FUJITSU MB89P595BWPFV

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12544-2E
8-bit Proprietary Microcontrollers
CMOS
F2MC-8L MB89590B/BW Series
MB89593B/595B/P595B/
MB89593BW/595BW/P595BW
■ DESCRIPTION
The MB89590B/BW series is a line of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, these microcontrollers contain a variety of peripheral functions, such as PLL clock control, timers, a
serial interface, a PWM timer, the USB hub function, and the USB function. The USB hub function, in particular, supports five ports (one of them is dedicated to an internal function) allowing them to interface with other USB devices.
The microcontrollers also contain one USB function channel to support high speeds.
■ FEATURES
• Package type
64-pin LQFP package (0.5 mm pitch)
• High-speed operations at low voltage
Minimum execution time : 0.33 µs (Automatically generates a 12 MHz main clock and a 48 MHz USB interface
synchronization clock with an externally supplied 6 MHz clock and the internal PLL circuit.)
• F2MC-8L CPU core
Instruction set that is optimum to the controllers
Multiplication and division instructions,
16-bit arithmetic operations,
Branch instructions by bit testing,
Bit manipulation instructions, etc.
(Continued)
■ PACKAGE
64-pin plastic LQFP
(FPT-64P-M03)
MB89590B/BW Series
(Continued)
• PLL clock control
The internal PLL clock circuit allows the use of low-speed clocks which are advantageous to noise characteristics.
(6 MHz externally supplied clock : Internal system clock oscillated at 12 MHz)
• Various timers
8-bit PWM timer (can be used as either 8-bit PWM timer × 2 channels or PPG timer × 1 channel)
Internal 21-bit timebase timer
• Internal USB transceiver circuit (Compatible with high and low speeds)
• USB hub
Compliant to USB Protocol Revision 1.0
Five downstream port channels (One of these channels is dedicated to a function.)
Automatically responds to all USB protocols by hardware.
Descriptor configuration information is provided as ROM data for automatic responding by hardware (vendor
ID and product ID) .
* String data is not supported.
Allows switching between BUS power supply and own power supply modes.
Power supply to the USB down ports is controlled port by port.
• USB function
Compliant to USB Protocol Revision 1.0
Support for full speed
Allows four endpoints to be specified at maximum.
Types of transfer supported : control/interrupt/bulk/isochronous
Built-in DMAC (Maps the buffer for each endpoint on to the internal RAM to directly access the memory for
function’s send and receive data.)
• UART/serial interface
Built-in UART/SIO function (selectable by switching)
• External interrupt
External interrupt (level detection × 8 channels)
Eight inputs are independent of one another and can also be used for resetting from low-power consumption
mode (the L-level detection feature available) .
• Low power consumption (standby mode supported)
Stop mode (There is almost no current consumption since oscillation stops.)
Sleep mode (This mode stops the running CPU.)
• A maximum of 45 general-purpose I/O ports
General-purpose I/O ports (CMOS) : 34
General-purpose output ports (CMOS) : 8
General-purpose I/O ports (Nch open drain) : 3
• Power supply
Supply voltage : 3.0 to 5.5 V
2
MB89590B/BW Series
■ PRODUCT LINEUP
Part number
Parameter
MB89593B MB89595B MB89P595B MB89593BW MB89595BW MB89P595BW
ROM size
8 KB
16 KB
8 KB
16 KB
RAM size
512 B
1 KB
512 B
1 KB
Package
LQFP-64 (FPT-64P-M03)
Operation
at USB reset
High impedance state
MASK
product
Others
MASK
product
OTP/EVA
product
Low-level output
MASK
product
MASK
product
Number of instructions
Instruction bit length
Instruction length
Data bit length
Minimum execution time
Interrupt processing time
: 136
: 8 bits
: 1 to 3 bytes
: 1, 8, and 16 bits
: 0. 33 µs (6 MHz)
: 3 µs (6 MHz)
Generalpurpose
ports
General-purpose I/O ports
General-purpose output ports
(34 : CMOS; 3 : Nch open drain)
(8 : CMOS)
USB hub
Upstream port : 1 channel
Downstream port : 5 channels (One is dedicated to an internal function.)
Port power supply control method : By individual port
Allows selection between own power supply and bus power supply
CPU functions
Peripher- USB
al funcfunction
tions
PWM timer
OTP/EVA
product
Supports full speed.
Four endpoints at maximum
Built-in DMAC (Allows DMA transfer to the internal RAM)
8-bit PWM timer operation × 2 channels (can also be used as a PPG × 1 channel timer)
UART SIO
Allows switching between UART (clock-synchronous/asynchronous data transfer allowed) and SIO (simple serial transfer) .
Timebase
timer
21-bit timebase timer
Clock
output
Allows output of two main clock divisions
Standby mode
Sleep mode and Stop mode
3
MB89590B/BW Series
■ DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the OTP product, verify its differences from the product that will actually be used.
2. Current Consumption
When operated at low speeds, a product mounted with either one-time PROM or EPROM consumes more
current than a product mounted with a mask ROM. However, in sleep/stop mode the current consumption is the
same.
For detailed information on each package, see “■ PACKAGE DIMENSIONS.”
3. Differences Between the MB89590B series and the MB89590BW Series
MB89590B series :
Remains in high impedance state until USB connection takes place. Before the USB
connection, use one general-purpose port output to control pullup resistance connection of this port by software.
MB89590BW series : Outputs at low level until USB connection takes place.
• Example MB89590B product connection
3.3 V
MB89590B series
Host PC
General-purpose
port
1.5 kΩ
RPVP pin
D+
RPVM pin
D−
• Example MB89590BW product connection
3.3 V
Host PC
MB89590BW series
1.5 kΩ
4
D+
RPVP pin
D−
RPVM pin
MB89590B/BW Series
■ PIN ASSIGNMENT
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P43/POW4
P42/POW3
P41/POW2
P40/POW1
D4VM
D4VP
D3VM
D3VP
D2VM
D2VP
D1VM
D1VP
RPVM
RPVP
C
VCC
(TOP VIEW)
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P00
P01
P02
P03
P04
P05
P06
P07
P10
P11
P12
P13
P14
P15
P16
P17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
P53
P54
RST
MOD0
MOD1
X0
X1
VSS
P27
P26
P25
P24
P23
P22
P21
P20
P44/UCK
P45/UO
P46/UI/PWM1
P47/PWM2
P30/INT0/CLK
P31/INT1
P32/INT2
P33/INT3
P34/INT4
P35/INT5
P36/INT6
P37/INT7
P50
VSS
P51
P52
(FPT-64P-M03)
5
MB89590B/BW Series
■ PIN DESCRIPTION
Pin No.
Pin name
Circuit type
Function
1
P44/UCK
E
General-purpose CMOS I/O pin
UART/S10 clock I/O
2
P45/UO
B
General-purpose CMOS I/O pin
UART/S10 serial data output
3
P46/UI/
PWM1
E
General-purpose CMOS I/O pin
UART/S10 serial data input
PWM timer
4
P47/PWM2
B
General-purpose CMOS I/O pin
PWM timer
5
P30/INT0/
CLK
E
General-purpose CMOS I/O pin
Clock output pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
6
P31/INT1
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
7
P32/INT2
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
8
P33/INT3
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
9
P34/INT4
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
10
P35/INT5
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
11
P36/INT6
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
12
P37/INT7
E
General-purpose CMOS I/O pin
This pin also serves as an external interrupt input pin.
The external interrupt input is a hysteresis input. (Level detection)
13
P50
B
General-purpose CMOS I/O pin
14
VSS

Power supply pin (GND)
15
P51
B
General-purpose CMOS I/O pin
16
P52
K
General-purpose Nch open drain I/O pin
17
P53
K
General-purpose Nch open drain I/O pin
18
P54
K
General-purpose Nch open drain I/O pin
19
RST
I
Reset pin. (Reset on the negative logic low level.)
(Continued)
6
MB89590B/BW Series
Pin No.
Pin name
Circuit type
Function
20
MOD0
F
An operating mode designation pin. Connect directly to Vss.
21
MOD1
F
An operating mode designation pin. Connect directly to Vss.
22
X0
23
X1
A
Pins for the Crystal oscillator (6 MHz)
24
VSS

Power supply pin (GND)
25
P27
B
General-purpose CMOS output pin
26
P26
B
General-purpose CMOS output pin
27
P25
B
General-purpose CMOS output pin
28
P24
B
General-purpose CMOS output pin
29
P23
B
General-purpose CMOS output pin
30
P22
B
General-purpose CMOS output pin
31
P21
B
General-purpose CMOS output pin
32
P20
B
General-purpose CMOS output pin
33
P17
B
General-purpose CMOS I/O pin
34
P16
B
General-purpose CMOS I/O pin
35
P15
B
General-purpose CMOS I/O pin
36
P14
B
General-purpose CMOS I/O pin
37
P13
B
General-purpose CMOS I/O pin
38
P12
B
General-purpose CMOS I/O pin
39
P11
B
General-purpose CMOS I/O pin
40
P10
B
General-purpose CMOS I/O pin
41
P07
B
General-purpose CMOS I/O pin
42
P06
B
General-purpose CMOS I/O pin
43
P05
B
General-purpose CMOS I/O pin
44
P04
B
General-purpose CMOS I/O pin
45
P03
B
General-purpose CMOS I/O pin
46
P02
B
General-purpose CMOS I/O pin
47
P01
B
General-purpose CMOS I/O pin
48
P00
B
General-purpose CMOS I/O pin
49
VCC

Power supply pin
50
C

Connect an external capacitor of 0.1 µF. When using with 3.3 V power
supply, connect this pin with the Vcc pin to set to 3.3 V input.
51
RPVP
USBDRV
USB route port + pin
52
RPVM
USBDRV
USB router port − pin
(Continued)
7
MB89590B/BW Series
(Continued)
8
Pin No.
Pin name
Circuit type
Function
53
D1VP
USBDRV
USB down port 1 + pin
54
D1VM
USBDRV
USB down port 1 − pin
55
D2VP
USBDRV
USB down port 2 + pin
56
D2VM
USBDRV
USB down port 2 − pin
57
D3VP
USBDRV
USB down port 3 + pin
58
D3VM
USBDRV
USB down port 3 − pin
59
D4VP
USBDRV
USB down port 4 + pin
60
D4VM
USBDRV
USB down port 4 − pin
61
P40/POW1
B
General-purpose CMOS I/O pin.
This pin also serves as a USB Down Port power control signal pin.
62
P41/POW2
B
General-purpose CMOS I/O pin.
This pin also serves as a USB Down Port power control signal pin.
63
P42/POW3
B
General-purpose CMOS I/O pin.
This pin also serves as a USB Down Port power control signal pin.
64
P43/POW4
B
General-purpose CMOS I/O pin.
This pin also serves as a USB Down Port power control signal pin.
MB89590B/BW Series
■ I/O CIRCUIT TYPE
Type
Circuit
Remarks
Oscillation feedback resistance
X1
Approx. 1 MΩ
A
X0
CMOS I/O
R
Pch
Pullup control register
Pch
B
Nch
Input
CMOS I/O
R
Hysteresis input
Pch
Pullup control register
Pch
E
Nch
Port input
Resource input
CMOS input
F
Input
Hysteresis I/O
Pullup resistance
R
Pch
I
Nch
Input
(Continued)
9
MB89590B/BW Series
(Continued)
Type
Circuit
Remarks
USB I/O
D+ input
D– input
D+
Operation input
D–
Full D+ output
USBDRV
Full D– output
Low D+ output
Low D– output
Direction
Speed
Nch open drain I/O
R
Pch
Pullup control register
K
Nch
Input
10
MB89590B/BW Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input or output pins
other than the medium- and high-voltage pins or if voltage higher than the rating is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also take care to prevent the analog input from exceeding the digital power supply (Vcc) when the power supply
to the analog power system is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions and latchup leading to permanent damage to the
pins. These unused pins should be connected to a pullup or pulldown resistance of at least 2 kΩ between the
pin and the power supply.
Unused I/O pins should be placed in output state to leave it open or pins that are in input state should be handled
the same as unused input pins.
3. Power Supply Voltage Fluctuations
Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage
could cause malfunctions even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore
important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power
is switched.
11
MB89590B/BW Series
■ ONE-TIME PROM AND EPROM MICROCONTROLLER
PROGRAMMING SPECIFICATIONS
PROM mode is available on the MB89P595B/BW microcontrollers. The use of a dedicated adapter allows you
to program the devices with a general-purpose ROM programmer. However, keep in mind that electronic signature mode is not available.
1. Memory Space
Normal operating mode
0000H
(Corresponding addresses
on the ROM programmer)
I/O
0080H
RAM
0480H
Not available
C000H
0000H
Program area
(PROM)
FFFFH
Program area
(PROM)
3FFFH
2. ROM programmer adapter and its compatible programmers
Compatible adapter
Compatible programmers and models
Sun Hayato Co, Ltd.
Ando Denki K. K.
ROM2-64LQF-32DP-8LA
AF9708 (Version 1.40 or higher)
AF9709 (Version 1.40 or higher)
AF9723 (Version 1.50 or higher)
Package
FTP-64P-M03
Inquiry:
Sun Hayato Co., Ltd.
Ando Denki K. K.
: TEL. 81-3-3986-0403
: TEL. 81-3-3733-1160
3. Programming the EPROM (Using the Ando Denki K.K. programmer)
(1) Set the EPROM programmer type code to 17209.
(2) Load program data on to the EPROM programmer at 0000H to 3FFFH.
(3) Program C000H to FFFFH with the EPROM programmer.
12
MB89590B/BW Series
■ BLOCK DIAGRAM
X0
X1
Main clock oscillator
Reset output
Clock control circuit
Power on
reset circuit
(watchdog timer)
PLL circuit
D1VM to D4VM
Dp1-4
USB HUB
circuit
CMOS I/O Port
P40/POW1
to P43/POW4
P46/UI/PWM1
8-bit PWM
timer
P47/PWM2
CMOS I/O Port
Dp5
Internal bus
D1VP to D4VP
USB DRV
RPVM
21-bit timebase timer
Rp
RPVP
UART
USB
Function
circuit
SIO
CMOS out Port
P50 , P51
CMOS I/O Port
P31/INT1
to P37/INT7
P44/UCK
P45/UO
P00 to P07, P10 to P17
DMAC
P30/INT0/CLK
RST
P20 to P27
Clock output
External interrupt (level)
RAM 1 K / 512 Byte
F2MC - 8L CPU
Nch I/O Port
P52 to P54
ROM 8 K / 16 KByte
Other pins
VSS
VCC
MOD0 MOD1
C
13
MB89590B/BW Series
■ CPU CORE
1. Memory Space
The MB89590B/BW microcontrollers offer a memory space of 64 Kbytes consisting of the I/O, RAM and ROM
areas. The memory space contains areas that are used for specific purposes, such as a general-purpose register
and a vector table.
• I/O area (addresses : 0000H through 007FH)
This area is assigned with the control and data registers, for example, of peripheral functions to be built in.
The I/O area is as accessible as the memory since the area is assigned to a part of the memory space. Direct
addressing also allows the area to be accessed faster.
• RAM area
As an internal data area, a static RAM is built in.
The internal RAM capacity varies with the product type.
The area 80H to FFH can be accessed at high speed with direct addressing.
The area 100H to 1FFH can be used a general-purpose register area. (The usable area is limited depending
on the product.)
When reset, RAM data becomes undefined.
• ROM area
As an internal program area, a ROM is built in.
The internal ROM capacity varies with the product type.
The area FFCOH to FFFFH should be used for a vector table, for example.
• Memory Map
MB89593B
MB89593BW
0000H
MB89P595B, MB89P595BW
MB89595B, MB89595BW
0000H
I/O
I/O
0080H
0080H
RAM
RAM
0100H
0100H
Register
0200H
Register
0200H
0280H
0480H
Not
available
Not
available
C000H
E000H
ROM*
ROM
FFC0H
FFFFH
Vector table
(reset, interrupt, vector call instructions)
14
FFC0H
FFFFH
* The area is EPROM on the MB89P595B and
MB89P595BW microcontrollers.
MB89590B/BW Series
2. Registers
The MB89590B/BW series has two types of registers; the registers dedicated to specific purposes in the CPU
and the general-purpose registers.
The dedicated registers are as follows:
Program counter (PC)
: A 16-bit register to indicate locations where instructions are stored.
Accumulator (A)
: A 16-bit register for temporary storage of operations. In the case of an 8-bit data
processing instruction, the lower one byte is used.
Temporary accumulator (T) : A 16-bit register which performs operations with the accumulator. In the case of
an 8-bit data processing instruction, the lower one byte is used.
Index register (IX)
: A 16-bit register for index modification.
Extra pointer (EP)
: A 16-bit register to point to a memory address.
Stack pointer (SP)
: A 16-bit register to indicate a stack area.
Program status (PS)
: A 16-bit register to store a register pointer or a condition code.
16 bits
: Program counter
PC
Initial value
FFFDH
A
: Accumulator
Indeterminate
T
: Temporary accumulator
Indeterminate
IX
: Index register
Indeterminate
EP
: Extra pointer
Indeterminate
SP
: Stack pointer
Indeterminate
RP
CCR
PS
: Program status
I-flag = 0, IL1, 0 = 11
Initial values for other
bits are indeterminate.
15
MB89590B/BW Series
The PS register can further be divided into the register bank pointer in the higher 8 bits (RP) and the condition code
register in the lower 8 bits (CCR) . (See the diagram below.)
CCR
RP
PS
bit15 bit14 bit13 bit12 bit11 bit10 bit9
R4
R3 R2 R1 R0
−
−
bit8
−
bit7
H
bit6
I
bit5
IL1
bit4
IL0
bit3
N
bit2
Z
bit1
bit0
V
C
CCR initial value
X011XXXXB
H-flag
I-flag
IL 1, 0
N-flag
Z-flag
V-flag
C-flag
X : Undefined
The RP points to the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule shown next.
Rule for Conversion of Actual Addresses in the General-purpose Register Area
RP higher bits
"0"
Generated addresses
"0"
"0"
"0"
"0"
"0"
A15 A14 A13 A12 A11 A10
"0"
A9
"1"
A8
R4
R3
A7
R2
A6
A5
R1
A4
OP code in lower bits
R0
A3
b2
A2
b1
A1
b0
A0
The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that
control CPU operations at the time of an interrupt.
H flag
I flag
IL1, 0
16
: The flag is set to “1” when an arithmetic operation results in a carry from bit 3 to bit 4 or in a borrow
from bit 4 to bit 3. The bit is cleared to “0” in other instances. The flag is for decimal adjustment
instructions; do not use for other than additions and subtractions.
: Interrupt is enabled when this flag is set to “1.” Interrupt is disabled when this flag is set to “0.” The
flag is set to “0” when reset.
: Indicates the level of the interrupt currently enabled. An interrupt is processed only if its level is
higher than the value this bit indicates.
IL1
IL0
Interrupt level
0
0
0
1
1
0
2
1
1
3
1
High-low
Higher
Lower = no interruption
MB89590B/BW Series
N flag
Z flag
V flag
C flag
: The flag is set to “1” when an arithmetic operation results in setting of the MSB to “1” or is cleared
to “0” when the MSB is set to “1.”
: The flag is set to “1” when an arithmetic operation results in “0” or is set to “0” in other instances.
: The flag is set to “1” when an arithmetic operation results in two’s complement overflow or is
cleared to “0” if no overflow occurs.
: The flag is set to “1” when an arithmetic operation results in a carry from bit 7 or in a borrow to bit
7. The flag is cleared to “0” if neither of them occurs. In the case of a shift instruction, the flag is
set to the shift-out value.
The following general-purpose registers are provided:
General-purpose registers : 8-bit data storage registers
The general-purpose registers are 8 bits in length and located in the register banks in the memory. One bank
contains eight registers and the MB89590B/BW microcontrollers allow a total of 16 banks to be used at maximum.
The bank currently in use is indicated by the register bank pointer (RP) .
Register Bank Configuration
This address = 0100H + 8 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
16 banks
Memory area
17
MB89590B/BW Series
■ I/O MAP
Address
Register name
Register description
00H
PDR0
Port 0 data register
01H
DDR0
Port 0 direction register
02H
PDR1
Port 1 data register
03H
DDR1
Port 1 direction register
04H
PDR2
Port 2 data register
05H
Vacancy
06H
Vacancy
Read/write
Initial value
R/W
XXXXXXXX
W
00000000
R/W
XXXXXXXX
W
00000000
R/W
00000000
07H
SYCC
System clock control register
R/W
XXX 1 1 X 0 0
08H
STBC
Standby control register
R/W
0 0 0 1 XXXX
09H
WDTC
Watchdog timer control register
R/W
0 XXXXXXX
0AH
TBTC
Timebase timer control register
R/W
0 0 XXX 0 0 0
0BH
Vacancy
0CH
PDR3
Port 3 data register
R/W
XXXXXXXX
0DH
DDR3
Port 3 direction register
R/W
00000000
0EH
Vacancy
0FH
Vacancy
10H
PDR4
Port 4 data register
R/W
XXXXXXXX
11H
DDR4
Port 4 direction register
R/W
00000000
12H
PDR5
Port 5 data register
R/W
XXX 1 1 1 XX
13H
DDR5
Port 5 direction register
R/W
XXXXXX 0 0
14H
to
20H
Vacancy
21H
PURR0
Port 0 pullup option setting register
R/W
11111111
22H
PURR1
Port 1 pullup option setting register
R/W
11111111
23H
PURR2
Port 2 pullup option setting register
R/W
11111111
24H
PURR3
Port 3 pullup option setting register
R/W
11111111
25H
PURR4
Port 4 pullup option setting register
R/W
11111111
26H
PURR5
Port 5 pullup option setting register
R/W
XXX 1 1 1 1 1
27H
CTR1
PWM control register 1
R/W
00000000
28H
CTR2
PWM control register 2
R/W
000X0000
29H
CTR3
PWM control register 3
R/W
X 0 0 0 XXXX
2AH
CMR1
PWM compare register 1
W
XXXXXXXX
2BH
CMR2
PWM compare register 2
W
XXXXXXXX
2CH
CKR
R/W
XXXXXXX 0
Clock output control register
(Continued)
18
MB89590B/BW Series
Address
Register name
2DH
SCS
Register description
Serial clock switching register
Read/write
Initial value
R/W
XXXXXXX 0
Vacancy
2EH
2FH
SMC1
Serial mode control register 1
R/W
00000000
30H
SMC2
Serial mode control register 2
R/W
00000000
31H
SSD
R
0 0 0 0 1 XXX
32H
SIDR/SODR
Serial input/serial output data register
R/W
XXXXXXXX
33H
SRC
Serial rate control register
R/W
XXXXXXXX
Serial status and control register
34H
to
3BH
Vacancy
3CH
EIE
External interrupt control register
R/W
00000000
3DH
EIF
External interrupt flag register
R/W
XXXXXXX 0
3EH
Vacancy
3FH
Vacancy
40H
HMDR
HUB mode register
R/W
1 0 XXXXXX
41H
HDSR1
Hub descriptor register 1
R/W
XXXXXXXX
42H
HDSR2
Hub descriptor register 2
R/W
XXXXXXXX
43H
HDSR3
Hub descriptor register 3
R/W
XXXXXXXX
44H
HSTR
Hub status register
R/W
00000000
45H
OCCR
Overcurrent register
R/W
0 XXX 0 0 0 0
46H
DADR
Descriptor ROM address register
R/W
XXXXXXXX
47H
SDSR
String 0 descriptor select register
R/W
XXXXX 0 0 0
48H
to
4FH
Vacancy
50H
UMDR
USB reset mode register
R/W
1 0 0 0 XX 0 0
51H
DBAR
DMA base address register
R/W
XXXXXXXX
52H
TDCR0
Transfer data count register 0
R/W
X0000000
53H
TDCR1
Transfer data count register 1
R/W
X0000000
R/W
X0000000
54H
55H
Vacancy
TDCR21
Transfer data count register 2
Vacancy
56H
57H
TDCR3
Transfer data count register 3
R/W
X0000000
58H
UCTR
USB control register
R/W
00000000
59H
USTR1
USB status register 1
R/W
00000000
5AH
USTR2
USB status register 2
R
XXXXXX 0 0
(Continued)
19
MB89590B/BW Series
(Continued)
Address
Register name
5BH
UMSKR
5CH
Register description
Read/write
Initial value
USB interrupt mask register
R/W
00000000
UFRMR1
USB frame status register 1
R
XXXXXXXX
5DH
UFRMR2
USB frame status register 2
R
XXXXXXXX
5EH
EPER
USB endpoint enable register
R/W
XXXX 0 0 0 1
5FH
EPBR0
Endpoint setup register 0
R/W
X0000000
60H
EPBR11
Endpoint setup register 11
R/W
XX 0 0 0 0 XX
61H
EPBR12
Endpoint setup register 12
R/W
X0000000
62H
EPBR21
Endpoint setup register 21
R/W
XX 0 0 0 0 XX
63H
EPBR22
Endpoint setup register 22
R/W
X0000000
64H
EPBR31
Endpoint setup register 31
R/W
XX 0 0 0 0 XX
65H
EPBR32
Endpoint setup register 32
R/W
X0000000
66H
to
7BH
Vacancy
7CH
ILR1
Interrupt level setting register 1
W
11111111
7DH
ILR2
Interrupt level setting register 2
W
11111111
7EH
ILR3
Interrupt level setting register 3
W
11111111
7FH
Vacancy
• Information about read/write
R/W : Read or write enabled, R : Read only, W : Write only
• Information about initial values
0 : The initial value of this bit is “0.” 1 : The initial bit of this bit is “1.” X : The initial value of this bit is undefined.
Note : Vacancies are not for use.
20
MB89590B/BW Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
Parameter
(VSS = 0 V)
Symbol
Value
Unit
Min.
Max.
VCC
VSS − 0.3
VSS + 6.0
V
Input voltage
VI
VSS − 0.3
VCC + 0.3
V
Output voltage
VO
VSS − 0.3
VCC + 0.3
V
“L” level average output current
IOLAV

4
mA
“L” level total maximum output
current
ΣIOL

100
mA
ΣIOLAV

40
mA
IOH

−15
mA
“H” level average output current
IOHAV

−4
mA
“H” level total maximum output
current
ΣIOH

−50
mA
ΣIOHAV

−20
mA
Power consumption
PD

300
mW
Operating temperature
TA
−40
+85
°C
Tstg
−55
+150
°C
Power supply voltage
“L” level total average output
current
“H” level maximum output current
“H” level total average output
current
Storage temperature
Remarks
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
21
MB89590B/BW Series
2. Recommended Operating Conditions
Parameter
Symbol
(VSS = 0 V)
Value
Min.
Typ.
Max.
Unit
Remarks
Power supply voltage
VCC
3.0

5.5
V
Operating temperature
TA
−40

+85
°C
Smoothing capacitor
CS
0.1

1.0
µF
at VCC = 5.0 V*
Series resistance
RS

16

Ω
When the USB function is
in use
* : Use either a ceramic capacitor or a capacitor with similar frequency characteristics. The capacity of the smoothing
capacitor for the Vcc pin should be greater than that of the Cs. When using with a supply voltage of 3.3 V,
connect pin C with Vcc to input 3.3 V.
• C and USB Port Pin Connection Diagram
RS
D1VP
RS
D1VM
RS
D2VP
RS
RPVP
RS
D2VM
RS
RPVM
RS
D3VP
RS
C
CS
D3VM
RS
D4VP
RS
D4VM
22
MB89590B/BW Series
5.5
Operating voltage VCC (V)
5.0
4.0
3.0
2.0
1.0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0 11.0 12.0 13.0
CPU operating frequency (FCH MHz)
(At instruction cycle 4/ FCH)
4.0
2.0
0.8
0.4
0.33
Minimum execution time (instruction cycle) (µs)
However, FCH = clock frequency (Fc) × 2
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
23
MB89590B/BW Series
3. DC Characteristics
Parameter
Symbol
Pin name
Condition
VIH
P00 to P07,
P10 to P17,
P20 to P27,
P30 to P37,
P40 to P47,
P50 to P54,
MOD0, MOD1
VIHS
“L” level output voltage
Input leakage
current
(Hi-Z output
leakage current)
Unit
Typ.
Max.

0.7 VCC

VCC + 0.3
V
RST,
INT0 to INT7,
UCK, UI

0.8 VCC

VCC + 0.3
V
VIL
P00 to P07,
P10 to P17,
P20 to P27,
P30 to P37,
P40 to P47,
P50 to P54,
MOD0, MOD1

VSS − 0.3

0.3 VCC
V
VILS
RST,
INT0 to INT7,
UCK, UI

VSS − 0.3

0.2 VCC
V
VD1
P52 to P54

VSS − 0.3

VCC + 0.3
V
VOH
P00 to P07,
P10 to P17,
P20 to P24,
P30 to P37,
P40 to P47,
P50, P51
IOH = −2.0 mA
4.0


V
VOL
P00 to P07,
P10 to P17,
P20 to P24,
P30 to P37,
P40 to P47,
P50 to P54,
RST
IOL = 4.0 mA


0.4
V
ILI
P00 to P07,
P10 to P17,
P20 to P27,
P30 to P37,
P40 to P47,
P50, P51
0.0 < VI < VCC
−5

+5
µA
“L” level input
voltage
“H” level output voltage
Value
Min.
“H” level input
voltage
Open-drain
output application voltage
(VCC = 5.0 V, VSS = 0 V, TA = −40 °C to +85 °C)
Remarks
When no pullup resistance
is specified
(Continued)
24
MB89590B/BW Series
(Continued)
Parameter
Open-drain
output leakage current
Pullup resistance
(VCC = 5.0 V, VSS = 0 V, TA = −40 °C to +85 °C)
Symbol
Pin name
ILIOD
P52 to P54
RPULL
P00 to P07,
P10 to P17,
P20 to P27,
P30 to P37,
P40 to P47,
P50 to P54,
RST
0.0 < VI
< VSS + 5.5
VI = 0.0 V
Value
Min.
Typ.
Max.


+5
25
50
Unit
Remarks
µA
100
kΩ
RST is
excluded
when pullup
resistance
available is
specified.
FCH = 12.0 MHz
VCC = 5.0 V
tinst = 0.333 µs

25
38
MB89P595B/
BW
mA
MB89595B/
BW
ICCS1
FCH = 12.0 MHz
VCC = 5.0 V
tinst = 0.333 µs

20
30
mA Sleep mode
ICCH
TA = 25 °C

5
20
µA

10

pF
ICC
Power supply
current
Input capacitance
Condition
VCC
CIN
Other than Vcc
f = 1 MHz
and Vss
Stop
25
MB89590B/BW Series
4. AC Characteristics
(1) Reset Timing
(VCC = 5.0 V, VSS = 0 V, TA = −40 °C to +85 °C)
Parameter
RST “L” pulse width
Symbol
Condition
tZLZH

Value
Min.
Max.
16 tHCLY

Unit
Remarks
ns
Note : tHCYL is the internal main clock oscillating cycle (1/2 Fc) .
tZLZH
RST
0.2 VCC
0.2 VCC
(2) Power-on Reset
(VSS = 0 V, TA = −40 °C to +85 °C)
Parameter
Symbol
Condition
Power supply rising time
tR
Power supply cutoff time
tOFF
Value
Unit
Min.
Max.

0.066
50
ms

4

ns
Remarks
Due to repeated
operations
Note : The power supply must be up within the selected oscillation stabilization time. When the supply voltage
needs to be varied while operating, it is recommended to smoothly start up the voltage.
tR
tOFF
3.5 V
VCC
0.2 V
26
0.2 V
0.2 V
MB89590B/BW Series
(3) Clock Timing
Parameter
(VSS = 0 V, TA = −40 °C to +85 °C)
Symbol
Pin name Condition
Value
Min.
Typ.
Max.
Unit
Clock frequency
FC
X0, X1

6

MHz
Clock cycle time
tXCYL
X0, X1

166.6

ns
Internal main clock
frequency
FCH


12

MHz
Internal clock cycle
tHCYL


83.3

ns

Remarks
Twice the
Fc
tXCYL/2
• X0 and X1 Timing and Conditions
tXCYL
X0
0.2 VCC
0.2 VCC
• Clock Conditions
When a crystal resonator is used
X0
X1
C1
C2
(4) Instruction Cycle
Parameter
Instruction cycle
(Min. execution time)
(VSS = 0 V, TA = −40 °C to +85 °C)
Symbol
Value
Unit
Remarks
tinst
4 / FCH, 8 / FCH,
16 / FCH, 64 / FCH
µs
When operating at FCH = 12 MHz
tinst = 0.33 µs (4 / FCH)
27
MB89590B/BW Series
(5) UART Serial I/O Timing
Parameter
(VCC = 5.0 V, VSS = 0 V, TA = −40 °C to +85 °C)
Symbol
Pin name
Serial clock cycle time
tSCYC
UCK
UCK ↓ → UO
tSLOV
UCK, UO
Valid UI → UCK ↑
tIVSH
UI, UCK
UCK ↑ → Rvalid UI
hold time
tSHIX
UCK, UI
Serial clock “H” pulse width
tSHSL
Serial clock “L” pulse width
tSLSH
Condition
Internal shift
clock mode
UCK
UCK ↓ → UO time
tSLOV
UCK, UO
Valid UI → UCK ↑
tIVSH
UI, UCK
UCK ↑ → Rvalid UI
hold time
tSHIX
UCK, UI
External
shift clock
mode
Value
Max.
2 tinst*

µs
−200
200
ns
200

ns
200

ns
1 tinst*

µs
1 tinst*

µs
0
200
ns
200

ns
200

ns
* : For information about tinst see “Instruction Cycle.”
• Internal shift clock mode
tSCYC
UCK
2.4 V
0.8 V
0.8 V
tSLOV
2.4 V
0.8 V
UO
tIVSH
tSHIX
0.8 VCC
0.2 VCC
UI
0.8 VCC
0.2 VCC
• External shift clock mode
tSLSH
tSHSL
UCK
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tSLOV
2.4 V
UO
0.8 V
tIVSH
UI
28
0.8 VCC
0.2 VCC
Unit
Min.
tSHIX
0.8 VCC
0.2 VCC
Remarks
MB89590B/BW Series
(6) Peripheral Input Timing
Parameter
(VCC = 5.0 V, VSS = 0 V, TA = −40 °C to +85 °C)
Symbol
Peripheral input “H”
pulse width 1
tILIH1
Peripheral input “L”
pulse width 1
tIHIL1
Pin name
Value
Condition
Unit
Min.
Max.

2 tinst*

µs

2 tinst*

µs
Remarks
INT0 to INT7
* : For information about tinst, see “Instruction Cycle.”
tIHIL1
tILIH1
INT0 to INT7
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
29
MB89590B/BW Series
■ INSTRUCTIONS (136 INSTRUCTIONS)
Execution instructions can be divided into the following four groups:
• Transfer
• Arithmetic operation
• Branch
• Others
Table 1 lists symbols used for notation of instructions.
Table 1
Symbol
dir
off
ext
#vct
#d8
#d16
dir: b
rel
@
A
AH
AL
T
TH
TL
IX
EP
PC
SP
PS
dr
CCR
RP
Ri
×
(×)
(( × ))
Instruction Symbols
Meaning
Direct address (8 bits)
Offset (8 bits)
Extended address (16 bits)
Vector table number (3 bits)
Immediate data (8 bits)
Immediate data (16 bits)
Bit direct address (8:3 bits)
Branch relative address (8 bits)
Register indirect (Example: @A, @IX, @EP)
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
Upper 8 bits of accumulator A (8 bits)
Lower 8 bits of accumulator A (8 bits)
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
Upper 8 bits of temporary accumulator T (8 bits)
Lower 8 bits of temporary accumulator T (8 bits)
Index register IX (16 bits)
Extra pointer EP (16 bits)
Program counter PC (16 bits)
Stack pointer SP (16 bits)
Program status PS (16 bits)
Accumulator A or index register IX (16 bits)
Condition code register CCR (8 bits)
Register bank pointer RP (5 bits)
General-purpose register Ri (8 bits, i = 0 to 7)
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~:
The number of instructions
#:
The number of bytes
Operation: Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
• “–” indicates no change.
• dH is the 8 upper bits of operation description data.
• AL and AH must become the contents of AL and AH prior to the instruction executed.
• 00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
30
MB89590B/BW Series
Table 2
Mnemonic
Transfer Instructions (48 instructions)
~
#
Operation
TL
TH
AH
NZVC
OP code
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
45
46
61
47
48 to 4F
04
05
06
60
92
07
08 to 0F
85
86
87
88 to 8F
D5
D6
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
D4
D7
E3
E4
C5
C6
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
C4
93
C7
F3
E7
E2
F2
E1
F1
82
83
E6
70
71
E5
10
A8 to AF
A0 to A7
42
43
F7
F6
F5
F0
Note
During byte transfer to A, T ← A is restricted to low bytes.
Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
31
MB89590B/BW Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
(Continued)
32
MB89590B/BW Series
(Continued)
Mnemonic
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
~
#
Operation
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
33
L
34
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0
R0,#d8
R0,#d8
dir: 0 dir: 0,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1
R1,#d8
R1,#d8
dir: 1 dir: 1,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2
R2,#d8
R2,#d8
dir: 2 dir: 2,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3
R3,#d8
R3,#d8
dir: 3 dir: 3,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4
R4,#d8
R4,#d8
dir: 4 dir: 4,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5
R5,#d8
R5,#d8
dir: 5 dir: 5,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6
R6,#d8
R6,#d8
dir: 6 dir: 6,rel
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7
R7,#d8
R7,#d8
dir: 7 dir: 7,rel
9
A
B
C
D
E
F
A
SUBC
A
XCH
A, T
XOR
A
AND
A
OR
A
MOV
MOV
CLRB
BBC
INCW
DECW
MOVW
MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
DAS
R7
R6
R5
R4
R3
R2
R1
R0
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
R7
R6
R5
R4
R3
R2
R1
R0
rel
rel
rel
rel
CALLV
BLT
#7
rel
CALLV
BGE
#6
rel
CALLV
BZ
#5
CALLV
BNZ
#4
rel
CALLV
BN
#3
CALLV
BP
#2
CALLV
BC
#1
CALLV
BNC
#0
rel
CLRB
BBC
MOVW
MOVW
MOVW
XCHW
dir: 4 dir: 4,rel
A,ext
ext,A
A,#d16
A,PC
ADDCW SUBCW XCHW
XORW
ANDW
ORW
MOVW
MOVW
CLRB
BBC
INCW
DECW
MOVW
MOVW
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
ADDC
CLRB
BBC
INCW
DECW
MOVW
MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
8
A
A
SETC
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW
MOVW
MOVW
XCHW
A,@EP
A,@EP
A,@EP
A,@EP
@EP,A
A,@EP
A,@EP
A,@EP @EP,#d8 @EP,#d8
dir: 7 dir: 7,rel
A,@EP
@EP,A EP,#d16
A,EP
CMPW
CMP
JMP
CALL
PUSHW POPW
MOV
MOVW
CLRC
addr16
addr16
IX
IX
ext,A
PS,A
7
F
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW
MOVW
MOVW
XCHW
A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A,@IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8
dir: 6
dir: 6,rel A,@IX +d @IX +d,A
IX,#d16
A,IX
E
6
D
MOV
CMP
ADDC
SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW
MOVW
MOVW
XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir
dir,#d8
dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
C
5
B
CLRB
BBC
INCW
DECW
JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
MOV
CMP
ADDC
SUBC
A,#d8
A,#d8
A,#d8
A,#d8
A
A
DIVU
SETI
9
4
8
RORC
7
3
6
ROLC
A
5
PUSHW POPW
MOV
MOVW
CLRI
A
A
A,ext
A,PS
4
2
A
RETI
3
MULU
RET
2
1
SWAP
1
NOP
0
0
H
MB89590B/BW Series
■ INSTRUCTION MAP
MB89590B/BW Series
■ ORDERING INFORMATION
Part number
MB89593BPFV
MB89595BPFV
MB89P595BPFV
MB89593BWPFV
MB89595BWPFV
MB89P595BWPFV
Package
Remarks
64-pin plastic LQFP
(FPT-64P-M03)
35
MB89590B/BW Series
■ PACKAGE DIMENSION
64-pin plastic LQFP
(FPT-64P-M03)
Note: Pins width and pins thickness include plating thickness.
12.00±0.20(.472±.008)SQ
10.00±0.10(.394±.004)SQ
48
33
49
32
0.08(.003)
Details of "A" part
INDEX
+0.20
1.50 –0.10
+.008
(Mounting height)
.059 –.004
64
17
"A"
LEAD No.
1
0.50±0.08
(.020±.003)
0~8°
16
0.18
.007
+0.08
–0.03
+.003
–.001
0.08(.003)
M
0.145±0.055
(.006±.002)
0.50±0.20
(.020±.008)
0.45/0.75
(.018/.030)
C
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in mm (inches)
36
MB89590B/BW Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0012
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The contents of this document may not be reproduced or copied
without the permission of FUJITSU LIMITED.
FUJITSU semiconductor devices are intended for use in standard
applications (computers, office automation and other office
equipments, industrial, communications, and measurement
equipments, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or
where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters,
vehicle operating controls, medical devices for life support, etc.)
are requested to consult with FUJITSU sales representatives before
such use. The company will not be responsible for damages arising
from such use without prior approval.
Any semiconductor devices have inherently a certain rate of failure.
You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required for
export of those products from Japan.