FUJITSU MB89P670ACF

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12514-2E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89670/A Series
MB89673/677A/P677A/PV670A
■ DESCRIPTION
The MB89670/A series has been developed as a line of proprietary 8-bit, single-chip microcontrollers.
In addition to the F2MC*-8L CPU core which can operate at low voltage but at high speed, the microcontrollers
contain pheripheral functions such as timers, a serial interface, an A/D converter, a UART, an up/down counter,
and an external interrupt.
The MB89670/A series is applicable to a wide range of applications from welfare products to industrial equipment,
including portable devices.
*: F2MC stands for FUJITSU Flexible Microcontroller.
■ FEATURES
• F2MC-8L family CPU core
Instruction set optimized for controllers
Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.
• High-speed processing at low voltage
• Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V, 2.0 µs/2.2 V
• I/O ports: max. 69 channels
(Continued)
■ PACKAGE
80-pin Plastic QFP
(FPT-80P-M11)
80-pin Plastic QFP
(FPT-80P-M06)
80-pin Ceramic MQFP
(MQP-80C-P01)
MB89670/A Series
(Continued)
• Timers: 9 channels (MB89670A: 12 channels)
8-bit PWM timer: 3 channels (MB89670A: 6 channels) (also usable as a reload timer)
16-bit timer/counter
21-bit time-base timer
8/16-bit timer (8 bits × 2 channels or 16 bits)
8/16-bit up/down counter timer (8 bits × 2 channels or 16 bits)
• Two serial interfaces
8-bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various
equipment.)
UART: 1 channel (with full-duplex double buffer)
• External interrupts: 8 channels
Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge
detection function).
• Buzzer output
• 10-bit A/D converter
8-channel input
• Low-power consumption modes
Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
• Bus interface function
Including hold and ready functions
2
MB89670/A Series
■ PRODUCT LINEUP
Part number
Parameter
Classification
MB89673*1
MB89677A
Mass production products
(mask ROM products)
ROM size
8 K × 8 bits
(internal mask ROM)
RAM size
384 × 8 bits
32 K × 8 bits
(internal mask ROM)
MB89P677A
MB89PV670A
One-time PROM product Piggyback/ evaluation
product (for development)
(for development)
32 K × 8 bits
(internal PROM)
48 K × 8 bits
(external ROM)
1 K × 8 bits
CPU functions
Number of instructions:
Instruction bit length:
Instruction length:
Data bit length:
Minimum execution time:
Interrupt processing time:
136
8 bits
1 to 3 bytes
1, 8, 16 bits
0.4 µs/10 MHz to 6.4 µs/10 MHz
3.6 µs/10 MHz to 57.6 µs/10 MHz
Ports
Output ports (N-channel open-drain):
Output ports (CMOS):
I/O ports (N-channels open-drain):
I/O ports (CMOS):
Input ports:
Total:
14 (12 also serve as peripherals.)
8 (All also serve as peripherals.)
7 (All also serve as peripherals.)
32 (All also serve as peripherals.)
8 (All also serve as peripherals.)
69
Option
21-bit timebase timer
8/16-bit up/
down counter
Specify when ordering masking
Set with EPROM
programmer
21 bits (0.81 ms, 3.27 ms, 26.21 ms, 419 ms/10 MHz)
8 bits × 2 channels or 16 bits × 1 channel
Timer operation
Up/down counter operation
Phase difference counting (successive double mode, quadruple mode)
16-bit timer/
counter
16-bit timer operation
16-bit event counter operation (edge selectability)
8/16-bit timer
counter
8 bits × 2 channels or 16 bits × 1 channel
Reload timer operation (toggled output capable)
Event counter operation
8-bit PWM
timer 1,
8-bit PWM
timer 2
8-bit PWM
timer 3,
8-bit PWM
timer 4, 5, 6
8-bit serial I/O
Setting not possible
8 bits × 2 channels reload timer operation (toggled output capable)
8 bits × 2 channels PWM operation (four fixed frequency)
8 bits × 1 channel PPG operation (variable frequency)
Capable of output switching between 2 channels
8-bit reload timer operation (toggled output capable)
8-bit PWM operation (four fixed frequency)
Capable of output switching between 2 channels
8 bits
LSB first/MSB first selectability
One clock selectable from four transfer clocks
(one external shift clock, three internal shift clocks)
(Continued)
3
MB89670/A Series
(Continued)
Part number
MB89673*1
Parameter
UART
MB89677A
MB89P677A
MB89PV670A
Variable data length (7 or 8 bits)
Internal baud rate generator
Error detection function
Intenal full-duplex double buffer
NRZ transfer format
CLK synchrnous/asynchronous data transfer capable
10-bit A/D
converter
10 bit × 8 channels
External
interrupt
8 channels (Rising edge/falling edge)
Operating
voltage*2
2.2 V to 6.0 V
2.7 V to 6.0 V
EPROM for use
MBM27C512-20TV
(LCC package)
*1: 8-bit PWM timer 4, 5, and 6 is not provided for the MB89673.
*2: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.
■ PACKAGE AND CORRESPONDING PRODUCTS
MB89673
MB89677A
MB89P677A
Package
MB89PV670A
FPT-80P-M06
×
FPT-80P-M11
×*
MQP-80C-P01
: Available
×
× : Not available
* : Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available
80QF-80QF2-8L-UP
+ (MQP-80C-P01 or FPT-80P-M06) → for conversion to FPT-80P-M11
80QF-80QF2-8L-DWN
Note: For more information about each package, see section “■ Package Dimensions.”
4
MB89670/A Series
■ DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.
Take particular care on the following points:
• On the MB89P677A, the program area starts from address 8007H but on the MB89677A and MB89PV670A
starts from 8000H.
(On the MB89P677A, addresses 8000H to 8006H comprise the option setting area, option settings can be read
by reading these addresses. On the MB89677A and MB89PV670A, addresses 8000H to 8006H could also be
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the
MB89P677A.)
• The stack area, etc., is set at the upper limit of the RAM.
• The external area is used.
2. Current Consumption
• In the case of the MB89PV670A, add the current consumed by the EPROM which is connected to the top socket.
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections
“■ Electrical Characteristics” and “■ Example Characteristics.”)
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section “■ Mask Options.”
Take particular care on the following point:
• Options are fixed on the MB89PV670A.
■ CORRESPONDENCE BETWEEN THE MB89670/A AND MB89670R/AR SERIES
• The MB89670R/AR series is the reduction version of the MB89670/A series.
For their differences, refer to the MB89670R/AR series data sheet.
MB89670/A series
MB89673
—
MB89677A
MB89670R/AR series
MB89673R
MB89675R
MB89677AR
MB89P677A
MB89PV670A
5
MB89670/A Series
■ PIN ASSIGNMENT
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
P74/SCK
P75/SO
P76/SI
AVSS
AVR
AVCC
P50/AN0
P51/AN1
P52/AN2
P53/AN3
P54/AN4
P55/AN5
P56/AN6
P57/AN7
P60/INT0/ADST
P61/INT1
P62/INT2
P63/INT3
P64/INT4
P65/INT5
(Top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P21/HAK
P20/BUFC
P17/A15
P16/A14
P15/A13
P14/A12
P13/A11
P12/A10
P11/A09
P10/A08
P07/AD7
P06/AD6
P05/AD5
P04/AD4
P03/AD3
P02/AD2
P01/AD1
P00/AD0
P37/UDA2
P36/UDB2
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P73/UI
P72/UO
P71/UCK
P70/BZ1
P83
P82
P81
P80
MOD0
MOD1
X0
X1
VSS
RST
P27/ALE
P26/RD
P25/WR
P24/CLK
P23/RDY
P22/HRQ
(FPT-80P-M11)
6
P66/INT6
P67/INT7
P84
P85
VSS
P40/PWM00
P41/PWM01
VCC
P42/PWM10/BZ2
P43/PWM11
P44/TCI
P45/TCO1
P46/TCO2
P47/EC
P30/PWM20
P31/PWM21
P32/UDZ1
P33/UDB1
P34/UDA1
P35/UDZ2
MB89670/A Series
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
P76/SI
AVSS
AVR
AVCC
P50/AN0
P51/AN1
P52/AN2
P53/AN3
P54/AN4
P55/AN5
P56/AN6
P57/AN7
P60/INT0/ADST
P61/INT1
P62/INT2
P63/INT3
(Top view)
100
99
98
97
96
95
94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
93
92
91
90
89
88
87
86
85
110
111
112
81
82
83
84
101
102
103
104
105
106
107
108
109
Each pin inside the dashed line
is for the MB89PV670A only.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P64/INT4
P65/INT5
P66/INT6
P67/INT7
P84
P85
VSS
P40/PWM00
P41/PWM01
VCC
P42/PWM10/BZ2
P43/PWM11
P44/TCI
P45/TCO1
P46/TCO2
P47/EC
P30/PWM20
P31/PWM21
P32/UDZ1
P33/UDB1
P34/UDA1
P35/UDZ2
P36/UDB2
P37/UDA2
P17/A15
P16/A14
P15/A13
P14/A12
P13/A11
P12/A10
P11/A09
P10/A08
P07/AD7
P06/AD6
P05/AD5
P04/AD4
P03/AD3
P02/AD2
P01/AD1
P00/AD0
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P75/SO
P74/SCK
P73/UI
P72/UO
P71/UCK
P70/BZ1
P83
P82
P81
P80
MOD0
MOD1
X0
X1
VSS
RST
P27/ALE
P26/RD
P25/WR
P24/CLK
P23/RDY
P22/HRQ
P21/HAK
P20/BUFC
(FPT-80P-M06)
(MQP-80C-P01)
• Pin assignment on package top (MB89PV670A only)
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
81
N.C.
89
A2
97
N.C.
105
OE/VPP
82
A15
90
A1
98
O4
106
N.C.
83
A12
91
A0
99
O5
107
A11
84
A7
92
N.C.
100
O6
108
A9
85
A6
93
O1
101
O7
109
A8
86
A5
94
O2
102
O8
110
A13
87
A4
95
O3
103
CE
111
A14
88
A3
96
VSS
104
A10
112
VCC
N.C.: Internally connected. Do not use.
7
MB89670/A Series
■ PIN DESCRIPTION
Pin no.
QFP*2
MQFP*3
11
13
X0
12
14
X1
Circuit
type
Function
A
Clock oscillator pins
B
Operating mode selection pins
Connect directly to VCC or VSS.
9
11
MOD0
10
12
MOD1
14
16
RST
C
Reset I/O pin
This pin is an N-ch open-drain output type with pull-up
resistor and a hysteresis input.
“L” is output from this pin by an internal reset source.
The internal circuit is initialized by the input of “L”.
38 to 31
40 to 33
P00/AD0 to
P07/AD7
D
General-purpose I/O ports
When an external bus is used, these ports function as
multiplex pins of lower address output and data I/O.
30 to 23
32 to 25
P10/A08 to
P17/A15
22
24
P20/BUFC
F
General-purpose output port
When an external bus is used, this port can also be
used as a buffer control output by setting the BCTR.
21
23
P21/HAK
F
General-purpose output port
When an external bus is used, this port can also be
used as a hold acknowledge output by setting the
BCTR.
20
22
P22/HRQ
D
General-purpose output port
When an external bus is used, this port can also be
used as a hold request input by setting the BCTR.
19
21
P23/RDY
D
General-purpose output port
When an external bus is used, this port functions as a
ready input.
18
20
P24/CLK
F
General-purpose output port
When an external bus is used, this port functions as a
clock output.
17
19
P25/WR
F
General-purpose output port
When an external bus is used, this port functions as a
write signal output.
16
18
P26/RD
F
General-purpose output port
When an external bus is used, this port functions as a
read signal output.
15
17
P27/ALE
F
General-purpose output port
When an external bus is used, this port functions as an
address latch signal output.
*1: FPT-80P-M11
*2: FPT-80P-M06
*3: MQP-80C-P01
8
Pin name
QFP*1
General-purpose I/O ports
When an external bus is used, these ports function as
upper address output pins.
(Continued)
MB89670/A Series
Pin no.
Pin name
Circuit
type
Function
QFP*1
QFP*2
MQFP*3
46
48
P30/PWM20
D
General-purpose I/O port
Also serves as the PWM20 output for the 8-bit PWM
timer.
45
47
P31/PWM21
D
General-purpose I/O port
Also serves as the PWM21 output for the 8-bit PWM
timer.
44
46
P32/UDZ1
E
General-purpose I/O port
Also serves as the Z-phase input for the 16-bit up/down
counter/timer.
43
45
P33/UDB1
E
General-purpose I/O port
Also serves as the B-phase input for the 16-bit timer/
counter.
42
44
P34/UDA1
E
General-purpose I/O ports
Also serves as the A-phase input for the 16-bit up/down
counter/timer.
41
43
P35/UDZ2
E
General-purpose I/O port
Also serves as the Z-phase input for the 16-bit up/down
counter/timer.
40
42
P36/UDB2
E
General-purpose I/O port
Also serves as the B-phase input for the 16-bit up/down
counter/timer.
39
41
P37/UDA2
E
General-purpose I/O port
Also serves as the A-phase input for the 16-bit up/down
counter/timer.
55
57
P40/PWM00
D
General-purpose I/O port
Also serves as the PWM00 output for the 8-bit PWM
timer.
54
56
P41/PWM01
D
General-purpose I/O port
Also serves as the PWM01 output for the 8-bit PWM
timer.
52
54
P42/PWM10/
BZ2
D
General-purpose I/O port
Also serves as the PWM10 and the BZ2 output for the 8bit PWM timer.
51
53
P43/PWM11
D
General-purpose I/O port
Also serves as the PWM11 output for the 8-bit PWM
timer.
50
52
P44/TCI
E
General-purpose I/O port
Also serves as the TCI input for the 8/16-bit timer/
counter.
49
51
P45/TCO1
D
General-purpose I/O port
Also serves as the TCO1 output for the 8/16-bit timer/
counter.
*1: FPT-80P-M11
*2: FPT-80P-M06
*3: MQP-80C-P01
(Continued)
9
MB89670/A Series
(Continued)
Pin no.
Circuit
type
Function
QFP*2
MQFP*3
48
50
P46/TCO2
D
General-purpose I/O port
Also serves as the TCO2 output for the 8/16-bit timer/
counter.
47
49
P47/EC
E
General-purpose I/O port
Also serves as input for the16-bit timer/counter.
The EC input is a hysteresis input type.
74 to 67
76 to 69
P50/AN0 to
P57/AN7
I
N-ch open-drain output ports
Also serve as the analog input for the A/D converter.
66
68
P60/INT0/
ADST
J
General-purpose input port
The software pull-up resistor is provided.
Also serves as an external interrupt input (INT0) and an
A/D converter external activation.
This port is a hysteresis input type.
65 to 59
67 to 61
P61/INT1 to
P67/INT7
J
General-purpose input ports
A software pull-up resistor is provided.
Also serve as an external interrupt input (INT1 to INT7).
These ports are a hysteresis input type.
4
6
P70/BZ1
G
N-ch open-drain I/O port
Also serves as a buzzer output.
3
5
P71/UCK
K
N-ch open-drain I/O port
Also serves as a UART clock I/O (UCK) switchable to
CMOS.
2
4
P72/UO
K
N-ch open-drain I/O port
Also serves as a UART data output (UO) switchable to
CMOS.
1
3
P73/UI
G
N-ch open-drain I/O port
Also serves as a UART data input (UI).
80
2
P74/SCK
K
N-ch open-drain I/O port
Also serves as the clock I/O for the serial I/O (SCK)
switchable to CMOS.
79
1
P75/SO
K
N-ch open-drain I/O port
Also serves as the data output (SO) for the serial I/O
switchable to CMOS.
78
80
P76/SI
G
N-ch open-drain I/O port
Also serves as the data input (SI) for the serial I/O.
8 to 5
57,
58
10 to 7
59,
60
P80 to P83
P85,
P84
H
N-ch open-drain output ports
53
55
VCC
—
Power supply pin
13, 56
15, 58
VSS
—
Power supply (GND) pin
75
77
AVCC
—
A/D converter power supply pin
76
78
AVR
—
A/D converter reference voltage input pin
77
79
AVSS
—
A/D converter power supply pin
Use this pin at the same voltage as VSS.
*1: FPT-80P-M11
*2: FPT-80P-M06
*3: MQP-80C-P01
10
Pin name
QFP*1
MB89670/A Series
• External EPROM pins (MB89PV670A only)
Pin no.
Pin name
I/O
Function
82
83
84
85
86
87
88
89
90
91
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0
O
Address output pins
93
94
95
O1
O2
O3
I
Data input pins
96
VSS
O
Power supply (GND) pin
98
99
100
101
102
O4
O5
O6
O7
O8
I
Data input pins
103
CE
O
ROM chip enable pin
Outputs “H” during standby.
104
A10
O
Address output pin
105
OE/VPP
O
ROM output enable pin
Outputs “L” at all times.
107
108
109
A11
A9
A8
O
Address output pins
110
A13
O
111
A14
O
112
VCC
O
81
92
97
106
N.C.
—
Internally connected pins
Be sure to leave them open.
11
MB89670/A Series
■ I/O CIRCUIT TYPE
Type
A
Circuit
Remarks
Crystal or ceramic oscillation type
• At an oscillation feedback resistor of approximately
1 MΩ/5.0 V
X1
X0
Standby control signal
B
C
• At an output pull-up resistor (P-ch) of approximately
50 kΩ/5.0 V
• Hysteresis input
R
P-ch
N-ch
D
• CMOS output
• CMOS inout
R
P-ch
P-ch
N-ch
• Pull-up resistor optional (except P22 and P23)
E
• CMOS output
• CMOS input
• The peripheral is a hysteresis input type.
R
P-ch
P-ch
N-ch
Peripheral
Port
• Pull-up resistor optional
(Continued)
12
MB89670/A Series
(Continued)
Type
Circuit
Remarks
F
• CMOS output
P-ch
N-ch
G
• N-ch open-drain output
• Hysteresis input
R
P-ch
P-ch
N-ch
• Pull-up resistor optional
H
• N-ch open-drain output
N-ch
I
• N-ch open-drain output
• Analog input
P-ch
N-ch
Analog input
J
• Hysteresis input
• With software pull-up resistor
R
P-ch
Pull-up control
signal
K
• CMOS output
• Hysteresis input
R
P-ch
P-ch
N-ch
• Pull-up resistor optional
13
MB89670/A Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum
Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital
power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down
resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and
wake-up from stop mode.
14
MB89670/A Series
■ PROGRAMMING TO THE EPROM ON THE MB89P677A
The MB89P677A is an OTPROM version of the MB89670/A series.
1. Features
• 32-Kbyte PROM on chip
• Options can be set using the EPROM programmer.
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)
2. Memory Space
Memory space in the EPROM mode is diagrammed below.
Normal operating mode
0000H
EPROM mode
(Corresponding addresses on the EPROM programmer)
I/O
0080H
0100H
0200H
Register
RAM
0480H
External area
8000H
0000H
Option area
Option area
8007H
0007H
PROM
FFFFH
Program area
(EPROM)
7FFFH
15
MB89670/A Series
3. Programming to the EPROM
In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by
using the dedicated socket adapter.
• Programming procedure
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH
while operating as a normal operating mode assign to 0007H to 7FFFH in EPROM mode).
Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each
corresponding option, see “7. Bit Map for PROM Options.”)
(3) Program with the EPROM programmer.
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked
OTPROM microcomputer program.
Program, verify
Aging
+150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Package
Compatible socket adapter
FPT-80P-M11
ROM-80QF2-28DP-8L
FPT-80P-M06
ROM-80QF-28DP-8L2
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or
VCC and VSS can stabilize programming operations.
16
MB89670/A Series
7. PROM Option Bit Map
The programming procedure is the same as that for the PROM. Options can be set by programming values at
the addresses shown on the memory map. The relationship between bits and options is shown on the following
bit map:
Bit 7
Bit 6
Bit 5
Bit 4
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
0001H
P17
Pull-up
1: No
0: Yes
P16
Pull-up
1: No
0: Yes
P15
Pull-up
1: No
0: Yes
0002H
P37
Pull-up
1: No
0: Yes
P36
Pull-up
1: No
0: Yes
0003H
P47
Pull-up
1: No
0: Yes
0000H
0004H
0005H
0006H
Bit 3
Bit 2
Bit 1
Bit 0
Reset pin
output
1: Yes
0: No
Power-on
reset
1: Yes
0: No
Oscillation stabilization time
00: 24/FC
10: 217/FC
01: 214/FC
11: 218/FC
P14
Pull-up
1: No
0: Yes
P13
Pull-up
1: No
0: Yes
P12
Pull-up
1: No
0: Yes
P11
Pull-up
1: No
0: Yes
P10
Pull-up
1: No
0: Yes
P35
Pull-up
1: No
0: Yes
P34
Pull-up
1: No
0: Yes
P33
Pull-up
1: No
0: Yes
P32
Pull-up
1: No
0: Yes
P31
Pull-up
1: No
0: Yes
P30
Pull-up
1: No
0: Yes
P46
Pull-up
1: No
0: Yes
P45
Pull-up
1: No
0: Yes
P44
Pull-up
1: No
0: Yes
P43
Pull-up
1: No
0: Yes
P42
Pull-up
1: No
0: Yes
P41
Pull-up
1: No
0: Yes
P40
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
P74
Pull-up
1: No
0: Yes
P73
Pull-up
1: No
0: Yes
P72
Pull-up
1: No
0: Yes
P71
Pull-up
1: No
0: Yes
P70
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
P04 to P07
Pull-up
1: No
0: Yes
P00 to P03
Pull-up
1: No
0: Yes
P76
Pull-up
1: No
0: Yes
P75
Pull-up
1: No
0: Yes
Notes: • Set each bit to 1 to erase.
• Do not write 0 to the vacant bit.
The read value of the vacant bit is 1, unless 0 is written to it.
17
MB89670/A Series
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C512-20TV
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato
Co., Ltd.) listed below.
Package
Adapter socket part number
LCC-32(Rectangle)
ROM-32LC-28DP-YG
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
3. Memory Space
Memory space in each mode is diagrammed below.
Address
Normal operating mode
0000H
Corresponding address on the EPROM programmer
0000H
I/O
0080H
Not available
RAM
0480H
External area
4000H
8000H
4000H
8000H
*
8007H
*
8007H
PROM
48 KB
FFFFH
EPROM
48 KB
FFFFH
*: Note that for the MB89P677A this area comprise an option setting area.
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 4000H to FFFFH.
(3) Program to 4000H to FFFFH with the EPROM programmer.
18
MB89670/A Series
■ BLOCK DIAGRAM
1. MB89673
X0
X1
Time-base timer
Oscillator
Clock controller
CMOS I/O port
16-bit up/down counter
Reset circuit
(WDT)
Internal bus
RST
RAM
8-bit up/down
counter
P37/UDA2
P36/UDB2
P35/UDZ2
8-bit up/down
counter
P34/UDA1
P33/UDB1
P32/UDZ1
F2MC-8L
CPU
16-bit timer/counter
P47/EC
ROM
8/16-bit timer
CMOS I/O port
8
8-bit timer
P00/AD0 to
P07/AD7
8
P46/TCO2
P45/TCO1
P44/TCI
2-channel 8-bit
PWM timer
P10/A08 to
P17/A15
MOD0
MOD1
External bus
interface
8-bit timer #2
8-bit timer #1
P27/ALE
P26/RD
P25/WR
P24/CLK
P23/RDY
P22/HRQ
P21/HAK
P20/BUFC
P43/PWM11
P42/PWM10/BZ2
P41/PWM01
P40/PWM00
P31/PWM21
8-bit PWM timer #3
P30/PWM20
CMOS output port
6
P80 to P85
P50/AN0 to
P57/AN7
8-bit timer
8
N-ch open-drain
output port
8-bit serial
P76/SI
P75/SO
P74/SCK
UART
P73/UI
P72/UO
P71/UCK
Buzzer output
P70/BZ1
8
10-bit A/D converter
AVR
AVCC
AVSS
Input port
P60/INT0/ADST to
P67/INT7
8
N-ch open-drain I/O port
8
External interrupt
19
MB89670/A Series
2. MB89677A/89P677A/89PV670A
Time-base timer
X0
X1
Oscillator
CMOS I/O port
Clock controller
RST
RAM
F2MC-8L
CPU
Internal bus
16-bit up/down counter
Reset circuit
(WDT)
8-bit up/down
counter
P37/UDA2
P36/UDB2
P35/UDZ2
8-bit up/down
counter
P34/UDA1
P33/UDB1
P32/UDZ1
16-bit timer/counter
P47/EC
8/16-bit timer
ROM
CMOS I/O port
8-bit timer
P46/TCO2
8-bit timer
P45/TCO1
P44/TCI
8
P00/AD0 to
P07/AD7
8-bit PWM timer #3
P30/PWM20
8-bit PWM timer #4
P31/PWM21
8-bit PWM timer #5
P41/PWM01
8-bit PWM timer #6
P43/PWM11
8
P10/A08 to
P17/A15
MOD0
MOD1
External bus
interface
P27/ALE
P26/RD
P25/WR
P24/CLK
P23/RDY
P22/HRQ
P21/HAK
P20/BUFC
2-channel 8-bit
PWM timer
8-bit timer #1
CMOS output port
6
P80 to P85
P50/AN0 to
P57/AN7
8
N-ch open-drain
output port
8-bit timer #2
8-bit serial
P76/SI
P75/SO
P74/SCK
UART
P73/UI
P72/UO
P71/UCK
Buzzer output
P70/BZ1
8
10-bit AD converter
AVR
AVCC
AVSS
P40/PWM00
P42/PWM10/BZ2
Input port
P60/INT0/ADST to
P67/INT7
20
8
8
External interrupt
N-ch open-drain I/O port
MB89670/A Series
■ CPU CORE
1. Memory Space
The microcontrollers of the MB89670/A series offer a memory space of 64 Kbytes for storing all of I/O, data,
and program areas. The I/O area is located at the lowest address. The data area is provided immediately above
the I/O area. The data area can be divided into register, stack, and direct areas according to the application.
The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables
of interrupt reset vectors and vector call instructions toward the highest address within the program area. The
memory space of the MB89670/A series is structured as illustrated below.
Memory Space
MB89P677A
MB89677A
MB89673
0000H
0080H
0100H
0000H
I/O
RAM
0080H
0100H
Register
MB89PV670A
0000H
I/O
RAM
0080H
0100H
Register
0200H
I/O
RAM
Register
0200H
0200H
0480H
0480H
External area
External area
External area
8000H
8000H
8000H
Option PROM (One-time
PROM product)*
*
8007H
4000H
*
8007H
8007H
Programmable
ROM
E000H
Programmable
ROM
ROM
FFFFH
FFFFH
FFFFH
*: Since addresses 8000H to 8006H for the MB89P677A comprise an option
area, do not use this area for the other products in this series.
21
MB89670/A Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers
in the memory. The following dedicated registers are provided:
Program counter (PC):
A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the
instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):
A 16-bit register which performs arithmetic operations with the accumulator
When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code
Initial value
16 bits
FFFDH
: Program counter
PC
A
: Accumulator
Undefined
T
: Temporary accumulator
Undefined
IX
: Index register
Undefined
EP
: Extra pointer
Undefined
SP
: Stack pointer
Undefined
PS
: Program status
I-flag = 0, IL1, 0 = 11
Other bits are undefined.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for
use as a condition code register (CCR). (See the diagram below.)
Structure of the Program Status Register
15
PS
14
13
12
RP
10
9
8
Vacancy Vacancy Vacancy
RP
22
11
7
6
H
I
5
4
IL1, 0
3
2
1
0
N
Z
V
C
CCR
MB89670/A Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule illustrated below.
Rule for Conversion of Actual Addresses of the General-purpose Register Area
RP
Lower OP codes
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
b1
b0
↓
↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and
bits for control of CPU operations at the time of an interrupt.
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared
otherwise. This flag is for decimal adjustment instructions.
I-flag:
Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0
when reset.
IL1, 0:
Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is
higher than the value indicated by this bit.
IL1
IL0
Interrupt level
0
0
0
1
1
0
2
1
1
3
1
High-low
High
Low = no interrupt
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.
Z-flag:
Set when an arithmetic operation results in 0. Cleared otherwise.
V-flag:
Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does
not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.
Set to the shift-out value in the case of a shift instruction.
23
MB89670/A Series
The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains
eight registers and up to a total of 32 banks can be used on the MB89677A. On the MB89673, there are 16
banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to
addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank
pointer (RP).
Note: The number of register banks that can be used varies with the RAM size.
Register Bank Configuration
This address = 0100H + 8 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
32 banks
Memory area
24
MB89670/A Series
■ I/O MAP
Address
Read/write
Register name
00H
(R/W)
PDR0
Port 0 data register
XXXX
XXXXB
01H
(W)
DDR0
Port 0 data direction register
0000
0000B
02H
(R/W)
PDR1
Port 1 data register
XXXX
XXXXB
03H
(W)
DDR1
Port 1 data direction register
0000
0000B
04H
(R/W)
PDR2
Port 2 data register
0000
0000B
05H
(W)
BCTR
External bus pin control register
XXXX
XX0 1 B
06H
Register description
Initial value
Vacancy
07H
(R/W)
SYCC
System clock control register
X – – M MX 0 0 B
08H
(R/W)
STBC
Standby control register
0001
XXXXB
09H
(R/W)
WDTE
Watchdog timer control register
XXXX
XXXXB
0AH
(R/W)
TBCR
Time-base timer control register
0 0 XX
X0 0 0 B
Vacancy
0BH
0CH
(R/W)
PDR3
Port 3 data register
XXXX
XXXXB
0DH
(W)
DDR3
Port 3 data direction register
0000
0000B
0EH
(R/W)
PDR4
Port 4 data register
XXXX
XXXXB
0FH
(W)
DDR4
Port 4 data direction register
0000
0000B
10H
(R/W)
PDR5
Port 5 data register
1111
1111B
11H
(R)
PDR6
Port 6 data register
XXXX
XXXXB
12H
(R/W)
PPCR
Port 6 pull-up control register
0000
0000B
13H
(R/W)
PDR7
Port 7 data register
X1 1 1
1111B
14H
(R/W)
PDR8
Port 8 data/port 7 swiching register
0011
1111B
15H
(R/W)
BUZR
Buzzer control register
XXXX
X0 0 0 B
16H
(R/W)
CNTR
PWM control register #3
0000
0000B
17H
(R/W)
COMP
PWM compare register #3
XXXX
XXXXB
18H
(R/W)
TMCR
16-bit timer control register
0000
0000B
19H
(R/W)
TCHR
16-bit timer count register H
0000
0000B
1AH
(R/W)
TCLR
16-bit timer count register L
0000
0000B
Vacancy
1BH
1CH
(R/W)
SMR
Serial mode register
0000
0000B
1DH
(R/W)
SDR
Serial data register
XXXX
XXXXB
1EH
Vacancy
1FH
Vacancy
–: Unused, X: Undefined, M: Set using the mask option
(Continued)
25
MB89670/A Series
Address
Read/write
Register name
Register description
20H
(R/W)
ADC1
A/D converter control register 1
0000
0000B
21H
(R/W)
ADC2
A/D converter control register 2
X0 0 0
0001B
22H
(R/W)
ADCH
A/D converter data register H
––––
– – XXB
23H
(R/W)
ADCL
A/D converter data register L
XXXX
XXXXB
24H
(R/W)
T2CR
Timer 2 control register
X0 0 0
XXX0 B
25H
(R/W)
T1CR
Timer 1 control register
X0 0 0
XXX0 B
26H
(R/W)
T2DR
Timer 2 data register
XXXX
XXXXB
27H
(R/W)
T1DR
Timer 1 data register
XXXX
XXXXB
28H
(R/W)
CNTR1
PWM timer control register 1
0000
0000B
29H
(R/W)
CNTR2
PWM timer control register 2
0000
0000B
2AH
(R/W)
CNTR3
PWM timer control register 3
XXX0
0000B
2BH
(W)
COMR2
PWM timer compare register 2
XXXX
XXXXB
2CH
(W)
COMR1
PWM timer compare register 1
XXXX
XXXXB
2DH
Vacancy
2EH
Vacancy
2FH
Vacancy
30H
(R)
(W)
UDCR1
RCR1
Up/down counter register 1
Reload compare register1
XXXX
XXXX
XXXXB
XXXXB
31H
(R)
(W)
UDCR2
RCR2
Up/down counter register 2
Reload compare register2
XXXX
XXXX
XXXXB
XXXXB
32H
(R/W)
CCRA1
Counter control register A1
0000
0000B
33H
(R/W)
CCRA2
Counter control register A2
0000
0000B
34H
(R/W)
CCRB1
Counter control register B1
0000
0000B
35H
(R/W)
CCRB2
Counter control register B2
0000
0000B
36H
(R/W)
CSR1
Counter status register 1
0000
0000B
37H
(R/W)
CSR2
Counter status register 2
0000
0000B
38H
(R/W)
EIC1
External interrupt 1 control register 1
0000
0000B
39H
(R/W)
EIC2
External interrupt 1 control register 2
0000
0000B
3AH
(R/W)
EIE2
External interrupt 2 enable register
0000
0000B
3BH
(R/W)
EIF2
External interrupt 2 flag register
XXXX
0000B
3CH
Vacancy
3DH
Vacancy
3EH
Vacancy
3FH
Vacancy
–: Unused, X: Undefined, M: Set using the mask option
26
Initial value
(Continued)
MB89670/A Series
(Continued)
Address
Read/write
Register name
40H
(R/W)
USMR
UART mode register
0000
0000B
41H
(R/W)
USCR
UART control register
0000
0000B
42H
(R/W)
USTR
UART status register
0000
1 XXXB
43H
(R)
(W)
RXDR
TXDR
UART receiver data register
UART transmitter data register
XXXX
XXXX
XXXXB
XXXXB
XXXX
XXXXB
44H
45H
Register description
Initial value
Vacancy
(R/W)
RRDR
Baud rate generator reload data register
46H
Vacancy
47H
Vacancy
48H*
(R/W)
CNTR #4
PWM timer control register #4
0 X0 0
0000B
49H*
(R/W)
COMP #4
PWM timer compare register #4
XXXX
XXXXB
4AH*
(R/W)
CNTR #5
PWM timer control register #5
0 X0 0
0000B
4BH*
(R/W)
COMP #5
PWM timer compare register #5
XXXX
XXXXB
4CH*
(R/W)
CNTR #6
PWM timer control register #6
0 X0 0
0000B
4DH*
(R/W)
COMP #6
PWM timer compare register #6
XXXX
XXXXB
4E to
7AH
Vacancy
7BH
Vacancy
7CH
(W)
ILR1
Interrupt level setting register 1
1111
1111B
7DH
(W)
ILR2
Interrupt level setting register 2
1111
1111B
7EH
(W)
ILR3
Interrupt level setting register 3
1111
1111B
7FH
Vacancy
–: Unused, X: Undefined, M: Set using the mask option
* : For the MB89673, these are vacancies.
Note: Do not use vacancies.
27
MB89670/A Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(AVSS = VSS = 0.0 V)
Parameter
Symbol
Value
Unit
Remarks
Min.
Max.
VCC
VSS – 0.3
VSS + 7.0
V
AVCC
VSS – 0.3
VCC + 0.3
V
A/D converter reference input
voltage
AVR
VSS – 0.3
VCC + 0.3
V
Input voltage
VI
VSS – 0.3
VCC + 0.3
V
VO1
VSS – 0.3
VCC + 0.3
V
Except P80 to P85
VO2
VSS – 0.3
VSS + 7.0
V
P80 to P85
IOL
—
20
mA
IOLAV1
—
4
mA
Average value (operating
current × operating rate)
IOLAV2
—
8
mA
Average value (operating
current × operating rate)
P80 to P85
“L” level total maximum output
current
∑IOL
—
100
mA
“L” level total average output
current
∑IOLAV
—
40
mA
“H” level maximum output
current
IOH
—
–20
mA
“H” level average output current
IOHAV
—
–4
mA
“H” level total maximum output
current
∑IOH
—
–50
mA
“H” level total average output
current
∑IOHAV
—
–20
mA
Power consumption
PD
—
300
mW
Operating temperature
TA
–40
+85
°C
Storage temperature
Tstg
–55
+150
°C
Power supply voltage
Output voltage
“L” level maximum output
current
“L” level average output current
*
AVR must not exceed
AVCC + 0.3 V.
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
Average value (operating
current × operating rate)
* : Use AVCC and VCC set at the same voltage.
Take care so that AVR does not exceed AVCC + 0.3 V and AVCC does not exceed VCC, such as when power is
turned on.
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
28
MB89670/A Series
2. Recommended Operating Conditions
(AVSS = VSS = 0.0 V)
Symbol
Parameter
Power supply voltage
VCC
Value
Unit
Remarks
Min.
Max.
2.2*
6.0
V
Normal operation assurance range
MB89673/677A
2.7*
6.0
V
Normal operation assurance range
MB89PV670A/P677A
1.5
6.0
V
Retains the RAM state in stop mode
A/D converter reference input
voltage
AVR
0.0
AVCC
V
Operating temperature
TA
–40
+85
°C
* : These values vary with the operating frequency, and analog assurance range. See Figure 1 and “5. A/D Converter
Electrical Characteristics.”
6
5
A/D converter accuracy assured in the
VCC = AVCC = 3.5 V to 6.0 V range.
Operating voltage (V)
Operation assurance range
4
3
2
1
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Clock operating frequency (MHz)
4.0
2.0
0.8
0.4
Minimum execution time (µs)
Note: The shaded area is assured only for the MB89673/677A.
Figure 1
Operating Voltage vs. Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an minimum execution time of 4/FC.
Since the operating voltage range is dependent on the minimum execution time, see minimum execution time
if the operating speed is switched using a gear.
29
MB89670/A Series
3. DC Characteristics
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Pin
Symbol
VIH
Condition
Value
Min.
Typ.
Max.
Unit
Remarks
P32 to P37,
P00 to P07, P10 to P17,
0.7 VCC
P30 to P37, P40 to P47

VCC + 0.3
V
P44, and P47
are port input.
“H” level input voltage
P32 to P37,
RST, MOD0, MOD1,
VIHS
0.8 VCC
P32 to P37, P44, P47,

VCC + 0.3
V
P60 to P67, P70 to P76
P44, and P47
are peripheral
input.
VIL
P00 to P07, P10 to P17,
—
P30 to P37, P40 to P47
P32 to P37,
VSS − 0.3

0.3 VCC
V
P44, and P47
are port input.
“L” level input voltage
P32 to P37,
RST, MOD0, MOD1,
VILS
VSS − 0.3
P32 to P37, P44, P47,

0.2 VCC
V
P60 to P67, P70 to P76
P44, and P47
are peripheral
input.
Open-drain output
pin application voltage
VD
VSS − 0.3

VSS + 6.0
V
IOH = –2.0 mA
4.0


V
IOL = 4.0 mA


0.4
V
P80 to P85
P00 to P07, P10 to P17,
“H” level output
voltage
VOH
P20 to P27, P30 to P37,
P40 to P47, P71, P72,
P74, P75
P00 to P07, P10 to P17,
VOL1
“L” level output
voltage
P20 to P27, P30 to P37,
P40 to P47, P50 to P57,
P70 to P76
VOL2
P80 to P85
IOL = 10 mA


0.5
V
VOL3
RST
IOL = 4.0 mA
—
—
0.4
V
0.0 V < VI < VCC
—
—
±5
µA
0.0 V < VI < VCC
—
—
±1
µA
VI = 0.0 V
25
50
100
kΩ
P00 to P07, P10 to P17,
P20 to P27, P30 to P37,
Input leakage current
(Hi-z output leakage
current)
ILI1
P40 to P47, P50 to P57,
P60 to P67, P70 to P76,
Without pullup resistor
MOD0, MOD1
ILI2
P80 to P85
P00 to P07, P10 to P17,
Pull-up resistance
RPULL
P30 to P37, P40 to P47,
P60 to P67, P70 to P76,
With pull-up
resistor
RST
(Continued)
30
MB89670/A Series
(Continued)
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Condition
Value
Unit
Min.
Typ.
Max.
—
12
20
mA
—
1
2
mA
—
1.5
2.5
mA
—
3
7
mA
—
1
1.5
mA
ICCH
VCC = 3.0 V
TA = +25°C
Stop mode
—
—
1
mA
IA
FC = 10 MHz
When A/D
converter starts
—
6
8
mA
FC = 10 MHz
TA = +25°C
When A/D
converter stops
—
—
1
µA
f = 1 MHz
—
10
—
pF
ICC1
FC = 10 MHz
VCC = 5.0 V
tinst*2 = 0.4 µs
ICC2
FC = 10 MHz
VCC = 3.0 V
tinst*2 = 6.4 µs
ICCS1
Power supply
current*1
Pin
Symbol
ICCS2
AVCC
IAH
Input capacitance CIN
Other than AVCC,
AVSS, VCC, and VSS
Remarks
MB89673
MB89677A
MB89PV670A
MB89P677A
FC = 10 MHz
VCC
Sleep mode
Parameter
VCC = 5.0 V
t
inst*2
= 0.4 µs
FC = 10 MHz
VCC = 3.0 V
t
inst*2
= 6.4 µs
*1: The measurement conditions of the power supply current are as follows: the external clock and open output pins.
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”
31
MB89670/A Series
4. AC Characteristics
(1) Reset Timing
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
RST “L” pulse width
Value
Condition
tZLZH
—
Min.
Max.
48 tHCYL
—
Unit
Remarks
ns
tZLZH
RST
0.2 VCC
0.2 VCC
(2) Power-on Reset
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Power supply rising time
tR
Power supply cut-off time
tOFF
Condition
—
Value
Unit
Remarks
Min.
Max.
—
50
ms
Power-on reset function only
1
—
ms
Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is
recommended.
tR
tOFF
2.0 V
VCC
32
0.2 V
0.2 V
0.2 V
MB89670/A Series
(3) Clock Timing
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
Pin
Value
Condition
Min.
Max.
Unit
Remarks
Clock frequency
FC
X0, X1
1
10
MHz
Clock cycle time
tXCYL
X0, X1
100
1000
ns
Input clock pulse width
PWH
PWL
X0
20
—
ns
External clock
Input clock rising/falling
time
tCR
tCF
X0
—
10
ns
External clock
—
X0 and X1 Timing and Conditions
tXCYL
PWH
PWL
tCF
tCR
0.8 VCC
0.8 VCC
X0
0.2 VCC
0.2 VCC
0.2 VCC
Clock Conditions
When a crystal
or
ceramic resonator is used
X0
When an external clock is used
X1
X0
FC
C1
X1
Open
C2
(4) Instruction Cycle
Parameter
Symbol
Instruction cycle
tinst
(minimum execution time)
Value (typical)
Unit
4/FC, 8/FC, 16/FC, 64/FC
µs
Remarks
(4/FC) tinst = 0.4 µs when operating at
FC = 10 MHz
33
MB89670/A Series
(5) Recommended Resonator Manufacturers
Sample Application of Piezoelectric Resonator (FAR series)
X0
X1
FAR*
C1
C2
*: Fujitsu Acoustic Resonator
C1 = C2 = 20 pF±8 pF (built-in FAR)
FAR part number
(built-in capacitor type)
Frequency
Initial deviation of
FAR frequency
(TA = +25°C)
Temperature characteristics of
FAR frequency
(TA = –20°C to +60°C)
FAR-C4CB-08000-M02
8.00 MHz
±0.5%
±0.5%
FAR-C4CB-10000-M02
10.00 MHz
±0.5%
±0.5%
Inquiry: FUJITSU LIMITED
34
MB89670/A Series
Sample Application of Ceramic Resonator
X0
X1
*
C1
Resonator manufacturer*
Kyocera Corporation
Murata Mfg. Co., Ltd.
Resonator
C2
Frequency
C1 (pF)
C2 (pF)
R (kΩ)
KBR-7.68MWS
7.68 MHz
33
33
—
KBR-8.0MWS
8.0 MHz
33
33
—
CSA8.00MTZ
8.0 MHz
30
30
—
Inquiry: Kyocera Corporation
• AVX Corporation
North American Sales Headquarters: TEL 1-803-448-9411
• AVX Limited
European Sales Headquarters: TEL 44-1252-770000
• AVX/Kyocera H.K. Ltd.
Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.
• Murata Electronics North America, Inc.: TEL 1-404-436-1300
• Murata Europe Management GmbH: TEL 49-911-66870
• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233
35
MB89670/A Series
(6) Clock Output Timing
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Cycle time
tCYC
CLK
CLK ↑ → CLK ↓
tCHCL
CLK
Condition
—
Value
Max.
1/2 tinst*
—
µs
1/4 tinst – 0.07
1/4 tinst
µs
* : For information on tinst, see “(4) Instruction Cycle.”
tCYC
tCHCL
2.4 V
2.4 V
CLK
0.8 V
36
Unit
Min.
Remarks
MB89670/A Series
(7) Bus Read Timing
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Condition
Value
Unit
Min.
Max.
1/4 tinst* – 0.06
—
µs
1/2 tinst *– 0.02
—
µs
Remarks
Valid address → RD
↓ time
tAVRL
RD pulse width
tRLRH
RD
Valid address → Data
read time
tAVDV
AD7 to 0,
A15 to 08
—
1/2 tinst *
µs
Wait
RD ↓ → Data read time tRLDV
RD, AD7 to 0
—
1/2 tinst *– 0.08
µs
No wait
RD ↑ → Data hold time
tRHDX
AD7 to 0, RD
0
—
ns
RD ↑ → ALE ↑ time
tRHLH
RD, ALE
1/4 tinst* – 0.04
—
µs
RD, A15 to 08,
AD7 to 0
—
RD ↑ → Address loss time tRHAX
RD, A15 to 08
1/4 tinst* – 0.04
—
µs
RD ↓ → CLK ↑ time
tRLCH
RD, CLK
1/4 tinst* – 0.04
—
µs
CLK ↓ → RD ↑ time
tCLRH
RD, CLK
0
—
ns
RD ↓ → BUFC ↓ time
tRLBL
RD, BUFC
–5
—
ns
BUFC ↑ → Valid
address time
tBHAV
A15 to 08,
AD7 to 0,
BUFC
5
—
ns
* : For information on tinst, see “(4) Instruction Cycle.”
2.4 V
CLK
0.8 V
tRHLH
ALE
0.8 V
AD
2.4 V
0.7 VCC
0.7 VCC
2.4 V
0.8 V
0.3 VCC
0.3 VCC
0.8 V
tAVDV
tRHDX
2.4 V
A
2.4 V
tCLRH
0.8 V
tRLCH
0.8 V
tAVRL
tRLDV
2.4 V
0.8 V
tRHAX
tRLRH
2.4 V
RD
0.8 V
tRLBL
tBHAV
2.4 V
BUFC
0.8 V
37
MB89670/A Series
(8) Bus Write Timing
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Value
Condition
Min.
Max.
Valid address → ALE
↓ time
tAVLL
AD7 to 0, ALE,
A15 to 08
1/4 tinst* 2 – 0.064
—
µs
ALE ↓ time →
Address loss time
tLLAX
AD7 to 0, ALE,
A15 to 08
5*1
—
ns
Valid address → WR ↓ time
tAVWL
WR, ALE
1/4 tinst* 2 – 0.06
—
µs
WR pulse width
tWLWH
WR
1/2 tinst* 2 – 0.02
—
µs
Writing data → WR ↑ time
tDVWL
AD7 to 0, WR
1/2 tinst* 2 – 0.06
—
ns
—
1/4 t
inst* 2
– 0.04
—
µs
inst* 2
WR ↑ → Address loss time
tWHAX
WR, A15 to 08
WR ↑ → Data hold time
tWHDX
AD7 to 0, WR
1/4 t
– 0.04
—
µs
WR ↑ → ALE ↑ time
tWHLH
WR, ALE
1/4 tinst* – 0.04
—
µs
WR ↓ → CLK ↑ time
tWLCH
WR, CLK
1/4 tinst* 2 – 0.04
—
µs
CLK ↓ → WR ↑ time
tCLWH
WR, CLK
0
—
ns
ALE pulse width
tLHLL
ALE
1/4 t
– 0.035
—
µs
ALE ↓ → CLK ↑ time
tLLCH
ALE, CLK
1/4 tinst* 2 – 0.03
—
µs
inst* 2
*1: These characteristics are also applicable to the bus read timing.
*2: For information on tinst, see “(4) Instruction Cycle.”
2.4 V
CLK
0.8 V
tLHLL
tLLCH
tWHLH
2.4 V
ALE
0.8 V
tAVLL
0.8 V
tLLAX
2.4 V 2.4 V
2.4 V
0.8 V 0.8 V
0.8 V
2.4 V
AD
tDVWH
2.4 V
0.8 V
tWHDX
2.4 V
tCLWH
tWLCH
A
0.8 V
0.8 V
tAVWL
tWHAX
tWLWH
2.4 V
WR
0.8 V
38
Unit
Remarks
MB89670/A Series
(9) Ready Input Timing
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
RDY valid → CLK
↑ time
tYVCH
CLK ↑ → RDY invalid
time
tCHYX
Pin
Condition
RDY, CLK
Value
Unit
Remarks
Min.
Max.
60
—
ns
*
0
—
ns
*
—
RDY, CLK
* : These characteristics are also applicable to the read cycle.
2.4 V
CLK
2.4 V
ALE
AD
Address
Data
A
WR
tYVCH tCHYX
RDY
tYVCH tCHYX
Note: The bus cycle is also extended in the read cycle in the same manner.
39
MB89670/A Series
(10) Serial I/O Timing
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Value
Condition
Serial clock cycle time
tSCYC
SCK
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
Serial clock “H” pulse width
tSHSL
SCK
Serial clock “L” pulse width
tSLSH
SCK
Internal shift
clock mode
Max.
2 tinst*
—
µs
–200
200
ns
1/2 tinst*
—
µs
1/2 tinst*
—
µs
1 tinst*
—
µs
1 tinst*
—
µs
0
200
ns
External shift
clock mode
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
1/2 tinst*
—
µs
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
1/2 tinst*
—
µs
* : For information on tinst, see “(4) Instruction Cycle.”
Internal Shift Clock Mode
tSCYC
SCK
2.4 V
0.8 V
0.8 V
tSLOV
2.4 V
SO
0.8 V
tIVSH
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
SI
External Shift Clock Mode
tSLSH
tSHSL
SCK
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tSLOV
2.4 V
SO
0.8 V
tIVSH
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
SI
40
Unit
Min.
Remarks
MB89670/A Series
(11) Peripheral Input Timing
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
Pin
Condition
Value
Min.
Max.
Unit
Peripheral input “H” pulse width 1
tILIH1
TCI
1 tinst*
—
µs
Peripheral input “L” pulse width 1
tIHIL1
TCI
1 tinst*
—
µs
Peripheral input “H” pulse width 2
tILIH2
EC,
INT0 to INT7
2 tinst*
—
µs
Peripheral input “L” pulse width 2
tIHIL2
EC,
INT0 to INT7
2 tinst*
—
µs
Peripheral input “H” pulse width 3
tILIH3
ADST
64 tinst*
—
µs
Peripheral input “L” pulse width 3
tIHIL3
ADST
A/D
mode
64 tinst*
—
µs
Peripheral input “H” pulse width 3
tILIH3
ADST
64 tinst*
—
µs
Peripheral input “L” pulse width 3
tIHIL3
ADST
Sense
mode
64 tinst*
—
µs
—
Remarks
* : For information on tinst, see “(4) Instruction Cycle.”
tIHIL1
tILIH1
0.8 VCC
TCI
0.2 VCC
0.2 VCC
tIHIL2
EC
INT0 to INT7
0.8 VCC
tILIH2
0.8 VCC
0.2 VCC
0.2 VCC
tIHIL3
tILIH3
0.8 VCC
ADST
0.2 VCC
0.8 VCC
0.8 VCC
0.2 VCC
41
MB89670/A Series
(12) Up/down Counter Input Timing
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Value
Min.
Max.
Unit
AIN input “1” pulse width
tAHL
2 tinst*
—
µs
AIN input “0” pulse width
tALL
2 tinst*
—
µs
BIN input “1” pulse width
tBHL
2 tinst*
—
µs
BIN input “0” pulse width
tBLL
2 tinst*
—
µs
AIN ↑ → BIN ↑ time
tAUBU
1 tinst*
—
µs
BIN ↑ → AIN ↓ time
tBUAD
1 tinst*
—
µs
AIN ↓ → BIN ↓ time
tADBD
1 tinst*
—
µs
BIN ↓ → AIN ↑ time
tBDAU
1 tinst*
—
µs
BIN ↑ → AIN ↑ time
tBUAU
1 tinst*
—
µs
AIN ↑ → BIN ↓ time
tAUBD
1 tinst*
—
µs
BIN ↓ → AIN ↓ time
tBDAD
1 tinst*
—
µs
AIN ↓ → BIN ↑ time
tADBU
1 tinst*
—
µs
ZIN input “1” pulse width
tZHL
1 tinst*
—
µs
ZIN input “0” pulse width
tZLL
1 tinst*
—
µs
P36, P37,
P33, P34
—
P32, P35
* : For information on tinst, see “(4) Instruction Cycle.”
42
Condition
Remarks
MB89670/A Series
tAHL
AIN
tALL
0.8 VCC
0.8 VCC
0.2 VCC
tAUBU
tBUAD
0.2 VCC
tADBD
0.8 VCC
tBDAU
0.8 VCC
BIN
0.2 VCC
tBHL
0.2 VCC
tBLL
tBHL
tBLL
0.8 VCC
0.8 VCC
0.8 VCC
BIN
0.2 VCC
tBUAU
tAUBD
tBDAD
0.8 VCC
0.2 VCC
tADBU
0.8 VCC
AIN
0.2 VCC
tAHL
0.8 VCC
0.2 VCC
tALL
0.8 VCC
tZHL
ZIN
tZLL
0.2 VCC
0.2 VCC
43
MB89670/A Series
5. A/D Converter Electrical Characteristics
(AVCC = VCC = +3.5 V to +6.0 V, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Value
Pin
Unit
Min.
Typ.
Max.
—
—
10
bit
—
—
±2.0
LSB
Differential linearity error
—
—
±1.5
LSB
Total error
—
—
±3.0
LSB
Resolution
Linearity error
—
—
Zero transition voltage
VOT
AN0 to AN7
AVSS – 1.5 LSB
AVSS + 0.5 LSB
AVSS + 2.5 LSB
mV
Full-scale transition
voltage
VFST
AN0 to AN7
AVR – 3.5 LSB
AVR – 1.5 LSB
AVR + 0.5 LSB
mV
—
—
4
LSB
—
—
13.2
µs
AN0 to AN7
—
—
10
µA
AN0 to AN7
0
—
AVR
V
AVR
0
—
AVCC
V
AVR
—
200

µA
Interchannel disparity
—
A/D mode conversion
time
Analog port input current
IAIN
Analog input voltage
—
Reference voltage
Reference voltage
supply current
IR
—
Remarks
AVCC =
AVR = VCC
At 10-MHz
oscillation
AVR = 5.0 V
Precautions: • The smaller | AVR – AVSS |, the greater the error would become relatively.
• The output impedance of the external circuit for the analog input must satisfy the following conditions:
Output impedance of the external circuit < Approx. 10 kΩ
If the output impedance of the external circuit is too high, an analog voltage sampling time might be
insufficient (sampling time = 6 µs at 10 MHz oscillation).
An analog input equivalent circuit is shown below.
Sample hold circuit
R ≤ 10 kΩ is
recommended.
.
C =. 60 pF
AN
.
R =. 3 kΩ
Comparator
(
)
Analog channel selector
If R > 10 kΩ, it is recommended
to connect an external capacitor
of approx. 0.1 µF.
Close for approx. 15 instruction cycles
after activating A/D conversion.
Microcontroller’s internal circuit
Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the
sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the
analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.
It is recommended to keep the input impedance to the analog pin not exceed 10 kΩ. If it exceeds 10 kΩ, it is
recommended to connect a capacitor of approx. 0.1 µF for the analog input pin.
Except for the sampling period after A/D activation, the input leakage current of the analog input pin is less than 10 µA.
44
MB89670/A Series
(1) A/D Converter Glossary
• Resolution
Analog changes that are identifiable with the A/D converter.
• Linearity error
The deviation of the straight line connecting the zero transition point (“00 0000 0000” ↔ “00 0000 0001”) with
the full-scale transition point (“11 1111 1111” ↔ “11 1111 1110”) from actual conversion characteristics
• Differential linearity error
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
• Total error
The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale
transition error, linearity error, quantization error, and noise.
Theoreticall I/O characteristics
Total error
VFST
3FF
3FF
3FE
3FE
3FD
1.5 LSB
Digital output
Digital output
3FD
004
003
Actual conversion
value
{1 LSB × N + 0.5 LSB}
004
VNT
003
VOT
002
Actual conversion
value
002
1 LSB
Theoretical value
001
001
0.5 LSB
AVSS
AVR
1 LSB =
VFST – VOT
1022
AVSS
AVR
Analog input
Analog input
(V)
Total error of digital output N
VNT – {1 LSB × N + 0.5 LSB}
1 LSB
(Continued)
45
MB89670/A Series
(Continued)
Zero transition error
Full-scale transition error
004
Theoretical value
Actual conversion
value
3FF
Actual conversion
value
Digital output
Digital output
003
002
Theoretical
value
3FE
VFST (Actual
measured value)
3FD
Actual conversion
value
Actual conversion
value
001
3FC
VOT (Actual measured value)
AVSS
3FF
AVR
Analog input
Analog input
Linearity error
Differential linearity error
Theoretical value
Actual conversion
value
N+1
3FE
{1 LSB × N + VOT}
Actual conversion
value
VNT
VFST (Actual
measured
value)
004
003
V(N + 1)T
N
N–1
Actual conversion
value
002
Digital output
Digital output
3FD
VNT
Actual conversion
value
Theoretical value
N–2
001
VOT (Actual measured value)
AVSS
AVR
Analog input
Linearity error of digital output N =
46
AVSS
AVR
Analog input
VNT – {1 LSB × N + VOT}
1 LSB
Differential linearity error of digital output N =
V(N+1)T – VNT
1 LSB
–1
MB89670/A Series
■ EXAMPLE CHARACTERISTICS
(2) “H” Level Output Voltage
(1) “L” Level Output Voltage
VOL vs. IOL
VOL (V)
VCC = 2.5 V
TA = +25°C
0.5
VCC = 3.0 V
0.4
VCC = 4.0 V
VCC = 5.0 V
VCC = 6.0 V
0.3
0.2
VCC – VOH (V)
1.0
TA = +25°C
0.9
VCC – VOH vs. IOH
VCC = 2.5 V
0.8
0.7
VCC = 3.0 V
0.6
0.5
VCC = 4.0 V
VCC = 5.0 V
VCC = 6.0 V
0.4
0.3
0.2
0.1
0.1
0.0
0
1
2
3
4
5
6
7
8
9
10
IOL (mA)
(3) “H” Level Input Voltage/“L” Level Input
Voltage (CMOS Input)
0.0
0.0
–0.5
–1.0
–1.5
–2.0
–2.5
–3.0
IOH (mA)
(4) “H” Level Input Voltage/“L” Level Input
Voltage (Hysteresis Input)
VIN vs. VCC
VIN (V)
5.0
4.5
VIN vs. VCC
VIN (V)
5.0
4.5
TA = +25°C
4.0
TA = +25°C
4.0
VIHS
3.5
3.0
3.5
2.5
3.0
2.0
2.5
VILS
1.5
2.0
1.0
1.5
0.5
1.0
0.0
0.5
0.0
0
1
2
3
4
5
6
7
VCC (V)
0
1
2
3
4
5
6
7
VCC (V)
VIHS: Threshold when input voltage in hysteresis
characteristics is set to “H” level
VILS: Threshold when input voltage in hysteresis
characteristics is set to “L” level
47
MB89670/A Series
(5) Power Supply Current (External Clock)
ICCS1 vs. VCC, ICCS2 vs. VCC
ICC1 vs. VCC, ICC2 vs. VCC
ICC (mA)
25
TA = +25°C
FC = 10 MHz
External clock
20
ICC1 (Divide by 4)
ICCS (mA)
25
TA = +25°C
FC = 10 MHz
External clock
20
15
15
10
10
ICCS1 (Divide by 4)
ICC2 (Divide by 64)
5
5
ICCS2 (Divide by 64)
0
0
2
3
4
5
6
7
VCC (V)
2
3
4
(6) Pull-up Resistance
RPULL vs. VCC
RPULL (kΩ)
1000
TA = +25°C
500
100
50
10
1
48
2
3
4
5
6
VCC (V)
5
6
7
VCC (V)
MB89670/A Series
■ INSTRUCTIONS
Execution instructions can be divided into the following four groups:
•
•
•
•
Transfer
Arithmetic operation
Branch
Others
Table 1 lists symbols used for notation of instructions.
Table 1
Instruction Symbols
Symbol
Meaning
dir
Direct address (8 bits)
off
Offset (8 bits)
ext
Extended address (16 bits)
#vct
Vector table number (3 bits)
#d8
Immediate data (8 bits)
#d16
Immediate data (16 bits)
dir: b
Bit direct address (8:3 bits)
rel
Branch relative address (8 bits)
@
Register indirect (Example: @A, @IX, @EP)
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH
Upper 8 bits of accumulator A (8 bits)
AL
Lower 8 bits of accumulator A (8 bits)
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the
instruction in use.)
TH
Upper 8 bits of temporary accumulator T (8 bits)
TL
Lower 8 bits of temporary accumulator T (8 bits)
IX
Index register IX (16 bits)
(Continued)
49
MB89670/A Series
(Continued)
Symbol
Meaning
EP
Extra pointer EP (16 bits)
PC
Program counter PC (16 bits)
SP
Stack pointer SP (16 bits)
PS
Program status PS (16 bits)
dr
Accumulator A or index register IX (16 bits)
CCR
Condition code register CCR (8 bits)
RP
Register bank pointer RP (5 bits)
Ri
General-purpose register Ri (8 bits, i = 0 to 7)
×
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(( × ))
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns indicate the following:
Mnemonic:
Assembler notation of an instruction
~:
Number of instructions
#:
Number of bytes
Operation:
Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
• “–” indicates no change.
• dH is the 8 upper bits of operation description data.
• AL and AH must become the contents of AL and AH immediately before the instruction
is executed.
• 00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
50
MB89670/A Series
Table 2
Transfer Instructions (48 instructions)
Mnemonic
~
#
Operation
TL
TH
AH
NZVC
OP code
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
45
46
61
47
48 to 4F
04
05
06
60
92
07
08 to 0F
85
86
87
88 to 8F
D5
D6
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
D4
D7
E3
E4
C5
C6
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
C4
93
C7
F3
E7
E2
F2
E1
F1
82
83
E6
70
71
E5
10
A8 to AF
A0 to A7
42
43
F7
F6
F5
F0
Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
51
MB89670/A Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
(Continued)
52
MB89670/A Series
(Continued)
Mnemonic
~
#
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
Operation
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
53
L
54
B
C
D
E
F
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir dir,#d8 dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
5
A
SUBC
A
XCH
XOR
AND
OR
A, T
A
A
A
MOV
MOV
CLRB
BBC
INCW
DECW MOVW MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
AND
CMP
A,@IX +d
MOVW
@IX +d,A
MOVW
MOVW XCHW
IX,#d16
A,IX
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BZ
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5 R5,#d8 R5,#d8
dir: 5 dir: 5,rel
R5
R5
#5
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BGE
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6 R6,#d8 R6,#d8
dir: 6 dir: 6,rel
R6
R6
#6
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BLT
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7 R7,#d8 R7,#d8
dir: 7 dir: 7,rel
R7
R7
#7
rel
D
E
F
rel
rel
rel
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNZ
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4 R4,#d8 R4,#d8
dir: 4 dir: 4,rel
R4
R4
#4
rel
@EP,#d8
@EP,#d8
C
CMP
MOV
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BN
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3 R3,#d8 R3,#d8
dir: 3 dir: 3,rel
R3
R3
#3
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16
A,EP
CLRB
BBC
dir: 6 dir: 6,rel
B
@IX +d,#d8 @IX +d,#d8
MOV
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BP
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2 R2,#d8 R2,#d8
dir: 2 dir: 2,rel
R2
R2
#2
A,@IX +d
OR
A
A,@IX +d A,@IX +d
XOR
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1 R1,#d8 R1,#d8
dir: 1 dir: 1,rel
R1
R1
#1
+d,A
MOV @IX
9
A,@IX +d
SUBC
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0 R0,#d8 R0,#d8
dir: 0 dir: 0,rel
R0
R0
#0
rel
A,@IX +d
ADDC
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 4 dir: 4,rel
A,ext
ext,A A,#d16
A,PC
8
A,@IX +d
A,@IX +d
DAS
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP
CMP
MOV
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
7
6
MOV
CMP
ADDC SUBC
A,#d8
A,#d8
A,#d8
A,#d8
ADDC
CLRB
BBC
INCW
DECW MOVW MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
MOVW MOVW CLRB
BBC
INCW
DECW MOVW MOVW
CMPW ADDCW SUBCW XCHW XORW ANDW ORW
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
A
A
SETC
4
A
CMP
PUSHW POPW MOV
MOVW CLRC
JMP
CALL
IX
IX
ext,A
PS,A
addr16 addr16
RORC
A
DIVU
3
CLRB
BBC
INCW
DECW JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
ROLC
A
SETI
7
PUSHW POPW MOV
MOVW CLRI
A
A
A,ext
A,PS
6
9
5
8
4
2
A
RETI
3
MULU
RET
2
1
SWAP
1
NOP
0
0
H
MB89670/A Series
■ INSTRUCTION MAP
MB89670/A Series
■ MASK OPTIONS
Part number
MB89673
MB89677A
MB89P677A
MB89PV670A
Specifying procedure
Specify when
ordering masking
Set with EPROM
programmer
Setting not possible
No.
1
Pull-up resistors
P10 to P17,
P30 to P37, P40 to P47,
P70 to P76
Selectable by pin
Selectable by pin
2
Pull-up resistors
P00 to P03
Selectable by pin
Selectable in 4-pin
unit
3
Pull-up resistors
P04 to P07
Selectable by pin
Selectable in 4-pin
unit
4
Power-on reset
With power-on reset
Without power-on reset
Selectable
Selectable
Fixed to with
power-on reset
Selectable
Selectable
Fixed to Approx.
218/FC (Approx.
26.2 ms)
Selectable
Selectable
Fixed to with reset
output
Fixed to without
pull-up resistor
Oscillation stabilization time
selection (at 10 MHz)
Approx. 218/FC (about 26.2 ms)
5
Approx. 217/FC (about 13.1 ms)
Approx. 214/FC (about 1.6 ms)
Approx. 24/FC (about 0 ms)
FC: Clock frequency
6
Reset pin output
With reset output
Without reset output
■ ORDERING INFORMATION
Part number
Package
MB89673PF
MB89677APF
MB89P677APF
80-pin Plastic QFP
(FPT-80P-M06)
MB89673PFM
MB89677APFM
MB89P677APFM
80-pin Plastic QFP
(FPT-80P-M11)
MB89P670ACF
Remarks
80-pin Ceramic MQFP
(MQP-80C-P01)
55
MB89670/A Series
■ PACKAGE DIMENSIONS
80-pin Plastic QFP
(FPT-80P-M11)
+0.20
1.50 –0.10
+.008
.059 –.004
16.00±0.20(.630±.008)SQ
14.00±0.10(.551±.004)SQ
60
41
61
40
12.35 15.00
(.486) (.591)
REF NOM
1 PIN INDEX
80
LEAD No.
21
1
0.65(.0256)TYP
0.30±0.10
(.012±.004)
0.13(.005)
0.10(.004)
C
56
1994 FUJITSU LIMITED F80016S-1C-2
Details of "A" part
"A"
20
M
0.127
.005
0.10±0.10
(STAND OFF)
(.004±.004)
+0.05
–0.02
+.002
–.001
0
10°
0.50±0.20
(.020±.008)
Dimensions in mm (inches)
MB89670/A Series
80-pin Plastic QFP
(FPT-80P-M06)
23.90±0.40(.941±.016)
64
20.00±0.20(.787±.008)
3.35(.132)MAX
0.05(.002)MIN
(STAND OFF)
41
65
40
14.00±0.20
(.551±.008)
12.00(.472)
REF
17.90±0.40
(.705±.016)
16.30±0.40
(.642±.016)
INDEX
80
25
"A"
LEAD No.
1
24
0.80(.0315)TYP
0.35±0.10
(.014±.004)
0.16(.006)
0.15±0.05(.006±.002)
M
Details of "A" part
Details of "B" part
0.25(.010)
"B"
0.10(.004)
18.40(.724)REF
22.30±0.40(.878±.016)
C
1994 FUJITSU LIMITED F80010S-3C-2
0.30(.012)
0.18(.007)MAX
0.58(.023)MAX
0 10°
0.80±0.20
(.031±.008)
Dimensions in mm (inches)
57
MB89670/A Series
80-pin Ceramic MQFP
(MQP-80C-P01)
18.70(.736)TYP
12.00(.472)TYP
INDEX AREA
16.30±0.33
(.642±.013)
15.58±0.20
(.613±.008)
1.50(.059)TYP
1.00(.040)TYP
4.50(.177)
TYP
1.27±0.13
(.050±.005)
22.30±0.33
(.878±.013)
24.70(.972)
TYP
0.30(.012)
TYP
0.80±0.25
(.0315±.010)
0.80±0.25
(.0315±.010)
+0.40
1.20 –0.20
+.016
.047 –.008
INDEX AREA
18.12±0.20
12.02(.473)
(.713±.008)
TYP
10.16(.400)
14.22(.560)
TYP
TYP
18.40(.724)
REF
INDEX
1.27±0.13
(.050±.005)
6.00(.236)
TYP
0.30(.012)TYP
7.62(.300)TYP
9.48(.373)TYP
11.68(.460)TYP
0.40±0.10
(.016±.004)
1.50(.059)
TYP
1.00(.040)
TYP
0.40±0.10
(.016±.004)
+0.40
1.20 –0.20
+.016
.047 –.008
0.15±0.05 8.70(.343)
(.006±.002) MAX
C
58
1994 FUJITSU LIMITED M80001SC-4-2
Dimensions in mm (inches)
MB89670/A Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
No. 51 Bras Basah Road,
Plaza By The Park,
#06-04 to #06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609
All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a
means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.
The information contained in this document has been carefully
checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.
The information contained in this document does not convey any
license under the copyrights, patent rights or trademarks claimed
and owned by Fujitsu.
Fujitsu reserves the right to change products or specifications
without notice.
No part of this publication may be copied or reproduced in any
form or by any means, or transferred to any third party without
prior written consent of Fujitsu.
The information contained in this document are not intended for
use with equipments which require extremely high reliability
such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.
F9602
 FUJITSU LIMITED Printed in Japan
59