Infineon IRFU3710ZPbF Hexfetâ® power mosfet Datasheet

IRFR3710ZPbF
IRFU3710ZPbF
IRFU3710Z-701PbF
HEXFET® Power MOSFET
Features
 Advanced Process Technology
 Ultra Low On-Resistance
 175°C Operating Temperature
 Fast Switching
 Repetitive Avalanche Allowed up to Tjmax
 Multiple Package Options
 Lead-Free
IRFU3710ZPbF
I-Pak
IRFR3710ZPbF
D-Pak
Absolute Maximum Ratings
Symbol
RDS(on)
18m
ID
42A
D
S
G
G
I-Pak Lead form 701
IRFU3710Z-701PbF
Refer to page 11 for package outline
D
Drain
Standard Pack
Form
Quantity
Tube
75
IRFU3710ZPbF
Tube
75
IRFR3710ZPbF
Tape and Reel Left
3000
IRFR3710ZTRLPbF
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
56
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current 
Maximum Power Dissipation
39
42
220
140
VGS
EAS (Thermally limited)
EAS (Tested )
IAR
EAR
TJ
TSTG
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy 
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
1
S
Source
Orderable Part Number
ID @ TC = 25°C
Thermal Resistance
Symbol
RJC
RJA
RJA
S
D
I- Pak
IRFU3710ZPbF
D- Pak
IRFR3710ZPbF
G
Gate
Package Type
100V
D
Description
This HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in
a wide variety of applications.
Base part number
VDSS
Parameter
Junction-to-Case
Junction-to-Ambient ( PCB Mount) 
Junction-to-Ambient
Units
A
W
0.95
± 20
150
200
See Fig.12a, 12b, 15, 16
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300
Typ.
–––
–––
–––
Max.
1.05
50
110
Units
°C/W
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on)
VGS(th)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
gfs
Forward Trans conductance
IDSS
Drain-to-Source Leakage Current
Min. Typ. Max. Units
Conditions
100 –––
–––
V VGS = 0V, ID = 250µA
––– 0.088 ––– V/°C Reference to 25°C, ID = 1mA
–––
15
18
m VGS = 10V, ID = 33A 
2.0
–––
4.0
V VDS = VGS, ID = 250µA
–––
–––
–––
–––
–––
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
69
15
25
14
43
53
42
20
250
200
-200
100
–––
–––
–––
–––
–––
–––
LD
Internal Drain Inductance
–––
4.5
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
–––
–––
–––
–––
2930
290
180
1200
–––
–––
–––
–––
VDS = 100V, VGS = 0V
VDS = 100V,VGS = 0V,TJ =125°C
VGS = 20V
nA
VGS = -20V
ID = 33A
nC VDS = 80V
VGS = 10V 
VDD = 50V
ID = 33A
ns
RG = 6.8
VGS = 10V 
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact
VGS = 0V
pF VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
180
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
430
–––
VGS = 0V, VDS = 0V to 80V
Min.
Typ.
Max. Units
–––
–––
56
–––
–––
220
–––
–––
–––
–––
35
41
1.3
53
62
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C,IS = 33A,VGS = 0V 
TJ = 25°C ,IF = 33A, VDS = 50V
di/dt = 100A/µs 
IGSS
Source-Drain Ratings and Characteristics
Parameter
Continuous Source Current
IS
(Body Diode)
Pulsed Source Current
ISM
(Body Diode)
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ton
Forward Turn-On Time
S
VDS = 25V, ID = 33A
39
µA
A
V
ns
nC
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
 starting TJ = 25°C, L = 0.28mH, RG = 25, IAS = 33A,VGS =10V. Part not recommended for use above this value.
 Pulse width 1.0ms; duty cycle  2%.
 Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
 This value determined from sample failure population. 100% tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994.
 Refer to D-Pak package for Part Marking, Tape and Reel information
2
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
6.0V
5.0V
4.8V
4.5V
4.3V
4.0V
100
10
4.0V
60µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
BOTTOM
4.0V
10
1
60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
100
10
100
Fig. 2 Typical Output Characteristics
Fig. 1 Typical Output Characteristics
100
T J = 175°C
100
10
1.0
T J = 25°C
VDS = 25V
60µs PULSE WIDTH
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
VGS, Gate-to-Source Voltage (V)
Fig. 3 Typical Transfer Characteristics
Gfs, Forward Transconductance (S)
1000
ID , Drain-to-Source Current )
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
3
VGS
15V
10V
6.0V
5.0V
4.8V
4.5V
4.3V
4.0V
T J = 25°C
80
60
T J = 175°C
40
20
V DS = 10V
0
0
10
20
30
40
50
60
70
80
ID,Drain-to-Source Current (A)
Fig. 4 Typical Forward Transconductance
vs. Drain Current
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
100000
VGS, Gate-to-Source Voltage (V)
ID= 33A
Coss = Cds + Cgd
10000
C, Capacitance(pF)
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
Ciss
1000
Coss
Crss
100
10.0
VDS = 80V
VDS = 50V
VDS = 20V
8.0
6.0
4.0
2.0
0.0
10
1
10
100
0
10
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10.00
T J = 25°C
VGS = 0V
0.10
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD , Source-to-Drain Voltage (V)
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
4
50
60
70
80
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
T J = 175°C
0.2
40
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
1.00
30
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
100.00
20
1.8
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
60
Limited By Package
50
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
40
30
20
10
0
ID = 56A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20 0
TC , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.1
0.01
0.001
0.20
0.10
0.05
0.02
0.01
J
R1
R1
J
1
R2
R2
R3
R3
C
1
2
2
3
3
Ci= iRi
Ci= iRi
SINGLE PULSE
( THERMAL RESPONSE )
C
Ri (°C/W)
i (sec)
0.576
0.000540
0.249
0.001424
0.224
0.007998
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
15V
L
VDS
D.U.T
RG
IAS
20V
DRIVER
+
V
- DD
A
0.01
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
EAS , Single Pulse Avalanche Energy (mJ)
700
ID
3.4A
4.8A
BOTTOM 33A
TOP
600
500
400
300
200
100
tp
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Fig 13a. Gate Charge Waveform
VGS(th) Gate threshold Voltage (V)
4.0
3.0
ID = 250µA
2.0
1.0
-75 -50 -25
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 14. Threshold Voltage vs. Temperature
Fig 13b. Gate Charge Test Circuit
6
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming  Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs. Pulse width
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 33A
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
7
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long as Tjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
8
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRFR120
WITH ASSEMBLY
LOT CODE 1234
ASSEMBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"
PART NUMBER
INTERNATIONAL
RECTIFIER
LOGO
Note: "P" in assembly line position
indicates "Lead-Free"
IRFR120
12
116A
34
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 16
LINE A
"P" in assembly line position indicates
"Lead-Free" qualification to the consumer-level
OR
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
12
ASSEMBLY
LOT CODE
34
DATE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
P = DESIGNATES LEAD-FREE
PRODUCT QUALIFIED TO THE
CONSUMER LEVEL (OPTIONAL)
YEAR 1 = 2001
WEEK 16
A = ASSEMBLY SITE CODE
Notes:
1.
2.
For an Automotive Qualified version of this part please seehttp://www.infineon.com/product-info/datasheets/data/auirfr3710z.pdf
For the most current drawing please refer to Infineon website at http://www.infineon.com/package/
9
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: THIS IS AN IRFU120
WITH ASSEMBLY
LOT CODE 5678
ASSEMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "A"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFU120
119A
56
78
ASSEMBLY
LOT CODE
Note: "P" in assembly line position
indicates Lead-Free"
DATE CODE
YEAR 1 = 2001
WEEK 19
LINE A
OR
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFU120
56
ASSEMBLY
LOT CODE
78
DATE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 1 = 2001
WEEK 19
A = ASSEMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.infineon.com/product-info/auto/
2. For the most current drawing please refer to Infineon website at http://www.infineon.com/package/
10
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
I-Pak Leadform Option 701 Package Outline 
Dimensions are shown in millimeters (inches)
11
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to Infineon’s web site www.infineon.com
12
2016-5-31
IRFR/U3710ZPbF & IRFU3710Z-701PbF
Qualification Information†
Industrial
(per JEDEC JESD47F) ††
Qualification Level
Moisture Sensitivity Level
D-Pak
MSL1
I-Pak
(per JEDEC J-STD-020D) ††
Yes
RoHS Compliant
†
Qualification standards can be found at Infineon’s web site www.infineon.com
††
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
5/31/2016
Comments


Updated datasheet with corporate template.
Added disclaimer on last page.
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU‐ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI‐POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my‐d™, NovalithIC™, OPTIGA™,
Op MOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO‐SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respec ve owners.
Edi on 2016‐04‐19
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a ques on about this
document?
Email: [email protected]
Document reference
ifx1
IMPORTANT NOTICE
The informa on given in this document shall in no
event be regarded as a guarantee of condi ons or
characteris cs (“Beschaffenheitsgaran e”) .
With respect to any examples, hints or any typical
values stated herein and/or any informa on
regarding the applica on of the product, Infineon
Technologies hereby disclaims any and all
warran es and liabili es of any kind, including
without limita on warran es of non‐infringement
of intellectual property rights of any third party.
In addi on, any informa on given in this document
is subject to customer’s compliance with its
obliga ons stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applica ons.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended applica on and the completeness of the
product informa on given in this document with
respect to such applica on.
13
For further informa on on the product, technology,
delivery terms and condi ons and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automo ve Electronics Council.
WARNINGS
Due to technical requirements products may
contain dangerous substances. For informa on on
the types in ques on please contact your nearest
Infineon Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a wri en document signed by
authorized representa ves of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applica ons where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.
2016-5-31
Similar pages