MICREL MIC2141

MIC2141
Micrel
MIC2141
Micropower Boost Converter
Preliminary Information
General Description
Features
The MIC2141 is a micropower boost switching regulator that
can operate from 3- or 4-cell nickel-metal-hydride batteries or
a single Li-ion cell. This regulator employs a constant 330kHz,
fixed 18% duty-cycle, gated-oscillator architecture.
The MIC2141 can be used in applications where the output
voltage must be dynamically adjusted. The device features a
control signal input which is used to proportionally adjust the
output voltage. The control signal input has a gain of 6,
allowing a 0.8V to 3.6V control signal to vary a 4.8V to 22V
output.
The MIC2141 requires only three external components to
operate and is available in a tiny 5-lead SOT-23 package for
space and power-sensitive portable applications. The
MIC2141 draws only 70µA of quiescent current and can
operate with an efficiency exceeding 85%.
•
•
•
•
•
•
•
•
Implements low-power boost, SEPIC, or flyback
2.5V to 14V input voltage
330kHz switching frequency
<2µA shutdown current
70µA quiescent current
1.24V bandgap reference
typical output current 1mA to 10mA
SOT-23-5 Package
Applications
• LCD bias supply
• CCD digital camera supply
Ordering Information
Part Number
Junction Temp. Range
Package
MIC2141-BM5
–40°C to +85°C
SOT-23-5
Typical Application
Control Voltage
vs. Output Voltage
10µH
4.0
Variable
VOUT
VC*
(from DAC)
3.5
3.0
MIC2141
5
VC (V)
1
2
3
4
2.5
2.0
1.5
1.0
10µF
0.5
0
0
5
10
15
VOUT (V)
20
25
DAC-Controlled LCD Bias Voltage Supply
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
June 2000
1
MIC2141
MIC2141
Micrel
Pin Configuration
SW GND IN
3
2
1
Part
Identification
SAxx
4
5
FB
VC
SOT-23-5 (BM)
Pin Description
Pin Number
Pin Name
1
IN
2
GND
3
SW
Switch Node (Input): Internal MOSFET drain; 22V maximum.
4
FB
Feedback (Input): Output voltage sense node. Compared to VC control
input voltage.
5
VC
Control (Input): Output voltage control signal input. Input voltage of 0.8V to
3.6V is proportional to 4.8V to 22V output voltage (gain of 6). If the pin is not
connected, the output voltage will be VIN – 0.5V.
MIC2141
Pin Function
Input: +2.5V to +14V supply for internal circuity.
Ground: Return for internal circuitry and internal MOSFET (switch) source.
2
June 2000
MIC2141
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VIN) ................................................... +18V
Switch Voltage (VSW) .................................................. +24V
Feedback Voltage (FB) ................................................ +24V
Control Input Voltage (VC), Note 3 .. VIN–200mV ≤ VC ≤ 4V
ESD Rating, Note 4 ...................................................... 2kV
Supply Voltage (VIN) .................................... +2.5V to +14V
Switch Voltage (VSW) ...................................... +3V to +22V
Ambient Temperature (TA) ......................... –40°C to +85°C
Junction Tempgserature (TJ) ................... –40°C to +125°C
Package Thermal Resistance
SOT-23-5 (θJA) ...................................................... 220°C/W
Electrical Characteristics
VIN = 3.6V, VOUT = 5V; IOUT = 1mA; TJ = 25°C, bold values indicate –40°C ≤ TA ≤ +85°C; unless noted.
Parameter
Condition
Min
Input Voltage
Quiescent Current
Typ
2.5
Switch off, VIN = 3.6V
70
Comparator Hysteresis
Max
Units
14
V
100
µA
10
mV
Control Voltage Gain (VOUT/VC)
2.5V ≤ VIN ≤ 12V, VOUT = 15V
Controlled Output Voltage,
Note 3
VC = 0.8V; 2.5V ≤ VIN ≤ 4.2V
4.85
5.0
5.15
V
VC = 2.5V; 2.7V ≤ VIN ≤ 12V
14.55
15.0
15.45
V
VC = 3.4V; 3.6V ≤ VIN ≤ 12V
19.4
20.0
20.6
V
6
Load Regulation
100µA ≤ IOUT ≤ 1mA, VOUT = 15V
0.25
1
%
Line Regulation
2.5V ≤ VIN ≤ 12V; IOUT ≤ 1mA
0.05
0.2
%/V
Switch On-Resistance
ISW = 100mA, VIN = 3.6V
4
Ω
ISW = 100mA, VIN = 12V
2.5
Ω
Oscillator Frequency
300
330
Oscillator Duty Cycle
15
18
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
VC = 4V sets VOUT to 24V (absolute maximum level on VSW); VC must be ≤ VIN – 200mV.
Note 4.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
June 2000
3
360
kHz
%
MIC2141
MIC2141
Micrel
Typical Characteristcs
Feedback Current
vs. Output Voltage
Control Voltage
vs. Output Voltage
20
20
15
10
5
15
6.4
VIN = 5V
L = 33µH
5
10
15
20
OUTPUT VOLTAGE (V)
10
Load Regulation
5
4
3
2
1
4
14.90
IPEAK = 150mA
L = 22µH
14.85
VIN = 5V
14.80
0
1
2
3
4
LOAD CURRENT (mA)
Oscillator Frequency
vs. Input Voltage
340
320
14.2
L = 33µH
IL = 100µA
4
6
8
10
INPUT VOLTAGE (V)
12
0.60
240
0.58
200
160
120
80
0
0
16
0.56
0.54
0.52
40
2
4 6 8 10 12 14 16
INPUT VOLTAGE (V)
Frequency
vs. Temperature
0.50
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Duty Cycle
vs. Temperature
350
20
19
340
18
DUTY CYCLE (%)
FREQUENCY (kHz)
14.4
On-Time
vs. Temperature
ON-TIME (µs)
QUIESCENT CURRENT (µA)
360
6
8 10 12 14
INPUT VOLTAGE (V)
14.6
14.0
2
5
280
4
14.8
Quiescent Current
vs. Input Voltage
380
25
Line Regulation
IPEAK = 100mA
L = 33µH
14.95
400
5
10
15
20
OUTPUT VOLTAGE (V)
15.0
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
CONTROL CURRENT (nA)
6
300
2
5.7
0
4
15.00
7
1
2
3
CONTROL VOLTAGE (V)
6.0
5.8
1
2
3
CONTROL VOLTAGE (V)
Control Current
vs. Control Voltage
0
0
6.1
5.9
5
0
0
25
VIN = 5V
L = 33µH
6.2
VIN = 2.5V
VIN = 3.6V
0
0
FREQUENCY (kHz)
6.3
GAIN
OUTPUT VOLTAGE (V)
FEEDBACK CURRENT (µA)
25
330
320
310
17
16
15
14
13
12
11
10
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
300
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC2141
Gain
vs. Output Voltage
4
June 2000
MIC2141
Micrel
Quiescent Current
vs. Temperature
Output Voltage
vs. Temperature
OUTPUT VOLTAGE (V)
VIN = 5V
86
84
82
80
78
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
15.00
6.00
14.80
5.98
14.60
14.40
5.96
5.94
5.92
14.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
5.90
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Switch On-Resistance
vs. Temperature
Switch Voltage Drop
vs. Input Voltage
8
900
700
7
800
600
6
700
400
VIN = 3.3V
ID = 100mA
300
5
4
VDS (mV)
RDS(on) (Ω)
800
500
VIN = 3.3V
3
500
400
300
2
200
100
1
100
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
On-Resistance vs.
Input Voltage
Efficiency
EFFICIENCY (%)
ON-RESISTANCE (Ω)
8
6
5
4
3
2
June 2000
60
50
40
30
4
6
8
10 12
INPUT VOLTAGE (V)
14
0
0
4
6
8
10 12
INPUT VOLTAGE (V)
14
Ripple Voltage vs.
Input Voltage
90
BAT54HT1 Diode
1N4148 Diode
VIN = 5V
VOUT = 15V
L = 33µH
20
10
1
0
2
80
70
0
2
RIPPLE VOLTAGE (mV)
100
90
9
IDS = 100mA
600
200
7
VIN = 5V
14.20
Switch Voltage Drop
vs. Temperature
VDS (mV)
VIN = 5V
L = 33µH
GAIN
QUIESCENT CURRENT (µA)
88
Gain
vs. Temperature
1
2
3
OUTPUT CURRENT (mA)
5
4
80
L = 100µH
70
60
50
40
VOUT = 15V
IL = 1mA
30
20
10
0
2
4
6
8
10
INPUT VOLTAGE (V)
12
MIC2141
MIC2141
Micrel
Functional Diagram
IN
Bandgap
Reference
SW
Oscillator
330kHz
FIXED DUTY CYCLE
VC
FB
MIC2141
GND
Output
The maximum output voltage is limited by the voltage capability of the output switch. Output voltages up to 22V can be
achieved with a standard boost circuit. Higher output voltages require a flyback configuration.
Output Voltage Control
The internal hysteretic comparator disables the output drive
once the output voltage exceeds the nominal by 30mV. The
drive is then enabled once the output voltage drops below the
nominal by 30mV.
The reference level, which actually programs the output
voltage, is set by the VC control input. The output is 6 times
the control voltage (VC) and the output ripple will be 6 times
the comparator hystersis. Therefore, with 10mV of hystersis,
there will be ±30mV variation in the output around the nominal
value. See the “Typical Characteristics: Control Voltage vs.
Output Voltage” for a graph of input-to-output behavior.
The common-mode range of the comparator requires that the
maximum control voltage (VC) be held to 200mV less than
VIN. When programming for a 20V output, a minimum VIN of
3.5V will be required. See the “Typical Characteristics: Gain
vs. Output Voltage” for a graph of gain behavior. To achieve
20V output at lower input voltages, the external resistive
divider (R1 and R2) shown in Figure 2 can be added. This
circuit will increase the control-to-output gain, while limiting
the error introduced by the tolerance of the internal resistor
feedback network.
Functional Description
See “Applications Information” for component selection and
predesigned circuits.
Overview
This MIC2141 is a fixed-duty-cycle, constant-frequency, gatedoscillator, micropower, switch-mode power supply controller.
Quiescent current for the MIC2141 is only 70µA in the switch
off state, and since a MOSFET output switch is used, additional current needed for switch drive is minimized. Efficiencies above 85% throughout most operating conditions can be
realized.
Regulaton
Regulation is performed by a hysteretic comparator which
regulates the output voltage by gating the internal oscillator.
The user applies a programming voltage to the VC pin. (For
a fixed or adjustable output regulator, with an internal reference, use the MIC2142.) The output voltage is divided down
internally and then compared to the VC, the control input
voltage, forcing the output voltage to 6 times the VC. The
comparator has hysteresis built into it, which determines the
amount of low frequency ripple that will be present on the
output. Once the feedback input to the comparator exceeds
the control voltage by 10mV, the high-frequency oscillator
drive is removed from the output switch. As the feedback
input to the comparator returns to the control voltage level,
the comparator is reset and the high-frequency oscillator is
again gated to the output switch. Typically 10mV of hysteresis
seen at the comparator will correspond to 60mV of lowfrequency ripple at the output. Applications, which require
continuous adjustment of the output voltage, can do so by
adjustment of the VC control pin.
MIC2141
6
June 2000
MIC2141
Micrel
CCM (continuous conduction mode). As the input voltage is
raised above this level the inductor has a potential for
developing a dc component while the oscillator is gated on.
Table 1 display the input points at which the inductor current
can possibly operate in the CCM region. Operation in this
region can result in a peak current slightly higher than
displayed Table 4.
Application Information
Predesigned circuit information is at the end of this section.
Component Selection
Boost Inductor
Maximum power is delivered to the load when the oscillator
is gated on 100% of the time. Total output power and circuit
efficiency must be considered when determining the maximum inductor. The largest inductor possible is preferable in
order to minimize the peak current and output ripple. Efficiency can vary from 80% to 90% depending upon input
voltage, output voltage, load current, inductor, and output
diode.
Equation 1 solves for the output current capability for a given
inductor value and expected efficiency. Figures 5 through 9
graph estimates for maximum output current, assuming the
minimum duty cycle, maximum frequency, and 85% efficiency. To determine the required inductance, find the intersection between the output voltage and current and select the
value of the inductor curve just above the intersection. If the
efficiency is expected to be other than the 85% used for the
graph, Equation 1 can then be used to better determine the
maximum output capability.
(1)
IO(max)
(VIN(min) tON )
=
2LMAX TS
(3)
eff
IPK =
Series
Device Type
muRata
LQH1C/3C/4C
surface mount
Sumida
CR32
surface mount
J.W. Miller
78F
axial leaded
Coilcraft
90
axial leaded
Boost Output Diode
Speed, forward voltage, and reverse current are very important in selecting the output diode. In the boost configuration,
the average diode current is the same as the average load
current. (The peak current is the same as the peak inductor
current and can be derived from Equation 2 or Figure 10.)
Care must be take to make sure that the peak current is
evaluated at the maximum input voltage.
− VIN(min)
The peak inductor and switch current can be calculated from
Equation 2 or read from the graph in Figure 10. The peak
current shown in Figure 10 is derived assuming a maximum
duty cycle and a minimum frequency. The selected inductor
and diode peak current capability must exceed this value.
The peak current seen by the inductor is calculated at the
maximum input voltage. A wider input voltage range will result
in a higher worst-case peak current in the inductor. This effect
can be seen in Table 4 by comparing the difference between
the peak current at VIN(min) and VIN(max).
(2)
Manufacturer
Table 2. Inductor Examples
1
VO
)
Table 2 lists common inductors suitable for most applications. Table 6 lists minimum inductor sizes versus input and
output voltage. In low-cost, low-peak-current applications,
RF-type leaded inductors may sufficient. All inductors listed
in Table 4 can be found within the selection of CR32- or
LQH4C-series inductors from either Sumida or muRata.
2
×
(
VIN(ccm) = VOUT + VFWD + (1 − D)
t ON(max ) VIN(max )
LMIN
DCM/CCM Boundary
Equation 3 solves for the point at which the inductor current
will transition from DCM (discontinuous conduction mode) to
Diode
75°C
VFWD
at
100mA
25°C
Room
75°C
VFWD
Temp.
Leakage Package
at
Leakage
at 15V
100mA at 15V
MBR0530
0.275V
0.325V
2.5µA
90µA
SOD123
SMT
1N4148
0.6V
(175°C)
0.95V
25nA
(20V)
0.2µA
(20V)
leaded
and SMT
BAT54
0.4V
(85°C)
0.45V
10nA
(25V)
1µA
(20V)
SMT
BAT85
0.54
(85°C)
0.56V
0.4µA
2µA
(85°C)
DO-34
leaded
Table 3. Diode Examples
VOUT
VIN(CCM)
3.3V
3.04V
5.0V
4.40V
9.0V
7.60V
12.0V
10.0V
15.0V
12.4V
16.0V
13.2V
20.0V
16.4V
22.0V
18.0V
As can be seen in the “Typical Characteristics: Efficiency”
graph, the output diode type can have an effect on circuit
efficiency. The BAT54- and BAT85-series diodes are lowcurrent Shottky diodes available from On Semiconductor and
Phillips, respectively. They are suitable for peak repetitive
currents of 300mA or less with good reverse current characteristics. For applications that are cost driven, the 1N4148, or
equivalent, will provide sufficient switching speed with greater
forward drop and reduced cost. Other acceptable diodes are
On Semiconductor’s MBR0530 or Vishay’s B0530, although
they can have reverse currents that exceed 1mA at very high
junction temperatures. Table 3 summarizes some typical
performance characteristics of various suitable diodes.
Table 1. DCM/CCM Boundary
June 2000
7
MIC2141
MIC2141
Micrel
Output Capacitor
If the availability of tantalum capacitors is limited, ceramic
capacitors and inexpensive electrolyics may be necessary.
Selection of the capacitor value will depend upon on the peak
inductor current and inductor size. MuRata offers the GRM
series with up to 10µF at 25V, with a Y5V temperature
coefficient, in a 1210 surface-mount package. Low-cost
applications can use M-series leaded electrolytic capacitors
from Panasonic. In general, ceramic, electrolytic, or tantalum
values ranging from 10µF to 47µF can be used for the output
capacitor.
Manufacturer
Series
Type
Package
muRata
GRM
ceramic Y5V
surface mount
Vishay
594
tantalum
surface mount
Panasonic
M-series
electrolytic
leaded
LMAX
Select 15µH ±10%.
IPEAK =
L1
33µH
C4
0.1µF
1
5
VC
= 0.767µs
4.8V
13.5µH
Select a BAT54 diode and CR32 inductor.
Always check the peak current to insure that it is within the
limits specified in the load line shown in Figure 10 for all
input and output voltages.
Gain Boost
Use Figure 2 to increase the voltage gain of the system. The
typical gain can easily be increased from the nominal gain of
6 to a value of 8 or 10. Figure 2 shows a gain of 8 so that with
2.5V applied to VC, VOUT will be 20V.
Bootstrap
The bootstrap configuration is used to increase the maximum
output current for a given input voltage. This is most effective
when the input voltage is less than 5V. Output current can
typically be tripled by using this technique. See Table 4a. for
bootstrap-ready-built component values.
Design Example
Given a design requirement of 12V output and 1mA load with
a minimum input voltage of 2.5V, Equation 1 can be used to
calculate to maximum inductance or it can be read from the
graph in Figure 4. Once the maximum inductance has been
determined, the peak current can be determined using Equation 2 or Figure 10.
VOUT = 12V
IOUT = 1mA
VIN = 4.8V to 2.5V
C2
10µF
25V
t ON(max) ⋅ VIN(max)
LMIN
IPEAK = 272mA
Table 4. Capacitor Examples
VIN
+2.7V to +12V
VIN(min)2 ⋅ t ON(min)2
V
IO(max) O − VIN(min) ⋅ 2 ⋅ TS(min)
eff
= 17µH
LMAX =
MIC2141
IN
SW
FB
VC
GND
CR1
BAT54HT1
3
VOUT
+5V to +15V
C1
10µF
25V
4
2
Return
Return
Figure 1. Basic Configuration
L1
22µH
VIN
+2.7V to +12V
C2
10µF
25V
C4
0.1µF
4
5
VC
MIC2141
IN
SW
FB
VC
GND
CR1
BAT54HT1
3
2
1
R1
34.8k
IFB
VOUT
+5V to +20V
C1
10µF
25V
R2
121k
Return
 R1
VOUT = 6VC 1 +
 + I ⋅ R1
 R2  FB
IFB(typ) = 15µA for VOUT = 15V
Return
Figure 2. Gain-Boost Configuration
L1
4.7µH
VIN
+2.7V to +4.7V
VC
CR2
C4
1N4148 0.1µF
C2
10µF
25V
1
5
MIC2141
IN
SW
FB
VC
GND
Return
CR1
MBR0530
VOUT
+12V
CR3
1N4148
3
4
2
C1
10µF
25V
Return
Figure 3. Bootstrap Configuration
MIC2141
8
June 2000
MIC2141
Micrel
Inductor Selection Guides
40
200
3.9µH
VIN = 2.5V
4.7µH
VIN = 3.3V
Use for Li-ion battery
4.7µH
100
10µH
12µH
10
15µH
18µH
22µH
15µH
18µH
27µH
22µH
33µH
33µH
MAX. OUTPUT CURRENT (mA)
MAX. OUTPUT CURRENT (mA)
27µH
39µH
47µH
56µH
68µH
82µH
100µH
120µH
1
150µH
10
39µH
47µH
56µH
68µH
82µH
100µH
120µH
150µH
180µH
220µH
180µH
220µH
0.1
0
2
1
4
6
8
10
12
14
16
OUTPUT VOLTAGE (V)
18
20
0.1
0
22
Figure 5. Inductor Selection for VIN = 2.5V
June 2000
2
4
6
8
10
12
14
16
OUTPUT VOLTAGE (V)
18
20
22
Figure 6. Inductor Selection for VIN = 3.3V
9
MIC2141
MIC2141
Micrel
100
200
VIN = 9V
VIN = 5V
100
8.2µH
10µH
15µH
12µH
18µH
15µH
18µH
22µH
22µH
27µH
27µH
33µH
39µH
47µH
56µH
33µH
39µH
47µH
10
MAX. OUTPUT CURRENT (mA)
MAX. OUTPUT CURRENT (mA)
68µH
82µH
100µH
120µH
150µH
180µH
220µH
56µH
68µH
82µH
10
100µH
120µH
150µH
180µH
220µH
1
270µH
330µH
390µH
470µH
0.1
2
4
6
8
10
12
14
16
OUTPUT VOLTAGE (V)
18
20
1
8
22
Figure7. Inductor Selection for VIN = 5V
MIC2141
10
12
14
16
18
OUTPUT VOLTAGE (V)
20
22
Figure 8. Inductor Selection for VIN = 9V
10
June 2000
MIC2141
Micrel
100
22µH
18µH
VIN = 12V
27µH
33µH
39µH
47µH
56µH
68µH
82µH
MAX. OUTPUT CURRENT (mA)
100µH
120µH
150µH
180µH
10
220µH
270µH
330µH
390µH
470µH
1
10
12
14
16
18
OUTPUT VOLTAGE (V)
20
22
Figure 9. Inductor Selection for VIN = 12V
June 2000
11
MIC2141
10µH
8.2µH
1000
4.7µH
Micrel
3.9µH
MIC2141
900
12µH
800
15µH
700
PEAK CURRENT (mA)
600
18µH
500
22µH
400
27µH
33µH
300
39µH
47µH
200
56µH
68µH
100
0
0
2
4
6
8
INPUT VOLTAGE (V)
10
12
82µH
100µH
120µH
150µH
180µH
220µH
270µH
330µH
14 390µH
470µH
Figure 10. Peak Inductor Current vs. Input Voltage
MIC2141
12
June 2000
MIC2141
Micrel
Predesigned Circuit Values
VIN(min)
VIN(max)
VOUT
IOUT(max)
L1
CR1
IPEAK
(VIN = VOUT – 0.5V) or 14V
IPEAK
(VIN = VIN(min))
2.5V
4.5V
5.0V
4mA
3mA
2mA
1mA
0.5mA
15µH
18µH
27µH
56µH
120µH
BAT54
BAT54
BAT54
BAT54
BAT54
230mA
192mA
128mA
62mA
29mA
128mA
106mA
71mA
34mA
16mA
5V bootstrap
14.8mA
3.9µH
MBR0503
890mA
500mA
2.5V
11.5V
12V
1mA
0.5mA
0.2mA
15µH
33µH
82µH
MBR0530
BAT54
BAT54
588mA
267mA
108mA
128mA
58mA
23mA
2.5V
2.5V
4.7V
4.7V
12V bootstrap
12V bootstrap
3.5mA
4.3mA
4.7µH
3.9µH
MBR0503
MBR0503
750mA
900mA
500mA
500mA
2.5V
14V
15V
0.8mA
0.5mA
0.2mA
15µH
27µH
68µH
MBR0530
MBR0530
BAT54
741mA
412mA
163mA
128mA
71mA
28mA
2.5V
14V
16V
0.8mA
0.5mA
0.2mA
15µH
22µH
56µH
MBR0530
MBR0530
BAT54
710mA
456mA
190mA
128mA
87mA
34mA
2.5V
14V
22V
0.5mA
0.2mA
0.1mA
15µH
39µH
82µH
MBR0530
BAT54
BAT54
590mA
274mA
130mA
128mA
49mA
23mA
3.0V
use for Li-ion
battery range
4.5V
5V
10mA
3.6mA
0.8mA
12µH
27µH
120µH
BAT54
BAT54
BAT54
288mA
128mA
29mA
190mA
85mA
19mA
5V bootstrap
20mA
4.7µH
MBR0530
730mA
450mA
3.0V
use for Li-ion
battery range
8.5V
9V
3mA
1.7mA
0.8mA
12µH
22µH
47µH
MBR0530
MBR0530
MBR0530
652mA
296mA
139mA
190mA
103mA
49mA
3.0V
use for Li-ion
battery range
4.7V
9V bootstrap
8mA
4.7µH
MBR0503
750mA
450mA
3.0V
use for Li-ion
battery range
11.5V
12V
2.1mA
1.7mA
1mA
0.45mA
12µH
15µH
27µH
56µH
MBR0530
MBR0530
MBR0530
BAT54
882mA
588mA
327mA
157mA
190mA
156mA
85mA
40mA
3.0V
use for Li-ion
battery range
4.7V
12V bootstrap
5.4mA
4.7µH
MBR0530
750mA
450mA
3.0V
use for Li-ion
battery range
14V
15V
1.6mA
0.87mA
0.41mA
12µH
22µH
47µH
MBR0530
MBR0530
BAT54
926mA
505mA
237mA
190mA
103mA
49mA
3.0V
use for Li-ion
battery range
4.7V
15V bootstrap
4mA
4.7µH
MBR0530
750mA
450mA
3.0V
use for Li-ion
battery range
14V
22V
1mA
0.8mA
0.46mA
0.2mA
10µH
15µH
27µH
68µH
MBR0530
MBR0530
MBR0530
BAT54
1071mA
714mA
400mA
157mA
190mA
152mA
85mA
3.3mA
Table 4a. Typical Configurations for Wide-Range Inputs—2.5V to 3.0V Minimum Input
June 2000
13
MIC2141
MIC2141
Micrel
VIN(min)
VIN(max)
VOUT
IOUT(max)
L1
CR1
IPEAK
(VIN = VOUT – 0.5V)
IPEAK
(VIN = VIN(min))
5.0V
8.5V
9V
17mA
15mA
10mA
5mA
1mA
8.2µH
10µH
12µH
27µH
120µH
MBR0530
MBR0530
MBR0530
BAT54
BAT54
795mA
652mA
643mA
241mA
54mA
467mA
383mA
319mA
142mA
32mA
5.0V
11.5V
12V
10mA
5mA
2mA
1mA
8.2µH
18µH
39µH
82µH
MBR0530
MBR0530
BAT54
BAT54
1,075mA
490mA
226mA
108mA
467mA
213mA
98mA
47mA
5.0V
14V
15V
7mA
5mA
2mA
1mA
8.2µH
12µH
27µH
56µH
MBR0530
MBR0530
MBR0530
BAT54
1356mA
926mA
412mA
199mA
467mA
319mA
142mA
68mA
5.0V
14V
16V
2.5mA
1mA
0.5mA
22µH
56µH
120µH
MBR0530
BAT54
BAT54
986mA
190mA
90mA
174mA
68mA
32mA
5.0V
14V
22V
1.7mA
1.0mA
0.5mA
0.1mA
22µH
39µH
82µH
180µH
MBR0530
BAT54
BAT54
BAT54
486mA
274mA
130mA
60mA
174mA
98mA
47mA
21mA
9.0V
11.5V
12V
33mA
20mA
10mA
5mA
1mA
15µH
22µH
47µH
100µH
470µH
MBR0530
MBR0530
BAT54
BAT54
BAT54
588mA
401mA
188mA
88mA
19mA
460mA
314mA
147mA
69mA
15mA
9.0V
14V
15V
20mA
10mA
5mA
2mA
1mA
15µH
27µH
56µH
150µH
270µH
MBR0530
MBR0530
BAT54
BAT54
BAT54
741mA
412mA
199mA
74mA
41mA
460mA
256mA
123mA
46mA
26mA
9.0V
14V
20V
4.5mA
2mA
1mA
39µH
68µH
150µH
BAT54
BAT54
BAT54
215mA
131mA
72mA
177mA
84mA
46mA
9.0V
14V
22V
4mA
2mA
1mA
39µH
68µH
150µH
BAT54
BAT54
BAT54
275mA
157mA
72mA
177mA
101mA
46mA
12V
14V
15V
45mA
20mA
10mA
5mA
1.7mA
18µH
39µH
82µH
150µH
470µH
MBR0530
BAT54
BAT54
BAT54
BAT54
618mA
285mA
136mA
74mA
24mA
511mA
236mA
112mA
61mA
20mA
12V
14V
20V
8mA
5mA
2mA
1mA
47µH
68µH
120µH
390µH
BAT54
BAT54
BAT54
BAT54
230mA
158mA
90mA
27mA
196mA
135mA
77mA
24mA
12V
21.5V
22V
7mA
5mA
2mA
1mA
47µH
68µH
150µH
220µH
BAT54
BAT54
BAT54
BAT54
228mA
157mA
69mA
47mA
196mA
135mA
61mA
42mA
Table 4b. Typical Configurations for Wide-Range Inputs—5V to 15V Minimum Input
MIC2141
14
June 2000
MIC2141
Micrel
VIN
VOUT
IOUT
L1
CR1
IPEAK
(typical)
3.3V ±5%
5V
9V
12V
15V
20V
13mA
5mA
3mA
2.3mA
1.7mA
10µH
10µH
10µH
10µH
10µH
BAT54
BAT54
BAT54
BAT54
BAT54
253mA
253mA
253mA
253mA
253mA
5V ±5%
9V
12V
15V
20V
17mA
10.4mA
7.5mA
2.2mA
8.2µH
8.2µH
8.2µH
22µH
MB0530
MB0530
MB0530
MB0530
467mA
467mA
467mA
174mA
12V ±5%
15V
20V
44mA
8.3mA
18µH
47µH
MB0530
BAT54
511mA
196mA
Table 5. Typical Maximum Power Configuration for Regulated Inputs
Output Voltage
16V to 22V
4.5V to 15V
VIN
2.5V
15µH
15µH
3.0V
12µH
12µH
3.3V
10µH
10µH
3.5V
8.2µH
8.2µH
4.0V
27µH
6.8µH
4.5V
27µH
6.8µH
5.0V
22µH
8.2µH
6.0V
27µH
10µH
7.0V
27µH
10µH
8.0V
33µH
12µH
9.0V
39µH
15µH
10V
39µH
15µH
11V
47µH
18µH
12V
47µH
18µH
13V
56µH
22µH
14V
56µH
22µH
15V
56µH
27µH
16V
68µH
27µH
Table 6. Minimum Inductance
Manufacturer
Web Address
muRata
www.MuRata.com
Sumida
www.sumida.com
Coilcraft
www.coilcraft.com
J. W. Miller
www.jwmiller.com
Micrel
www.micrel.com
Vishay
www.vishay.com
Panasonic
www.panasonic.com
Table 7. Component Supplier Websites
June 2000
15
MIC2141
MIC2141
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
1.30 (0.051)
0.90 (0.035)
3.02 (0.119)
2.80 (0.110)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.50 (0.020)
0.35 (0.014)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
MIC2141
16
June 2000