300
Cib
Cob
200
50
10
2N6282/84 (NPN)
2N6285/87 (PNP)
2N6282/84 (NPN)
2N6285/87 (PNP)
20
1.0
2.0
5.0 10
20
50 100
f, FREQUENCY (kHz)
200
500 1000
Figure 8. Small–Signal Current Gain
Motorola Bipolar Power Transistor Device Data
100
0.1 0.2
0.5
1.0 2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
50
100
Figure 9. Capacitance
3
NPN
2N6282, 2N6283, 2N6284
PNP
2N6285, 2N6286, 2N6287
20,000
VCE = 3.0 V
30,000
20,000
VCE = 3.0 V
TJ = 150°C
10,000
TJ = 150°C
7000
5000
3000
2000
1000
700
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
10,000
25°C
– 55°C
500
300
200
5.0 7.0 10
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
0.2 0.3
7000
5000
25°C
3000
2000
– 55°C
1000
700
500
300
0.2 0.3
20
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (AMP)
20
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 10. DC Current Gain
3.0
TJ = 25°C
2.6
IC = 5.0 A
10 A
15 A
2.2
1.8
1.4
1.0
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IB, BASE CURRENT (mA)
20
30
50
3.0
TJ = 25°C
2.6
IC = 5.0 A
15 A
10 A
2.2
1.8
1.4
1.0
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IB, BASE CURRENT (mA)
20
30
50
Figure 11. Collector Saturation Region
3.0
3.0
TJ = 25°C
2.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
TJ = 25°C
2.0
1.5
1.0
VBE(sat) @ IC/IB = 250
VBE @ VCE = 3.0 V
2.5
2.0
1.5
VBE(sat) @ IC/IB = 250
1.0
VBE @ VCE = 3.0 V
VCE(sat) @ IC/IB = 250
0.5
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
VCE(sat) @ IC/IB = 250
20
0.5
0.2 0.3
IC, COLLECTOR CURRENT (AMP)
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (AMP)
Figure 12. “On” Voltages
4
Motorola Bipolar Power Transistor Device Data
20
+ 5.0
+ 4.0
+ 3.0
hFE @ VCE
*APPLIES FOR IC/IB ≤
250
+ 2.0
PNP
2N6285, 2N6286, 2N6287
+ 3.0 V
θV, TEMPERATURE COEFFICIENTS (mV/°C)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
NPN
2N6282, 2N6283, 2N6284
25°C to 150°C
+ 1.0
– 55°C to + 25°C
0
– 1.0
*θVC for VCE(sat)
– 2.0
– 3.0
25°C to + 150°C
θVB for VBE
– 55°C to + 25°C
– 4.0
– 5.0
0.2 0.3
0.7 1.0
0.5
2.0 3.0
5.0 7.0 10
+ 5.0
+ 4.0
+ 3.0
hFE @ VCE
250
+ 2.0
+ 3.0 V
25°C to 150°C
+ 1.0
– 55°C to + 25°C
0
– 1.0
*θVC for VCE(sat)
– 2.0
– 3.0
25°C to + 150°C
θVB for VBE
– 4.0
– 5.0
20
*APPLIES FOR IC/IB ≤
– 55°C to + 25°C
0.2 0.3
0.5
IC, COLLECTOR CURRENT (AMP)
0.7 1.0
2.0
3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (AMP)
Figure 13. Temperature Coefficients
104
103
VCE = 30 V
103
TJ = 150°C
102
100°C
101
REVERSE
FORWARD
100
IC, COLLECTOR CURRENT ( µA)
IC, COLLECTOR CURRENT ( µA)
105
102
VCE = 30 V
TJ = 150°C
101
100
100°C
10–1
REVERSE
10–2
25°C
10–3
+ 0.6 + 0.4
+ 0.2
FORWARD
25°C
10–1
– 0.6 – 0.4
– 0.2
0
+ 0.2 + 0.4 + 0.6 + 0.8
+ 1.0 + 1.2 + 1.4
VBE, BASE–EMITTER VOLTAGE (VOLTS)
0
– 0.2 – 0.4
– 0.6 – 0.8
– 1.0 – 1.2 – 1.4
VBE, BASE–EMITTER VOLTAGE (VOLTS)
Figure 14. Collector Cut–Off Region
NPN
2N6282
2N6283
2N6284
COLLECTOR
PNP
2N6285
2N6286
2N6287
BASE
COLLECTOR
BASE
[ 8.0 k [ 60
[ 8.0 k [ 60
EMITTER
EMITTER
Figure 15. Darlington Schematic
Motorola Bipolar Power Transistor Device Data
5
PACKAGE DIMENSIONS
A
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO–204AA OUTLINE SHALL APPLY.
C
–T–
E
D
K
2 PL
0.13 (0.005)
U
T Q
M
M
Y
M
–Y–
L
V
SEATING
PLANE
2
H
G
B
M
T Y
1
–Q–
0.13 (0.005)
M
DIM
A
B
C
D
E
G
H
K
L
N
Q
U
V
INCHES
MIN
MAX
1.550 REF
–––
1.050
0.250
0.335
0.038
0.043
0.055
0.070
0.430 BSC
0.215 BSC
0.440
0.480
0.665 BSC
–––
0.830
0.151
0.165
1.187 BSC
0.131
0.188
MILLIMETERS
MIN
MAX
39.37 REF
–––
26.67
6.35
8.51
0.97
1.09
1.40
1.77
10.92 BSC
5.46 BSC
11.18
12.19
16.89 BSC
–––
21.08
3.84
4.19
30.15 BSC
3.33
4.77
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
CASE 1–07
TO–204AA (TO–3)
ISSUE Z
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
6
◊
Motorola Bipolar Power Transistor Device Data
*2N6282/D*
2N6282/D