IRF IRF1404ZL Advanced process technology Datasheet

PD - 94634B
IRF1404Z
IRF1404ZS
IRF1404ZL
Features
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
VDSS = 40V
RDS(on) = 3.7mΩ
G
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
Absolute Maximum Ratings
ID = 75A
S
D2Pak
IRF1404ZS
TO-220AB
IRF1404Z
Parameter
TO-262
IRF1404ZL
Max.
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
Units
190
130
A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
IDM
750
PD @TC = 25°C Power Dissipation
220
W
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS (Thermally limited) Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
EAS (Tested )
1.5
± 20
W/°C
V
320
mJ
75
c
d
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
-55 to + 175
°C
Mounting Torque, 6-32 or M3 screw
i
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
www.irf.com
Junction-to-Ambient (PCB Mount)
A
mJ
Thermal Resistance
i
480
See Fig.12a, 12b, 15, 16
g
Soldering Temperature, for 10 seconds
RθJA
h
i
j
300 (1.6mm from case )
y
y
10 lbf in (1.1N m)
Typ.
Max.
Units
–––
0.65
°C/W
0.50
–––
–––
62
–––
40
1
10/12/11
IRF1404ZS_L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
40
–––
–––
ΔV(BR)DSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.033
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.7
3.7
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
170
–––
–––
V
VDS = 25V, ID = 75A
Drain-to-Source Leakage Current
–––
–––
20
μA
VDS = 40V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
200
nA
VGS = 20V
V
VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
V
e
VDS = VGS, ID = 250μA
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
100
150
Qgs
Gate-to-Source Charge
–––
31
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
42
–––
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 20V
tr
Rise Time
–––
110
–––
ID = 75A
td(off)
Turn-Off Delay Time
–––
36
–––
tf
Fall Time
–––
58
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
4340
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
1030
–––
Crss
Reverse Transfer Capacitance
–––
550
–––
Coss
Output Capacitance
–––
3300
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
920
–––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
1350
–––
VGS = 0V, VDS = 0V to 32V
ID = 75A
nC
VDS = 32V
VGS = 10V
ns
nH
RG = 3.0 Ω
e
e
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
75
ISM
(Body Diode)
Pulsed Source Current
–––
–––
750
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
28
42
ns
Qrr
Reverse Recovery Charge
–––
34
51
nC
ton
Forward Turn-On Time
2
c
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C, IF = 75A, VDD = 20V
di/dt = 100A/μs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF1404ZS_L
1000
1000
VGS
100
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
TOP
10
4.5V
1
20μs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
4.5V
10
100
0.1
1
VDS, Drain-to-Source Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
200
T J = 25°C
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current ( A)
20μs PULSE WIDTH
Tj = 175°C
T J = 175°C
100
10
VDS = 15V
20μs PULSE WIDTH
1
4.0
5.0
6.0
7.0
8.0
9.0
10.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
T J = 175°C
160
120
T J = 25°C
80
40
VDS = 15V
20μs PULSE WIDTH
0
11.0
0
40
80
120
160
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRF1404ZS_L
8000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
6000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Ciss
4000
2000
Coss
Crss
ID= 75A
VDS= 32V
VDS= 20V
16
12
8
4
0
0
1
10
0
100
VDS, Drain-to-Source Voltage (V)
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
T J = 175°C
100.0
10.0
T J = 25°C
1.0
VGS = 0V
0.1
0.2
0.6
1.0
1.4
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
80
120
160
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
4
40
Q G Total Gate Charge (nC)
1000
100
100μsec
10
1
1.8
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
0
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1404ZS_L
200
2.0
ID , Drain Current (A)
160
120
80
40
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
ID = 75A
VGS = 10V
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
LIMITED BY PACKAGE
1.0
0.5
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1404ZS_L
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
600
15V
TOP
500
BOTTOM
ID
31A
53A
75A
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2μF
.3μF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
10 V
ID = 250μA
3.0
2.0
1.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF1404ZS_L
Avalanche Current (A)
10000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Δ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
Duty Cycle = Single Pulse
1000
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
400
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1404ZS_L
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1404ZS_L
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN THE AS S EMBLY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
For GB Production
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN THE AS S E MBLY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
LOT CODE
PART NUMBER
DATE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF1404ZS_L
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
AS S EMBLY
LOT CODE
For GB Production
THIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
LOT CODE
PART NUMBER
F530S
DATE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF1404ZS_L
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IGBT
1- GATE
2- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE ASS EMBLY LINE "C"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRF1404ZS_L
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 Repetitive rating; pulse width limited by
Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.11mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = 75A, VGS =10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is only applied to TO-220AB pakcage.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the
4 or G-10 Material). For recommended footprint and soldering
same charging time as Coss while VDS is rising
techniques refer to application note #AN-994.
from 0 to 80% VDSS .
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
12
IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2011
www.irf.com
Similar pages