AOSMD AOTF3N50 500v, 3a n-channel mosfet Datasheet

AOT3N50/AOTF3N50
500V, 3A N-Channel MOSFET
General Description
Features
The AOT3N50 & AOTF3N50 have been fabricated
using an advanced high voltage MOSFET process that
is designed to deliver high levels of performance and
robustness in popular AC-DC applications.
By providing low RDS(on), Ciss and Crss along with
guaranteed avalanche capability these parts can be
adopted quickly into new and existing offline power
supply designs.
VDS (V) = 600V @ 150°C
ID = 3A
RDS(ON) < 3Ω
Top View
TO-220
G
D
G
S
D
100% UIS Tested!
100% R g Tested!
TO-220F
D
G
S
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
AOT3N50
Symbol
AOTF3N50
VDS
Drain-Source Voltage
500
VGS
±30
Gate-Source Voltage
TC=25°C
Continuous Drain
Current
(VGS = 10V)
TC=100°C
3*
1.9*
3
ID
1.9
Units
V
V
A
C
IDM
C, G
IAR
2
A
EAR
60
mJ
Single pulsed avalanche energy G
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B
Derate above 25 oC
EAS
dv/dt
120
5
mJ
V/ns
W
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
TJ, TSTG
Pulsed Drain Current
Avalanche Current
Repetitive avalanche energy
C, G
Maximum Junction-to-Ambient A,D
A
9
PD
31
0.25
-50 to 150
W/ oC
°C
300
°C
TL
Symbol
RθJA
RθCS
Maximum Case-to-Sink
RθJC
Maximum Junction-to-Case
* Drain current limited by maximum junction temperature.
Alpha & Omega Semiconductor, Ltd.
74
0.6
AOT3N50
65
AOTF3N50
65
Units
0.5
-4.0
°C/W
°C/W
1.7
°C/W
www.aosmd.com
AOT3N50 / AOTF3N50
Electrical Characteristics (T J=25°C unless otherwise noted)
Parameter
Symbol
STATIC PARAMETERS
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
500
BVDSS
Drain-Source Breakdown Voltage
BVDSS
Breakdown Voltage Temperature
/∆TJ
Coefficient
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
ID=250µA, VGS=0V, TJ=150°C
Typ
Max
Units
V
600
ID=250µA, VGS=0V
V
o
V/ C
0.54
VDS=500V, VGS=0V
1
VDS=400V, TJ=125°C
10
µA
±100
nA
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
4.1
4.7
V
RDS(ON)
gFS
Static Drain-Source On-Resistance
VGS=10V, ID=1.5A
2.3
3
Forward Transconductance
VDS=40V, ID=1.5A
2.8
Ω
S
VSD
Diode Forward Voltage
IS=1A, VGS=0V
Maximum Body-Diode Continuous Current
1
V
IS
3
A
ISM
Maximum Body-Diode Pulsed Current
9
A
331
pF
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
Gate Source Charge
VGS=0V, VDS=25V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=400V, ID=3A
3.5
0.78
221
276
25
31.4
38
pF
2.1
2.6
3.0
pF
1.9
3.9
5.9
Ω
6.7
8.0
nC
1.7
2.0
nC
Qgd
Gate Drain Charge
2.7
3.2
nC
tD(on)
Turn-On DelayTime
11
13.2
ns
tr
Turn-On Rise Time
19
23.0
ns
tD(off)
Turn-Off DelayTime
20.5
24.6
ns
tf
Turn-Off Fall Time
15
18.0
ns
134
161
0.89
1.1
ns
µC
trr
Qrr
VGS=10V, VDS=250V, ID=3A,
RG=25Ω
IF=3A,dI/dt=100A/µs,VDS=100V
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=3A,dI/dt=100A/µs,VDS=100V
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=2A, VDD=50V, RG=25Ω, Starting TJ=25°C
Rev 2. Dec. 2008
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT3N50 / AOTF3N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
6
10
10V
6.5V
4
6V
3
ID(A)
ID (A)
-55°C
VDS=40V
5
125°C
1
2
25°C
VGS=5.5V
1
0
0.1
0
5
10
15
20
25
30
2
4
VDS (Volts)
Fig 1: On-Region Characteristics
8
200
16
3
Normalized On-Resistance
4.0
3.0
VGS=10V
2.0
10
VGS(Volts)
Figure 2: Transfer Characteristics
5.0
RDS(ON) (mΩ)
6
2.5
VGS=10V
ID=1.5A
2
1.5
1
0.5
1.0
0
1
2
3
4
5
6
0
-100
7
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
-50
0
1.2
100
150
200
1.0E+02
1.0E+01
125°C
1.1
1.0E+00
IS (A)
BVDSS (Normalized)
50
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1
1.0E-01
25°C
1.0E-02
0.9
1.0E-03
0.8
-100
1.0E-04
-50
0
50
100
150
200
TJ (oC)
Figure 5: Break Down vs. Junction Temperature
Alpha & Omega Semiconductor, Ltd.
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
www.aosmd.com
AOT3N50 / AOTF3N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
1000
Capacitance (pF)
VGS (Volts)
Ciss
VDS=400V
ID=3A
12
9
6
100
Coss
10
Crss
3
0
1
0
2
4
6
8
10
0.1
Qg (nC)
Figure 7: Gate-Charge Characteristics
10
10
VDS (Volts)
Figure 8: Capacitance Characteristics
10
10µs
RDS(ON)
limited
100µs
1ms
DC
0.1
10ms
0.1s
ID (Amps)
RDS(ON)
limited
1
100µs
1
DC
0.1
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
100
200
16
10µs
ID (Amps)
1
1ms
10ms
0.1s
1s
10s
0.01
1
10
100
1000
VDS (Volts)
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area for AOT3N50 (Note F)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOTF3N50 (Note F)
3.5
Current rating ID(A)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0
25
50
75
100
125
150
TCASE (°C)
Figure 11: Current De-rating (Note B)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT3N50 / AOTF3N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TA+PDM.ZθJC.RθJC
RθJC=1.7°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
T
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOT3N50 (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
200
16
D=Ton/T
TJ,PK=TA+PDM.ZθJC.RθJC
RθJC=4.0°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
T
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF3N50 (Note F)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT3N50 / AOTF3N50
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+
VDC
-
VDC
DUT
Qgs
Vds
Qgd
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
Rg
+
VDC
90%
Vdd
-
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+
Vgs
Vgs
VDC
Rg
-
Vdd
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vds -
Isd
Vgs
L
Vgs
Ig
Alpha & Omega Semiconductor, Ltd.
Isd
+
VDC
-
IF
trr
dI/dt
IRM
Vdd
Vdd
Vds
www.aosmd.com
Similar pages