FREESCALE MRF5S9101MBR1

Freescale Semiconductor
Technical Data
Document Number: MRF5S9101
Rev. 2, 7/2005
RF Power Field Effect Transistors
MRF5S9101NR1
MRF5S9101NBR1
MRF5S9101MR1
MRF5S9101MBR1
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for GSM and GSM EDGE base station applications with
frequencies from 869 to 960 MHz. Suitable for multicarrier amplifier
applications.
GSM Application
• Typical GSM Performance: VDD = 26 Volts, IDQ = 700 mA, Pout =
100 Watts CW, Full Frequency Band (869 - 894 MHz and 921 - 960 MHz)
Power Gain - 17.5 dB
Drain Efficiency - 60%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 650 mA, Pout =
50 Watts Avg., Full Frequency Band (869 - 894 MHz and 921 - 960 MHz)
Power Gain — 18 dB
Spectral Regrowth @ 400 kHz Offset = - 63 dBc
Spectral Regrowth @ 600 kHz Offset = - 78 dBc
EVM — 2.3% rms
• Capable of Handling 10:1 VSWR, @ 26 Vdc, @ 100 W CW Output Power,
@ f = 960 MHz
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• N Suffix Indicates Lead - Free Terminations
• 200°C Capable Plastic Package
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
869 - 960 MHz, 100 W, 26 V
GSM/GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF5S9101NR1(MR1)
CASE 1484 - 02, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF5S9101NBR1(MBR1)
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain- Source Voltage
VDSS
- 0.5, +68
Vdc
Gate- Source Voltage
VGS
- 0.5, +15
Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
427
2.44
W
W/°C
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 100 W CW
Case Temperature 80°C, 50 W CW
RθJC
0.41
0.47
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
 Freescale Semiconductor, Inc., 2005. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1C (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
µAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 26 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
µAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
µAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 µAdc)
VGS(th)
2
2.8
3.5
Vdc
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 700 mAdc)
VGS(Q)
—
3.7
—
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.21
0.3
Vdc
Forward Transconductance
(VDS = 10 Vdc, ID = 6 Adc)
gfs
—
7
—
S
Output Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
70
—
pF
Reverse Transfer Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.2
—
pF
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W, IDQ = 700 mA, f = 960 MHz
Power Gain
Gps
16
17.5
19
dB
Drain Efficiency
ηD
56
60
—
%
Input Return Loss
IRL
—
- 15
-9
dB
P1dB
100
110
—
W
Pout @ 1 dB Compression Point, CW
1. Part is internally input matched.
(continued)
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, Pout = 50 W Avg.,
IDQ = 650 mA, 869 MHz<Frequency<894 MHz, 920 MHz<Frequency<960 MHz
Power Gain
Gps
—
18
—
dB
Drain Efficiency
ηD
—
42
—
%
Error Vector Magnitude
EVM
—
2.3
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 63
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 78
—
dBc
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
3
Z11
VBIAS
C1
VSUPPLY
+
R1
R2
C4
C7
C8
Z13
C5
C2
C21
R3
C16
RF
INPUT
C13
Z2
DUT
Z10
Z9
C19
Z8
C10
Z7
RF
OUTPUT
C14
Z3
Z4
Z5
C15
C18
C20
Z6
Z1
C11
C12
C17
Z12
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
0.698″ x 0.827″ Microstrip
0.720″ x 0.788″ Microstrip
0.195″ x 0.087″ Microstrip
0.524″ x 0.087″ Microstrip
0.233″ x 0.087″ Microstrip
0.560″ x 0.087″ Microstrip
0.095″ x 0.827″ Microstrip
0.472″ x 0.087″ Microstrip
0.384″ x 0.087″ Microstrip
Z10
Z11, Z12*
Z13*
PCB
C6
C3
1.491″ x 0.087″ Microstrip
1.6″ x 0.089″ Microstrip
(quarter wave length for supply purpose)
1.2″ x 0.059″ Microstrip
(quarter wave length for bias purpose)
Taconic TLX8 - 0300, 0.030″, εr = 2.55
*Variable for tuning
Figure 1. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Schematic
Table 6. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3
4.7 mF Chip Capacitors (2220)
GRM55ER7H475KA01
Murata
C4, C5, C6
10 nF 200B Chip Capacitors
200B103MW
ATC
C7, C8, C9
33 pF 100B Chip Capacitors
100B330JW
ATC
C10, C11
22 pF 100B Chip Capacitors
100B220GW
ATC
C12, C13
10 pF 100B Chip Capacitors
100B100GW
ATC
C14, C15, C16, C17
8.2 pF 100B Chip Capacitors
100B8R2CW
ATC
C18
5.6 pF 100B Chip Capacitor
100B5R6CW
ATC
C19
4.7 pF 100B Chip Capacitor
100B4R7BW
ATC
C20
3.9 pF 100B Chip Capacitor
100B3R9BW
ATC
C21
220 mF, 50 V Electrolytic Capacitor, Axial
516D227M050NP7B
Sprague
R1, R2
10 kW, 1/4 W Chip Resistors (1206)
R3
10 W, 1/4 W Chip Resistor (1206)
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
4
RF Device Data
Freescale Semiconductor
C21
VDD
VGG
R1
C1
C4 C7
C8
C2
C5
R2
C10
C19
C17
CUT OUT AREA
R3 C16
C13
C14
C11
C18
C20
C12
C15
C3
MRF5S9101N
900 MHz
Rev 2
C9
C6
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 2. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Component Layout
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS - 900 MHz
18
G ps , POWER GAIN (dB)
17
60
ηD
16
50
15
40
VDD = 26 Vdc
IDQ = 700 mA
14
30
0
13
12
−15
IRL
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
70
Gps
−30
11
10
860
880
900
920
940
960
980
1000
−45
1020
f, FREQUENCY (MHz)
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 Watts CW
19
G ps , POWER GAIN (dB)
18
45
Gps
17
40
35
16
ηD
15
30
VDD = 26 Vdc
IDQ = 700 mA
14
−8
−12
13
IRL
12
−16
11
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
50
−20
10
860
880
900
920
940
960
980
1000
−24
1020
f, FREQUENCY (MHz)
Figure 4. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 Watts CW
19
19
IDQ = 1500 mA
VDD = 12 V
18
17
G ps , POWER GAIN (dB)
G ps , POWER GAIN (dB)
18
700 mA
1300 mA
16
500 mA
VDD = 26 Vdc
f = 940 MHz
1100 mA
900 mA
15
17
16
32 V
15
10
100
1000
28 V
16 V
14
14
1
24 V
20 V
300 mA
0
20
40
60
80
100
120
140
160
180
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. Power Gain versus Output Power
Figure 6. Power Gain versus Output Power
200
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
6
RF Device Data
Freescale Semiconductor
20
70
60
25_C
TC = −30_C
85_C
18
50
25_C
17
40
85_C
16
30
ηD
15
20
VDD = 26 Vdc
IDQ = 700 mA
f = 940 MHz
14
13
1
10
10
0
1000
100
3.5
VDD = 28 Vdc
IDQ = 650 mA
3
Pout = 50 W Avg.
2.5
2
40 W Avg.
1.5
25 W Avg.
1
0.5
0
910
900
920
930
940
950
960
970
Pout, OUTPUT POWER (WATTS) CW
f, FREQUENCY (MHz)
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
Figure 8. Error Vector Magnitude versus
Frequency
EVM, ERROR VECTOR MAGNITUDE (% rms)
9
980
60
VDD = 28 Vdc
IDQ = 650 mA
f = 940 MHz
8
50
6
40
5
30
TC = 85_C
ηD
25_C
3
20
−30_C
EVM
2
ηD, DRAIN EFFICIENCY (%)
G ps , POWER GAIN (dB)
19
ηD, DRAIN EFFICIENCY (%)
TC = −30_C
Gps
EVM, ERROR VECTOR MAGNITUDE (% rms)
TYPICAL CHARACTERISTICS - 900 MHz
10
0
0
10
1
100
Pout, OUTPUT POWER (WATTS) AVG.
−45
SR 400 kHz
−63
Pout = 50 W Avg.
−68
25 W Avg.
−73
SR 600 kHz
40 W Avg.
40 W Avg.
25 W Avg.
−78
VDD = 28 Vdc
IDQ = 650 mA
f = 940 MHz
50 W Avg.
−83
900
910
920
930
940
950
SPECTRAL REGROWTH @ 400 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dBc)
Figure 9. Error Vector Magnitude and Drain
Efficiency versus Output Power
VDD = 28 Vdc
IDQ = 650 mA
f = 940 MHz
−50
TC = 85_C
−55
25_C
−60
−30_C
−65
−70
−75
−80
960
970
980
0
10
20
30
40
50
60
70
80
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 10. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 11. Spectral Regrowth at 400 kHz
versus Output Power
90
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS - 900 MHz
SPECTRAL REGROWTH @ 600 kHz (dBc)
−65
VDD = 28 Vdc
IDQ = 650 mA
f = 940 MHz
−70
TC = 85_C
25_C
−75
−30_C
−80
−85
0
10
20
30
40
50
60
70
80
90
Pout, OUTPUT POWER (WATTS) AVG.
Figure 12. Spectral Regrowth @ 600 kHz
versus Output Power
MTTF FACTOR (HOURS X AMPS2)
1.E+10
1.E+09
1.E+08
1.E+07
90
100 110 120 130 140 150 160 170 180 190 200 210
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 13. MTTF Factor versus Junction Temperature
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
8
RF Device Data
Freescale Semiconductor
Z12
VBIAS
C1
VSUPPLY
+
R1
R2
C4
C7
C8
Z14
C5
C2
C21
R3
C16
RF
INPUT
C13
Z10
C19
Z9
C10
Z8
Z7
Z3
Z2
DUT
Z11
RF
OUTPUT
C14
Z4
Z5
C18
C20
Z6
Z1
C11
C22
C12
C17
C15
Z13
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
0.432″ x 0.827″ Microstrip
0.720″ x 0.788″ Microstrip
0.195″ x 0.087″ Microstrip
0.584″ x 0.087″ Microstrip
0.173″ x 0.087″ Microstrip
0.560″ x 0.087″ Microstrip
0.378″ x 0.827″ Microstrip
0.279″ x 0.087″ Microstrip
0.193″ x 0.087″ Microstrip
Z10
Z11
Z12, Z13*
Z14*
PCB
C6
C3
0.897″ x 0.087″ Microstrip
1.161″ x 0.087″ Microstrip
1.6″ x 0.089″ Microstrip
(quarter wave length for supply purpose)
1.2″ x 0.059″ Microstrip
(quarter wave length for bias purpose)
Taconic TLX8 - 0300, 0.030″, εr = 2.55
*Variable for tuning
Figure 14. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Schematic
Table 7. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3
4.7 mF Chip Capacitors (2220)
GRM55ER7H475KA01
Murata
C4, C5, C6
10 nF 200B Chip Capacitors
200B103MW
ATC
C7, C8, C9
33 pF 100B Chip Capacitors
100B330JW
ATC
C10, C11
22 pF 100B Chip Capacitors
100B220GW
ATC
C12, C13, C17
10 pF 100B Chip Capacitors
100B100GW
ATC
C14, C15
8.2 pF 100B Chip Capacitors
100B8R2CW
ATC
C16, C22
6.8 pF 100B Chip Capacitors
100B6R8CW
ATC
C18
5.6 pF 100B Chip Capacitor
100B5R6CW
ATC
C19, C20
2.7 pF 100B Chip Capacitors
100B2R7BW
ATC
C21
220 mF, 50 V Electrolytic Capacitor, Axial
516D227M050NP7B
Sprague
R1, R2
10 kW, 1/4 W Chip Resistors (1206)
R3
10 W, 1/4 W Chip Resistor (1206)
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
9
C21
VDD
VGG
R1
C1
C4 C7
C8
C2
C5
C16
R3
C10
C22
CUT OUT AREA
R2
C13
C14
C18
C11
C20
C17
C12
C15
C3
C19
MRF5S9101N
800 MHz
Rev 2
C9
C6
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 15. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Component Layout
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS - 800 MHz
65
G ps , POWER GAIN (dB)
19
60
18
Gps
55
17
ηD
50
16
15
45
VDD = 26 Vdc
IDQ = 700 mA
IRL
−10
14
−12
13
−14
12
−16
11
−18
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
20
10
−20
820 830 840 850 860 870 880 890 900 910 920 930 940
f, FREQUENCY (MHz)
Figure 16. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 W CW
20
18
17
40
Gps
35
ηD
30
16
25
VDD = 26 Vdc
IDQ = 700 mA
15
14
−10
−12
IRL
13
−14
12
−16
11
−18
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
G ps , POWER GAIN (dB)
19
45
10
−20
820 830 840 850 860 870 880 890 900 910 920 930 940
f, FREQUENCY (MHz)
3
2.5
Pout = 50 W Avg.
2
40 W Avg.
25 W Avg.
1.5
1
VDD = 28 Vdc
IDQ = 650 mA
0.5
0
9
60
VDD = 28 Vdc
IDQ = 650 mA
f = 880 MHz
8
50
6
40
η
5
30
TC = 25_C
3
20
EVM
2
10
0
850
860
870
880
890
910
900
η, DRAIN EFFICIENCY (%)
3.5
EVM, ERROR VECTOR MAGNITUDE (% rms)
EVM, ERROR VECTOR MAGNITUDE (% rms)
Figure 17. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 W CW
0
1
10
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 18. Error Vector Magnitude versus
Frequency
Figure 19. Error Vector Magnitude and Drain
Efficiency versus Output Power
100
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
11
−45
−64
Pout = 50 W Avg.
−66
SPECTRAL REGROWTH @ 400 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TYPICAL CHARACTERISTICS - 800 MHz
40 W Avg.
−68
SR 400 kHz
−70
25 W Avg.
−72
−74
SR 600 kHz
−76
VDD = 28 Vdc
IDQ = 650 mA
25 W Avg.
−78
Pout = 50 W Avg.
−80
40 W Avg.
−82
850
860
−50
TC = 25_C
−55
−60
−65
−70
VDD = 28 Vdc
IDQ = 650 mA
f = 880 MHz
−75
−80
870
880
890
900
910
0
10
20
30
40
50
60
70
80
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 20. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 21. Spectral Regrowth at 400 kHz
versus Output Power
90
SPECTRAL REGROWTH @ 400 kHz (dBc)
−65
VDD = 28 Vdc
IDQ = 650 mA
f = 880 MHz
−70
−75
TC = 25_C
−80
−85
0
10
20
30
40
50
60
70
80
90
Pout, OUTPUT POWER (WATTS) AVG.
Figure 22. Spectral Regrowth at 600 kHz
versus Output Power
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
12
RF Device Data
Freescale Semiconductor
f = 990 MHz
f = 845 MHz
Zload
f = 845 MHz
Zsource
f = 990 MHz
Zo = 5 Ω
VDD = 26 Vdc, IDQ = 700 mA, Pout = 100 W CW
f
MHz
Zload
Ω
Zsource
Ω
845
4.29 - j2.23
1.15 - j0.04
865
3.94 - j1.24
1.05 - j0.10
890
2.72 - j0.96
1.02 - j0.07
920
1.96 - j1.02
1.03 - j0.15
960
1.58 - j1.43
1.03 - j0.05
990
1.27 - j1.54
0.73 - j0.07
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Input
Matching
Network
Z
source
Z
load
Figure 23. Series Equivalent Source and Load Impedance
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
E1
B
A
2X
E3
GATE LEAD
DRAIN LEAD
D
D1
4X
e
4X
aaa
b1
C A
M
2X
2X
D2
c1
E
H
DATUM
PLANE
F
ZONE J
A
A1
2X
A2
E2
NOTE 7
E5
E4
4
D3
3
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
E5
BOTTOM VIEW
C
SEATING
PLANE
PIN 5
NOTE 8
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO
INCLUDE MOLD MISMATCH AND ARE DETER−
MINED AT DATUM PLANE −H−.
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE “b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA
OF THE HEAT SLUG.
1
2
CASE 1486 - 03
ISSUE C
TO - 270 WB - 4
PLASTIC
MRF5S9101NR1(MR1)
DIM
A
A1
A2
D
D1
D2
D3
E
E1
E2
E3
E4
E5
F
b1
c1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.712
.720
.688
.692
.011
.019
.600
−−−
.551
.559
.353
.357
.132
.140
.124
.132
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.106 BSC
.004
STYLE 1:
PIN 1.
2.
3.
4.
5.
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
18.08
18.29
17.48
17.58
0.28
0.48
15.24
−−−
14
14.2
8.97
9.07
3.35
3.56
3.15
3.35
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
0.18
0.28
2.69 BSC
0.10
DRAIN
DRAIN
GATE
GATE
SOURCE
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
14
RF Device Data
Freescale Semiconductor
E1
r1
aaa M C A B
2X
A
B
GATE LEAD
E2
DRAIN LEAD
3
D D2
D1
4X
e
4
b1
aaa M C A
4X
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
H
ZONE J
A
A1
A2
7
Y
E3
1
2
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD
AND IS COINCIDENT WITH THE LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY AT THE TOP OF
THE PARTING LINE.
4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE −H−.
5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE "b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA OF
THE HEAT SLUG.
F
DATUM
PLANE
NOTE 8
E3
VIEW Y - Y
E
c1
PIN 5
Y
C
SEATING
PLANE
STYLE 1:
PIN 1.
2.
3.
4.
5.
CASE 1484 - 02
ISSUE B
TO - 272 WB - 4
PLASTIC
MRF5S9101NBR1(MBR1)
DRAIN
DRAIN
GATE
GATE
SOURCE
DIM
A
A1
A2
D
D1
D2
E
E1
E2
E3
F
b1
c1
r1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.928
.932
.810 BSC
.600
−−−
.551
.559
.353
.357
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.063
.068
.106 BSC
.004
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
23.57
23.67
20.57 BSC
15.24
−−−
14
14.2
8.97
9.07
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
.18
.28
1.60
1.73
2.69 BSC
.10
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
RF Device Data
Freescale Semiconductor
15
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
 Freescale Semiconductor, Inc. 2005. All rights reserved.
MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1
Document Number: MRF5S9101
Rev. 2, 7/2005
16
RF Device Data
Freescale Semiconductor