MITSUBISHI FX30ASJ-03

MITSUBISHI Pch POWER MOSFET
RY
A
N
I
FX30ASJ-03
.
.
nge
tion
ifica t to cha
pec
al s subjec
in
f
are
ot a
is n limits
his
e: T ametric
ic
t
r
No e pa
Som
IM
REL
P
HIGH-SPEED SWITCHING USE
FX30ASJ-03
OUTLINE DRAWING
0.5 ± 0.1
1.5 ± 0.2
6.5
5.0 ± 0.2
Dimensions in mm
1.0
2.3
2.3
10 max
2.3 min
0.9 max
1.0 max
5.5 ± 0.2
4
A
0.5 ± 0.2
2.3
0.8
1
2
3
3
• 4V DRIVE
• VDSS ............................................................... –30V
• rDS (ON) (MAX) ................................................ 61mΩ
• ID .................................................................... –30A
• Integrated Fast Recovery Diode (TYP.) ...........50ns
1
2
3
4
1
GATE
DRAIN
SOURCE
DRAIN
2 4
MP-3
APPLICATION
Motor control, Lamp control, Solenoid control
DC-DC converter, etc.
MAXIMUM RATINGS
Symbol
(Tc = 25°C)
Ratings
Unit
VDSS
VGSS
Drain-source voltage
Gate-source voltage
VGS = 0V
VDS = 0V
–30
±20
V
V
ID
IDM
IDA
Drain current
Drain current (Pulsed)
Avalanche drain current (Pulsed) L = 10µH
–30
–120
–30
A
A
A
IS
ISM
PD
Tch
Tstg
Source current
Source current (Pulsed)
Maximum power dissipation
Channel temperature
Storage temperature
–30
–120
35
–55 ~ +150
–55 ~ +150
A
A
W
°C
°C
0.26
g
—
Parameter
Weight
Conditions
Typical value
Jan.1999
MITSUBISHI Pch POWER MOSFET
RY
A
N
I
.
.
nge
tion
ifica t to cha
pec
al s subjec
in
f
are
ot a
is n limits
his
e: T ametric
ic
t
r
No e pa
Som
IM
REL
FX30ASJ-03
P
HIGH-SPEED SWITCHING USE
ELECTRICAL CHARACTERISTICS
(Tch = 25°C)
Symbol
Parameter
V (BR) DSS
Drain-source breakdown voltage
IGSS
IDSS
VGS (th)
rDS (ON)
rDS (ON)
Gate-source leakage current
Drain-source leakage current
Gate-source threshold voltage
Drain-source on-state resistance
Drain-source on-state resistance
VDS (ON)
yfs
Ciss
Drain-source on-state voltage
Forward transfer admittance
Input capacitance
Coss
Output capacitance
Reverse transfer capacitance
Turn-on delay time
Rise time
Crss
td (on)
tr
td (off)
tf
VSD
Rth (ch-c)
trr
Limits
Test conditions
Typ.
Max.
ID = –1mA, VDS = 0V
VGS = ±20V, VDS = 0V
VDS = –30V, VGS = 0V
–30
—
—
—
—
—
—
±0.1
–0.1
V
µA
mA
ID = –1mA, VDS = –10V
ID = –15A, VGS = –10V
ID = –5A, VGS = –4V
ID = –15A, VGS = –10V
ID = –15A, VDS = –10V
–1.3
—
—
—
–1.8
48
96
–0.72
–2.3
61
120
–0.92
V
mΩ
mΩ
V
—
—
—
—
11.9
2460
410
170
—
—
—
—
S
pF
pF
pF
—
—
—
—
20
84
123
60
—
—
—
—
ns
ns
ns
ns
—
–1.0
–1.5
V
—
—
—
50
3.57
—
°C/W
ns
VDS = –10V, VGS = 0V, f = 1MHz
VDD = –15V, ID = –15A, VGS = –10V, RGEN = RGS = 50Ω
Turn-off delay time
Fall time
Source-drain voltage
IS = –15A, VGS = 0V
Channel to case
Thermal resistance
Reverse recovery time
Unit
Min.
IS = –15A, dis/dt = 50A/µs
PERFORMANCE CURVES
DRAIN CURRENT ID (A)
–102
40
30
20
10
0
0
–50
DRAIN CURRENT ID (A)
MAXIMUM SAFE OPERATING AREA
–2
50
100
150
tw = 10µs
–7
–5
–3
–2
100µs
–101
1ms
–7
–5
–3
–2
10ms
DC
–100
TC = 25°C
Single Pulse
–7
–5
–3
–2
–2 –3 –5–7–100 –2 –3 –5–7–101 –2 –3 –5–7–102 –2
200
CASE TEMPERATURE TC (°C)
DRAIN-SOURCE VOLTAGE VDS (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
VGS =
–10V
–20
–7V
–8V
–40
–5V
–30
–20
–4V
PD = 35W
Tc = 25°C
Pulse Test
–10
VGS = –10V
–6V
DRAIN CURRENT ID (A)
POWER DISSIPATION PD (W)
POWER DISSIPATION DERATING CURVE
50
–6V
PD = 35W
–8V
–16
–5V
–4V
–12
Tc = 25°C
Pulse Test
–8
–3V
–4
–3V
0
0
–1.0
–2.0
–3.0
–4.0
–5.0
DRAIN-SOURCE VOLTAGE VDS (V)
0
0
–0.4
–0.8
–1.2
–1.6
–2.0
DRAIN-SOURCE VOLTAGE VDS (V)
Jan.1999
MITSUBISHI Pch POWER MOSFET
RY
A
N
I
.
.
nge
tion
ifica t to cha
pec
al s subjec
in
f
are
ot a
is n limits
his
e: T ametric
ic
t
r
No e pa
Som
IM
REL
FX30ASJ-03
P
HIGH-SPEED SWITCHING USE
ON-STATE VOLTAGE VS.
GATE-SOURCE VOLTAGE
(TYPICAL)
–3.0
ID = –50A
–2.0
–30A
–1.0
–15A
0
–50
–2
–4
–6
–8
102
–2
–4
–6
–8
7
5
4
3
2
75°C 125°C
TC = 25°C
101
7
5
4
3
2
–2 –3
–5 –7 –101
–2 –3 –5 –7 –102
GATE-SOURCE VOLTAGE VGS (V)
DRAIN CURRENT ID (A)
CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE
(TYPICAL)
SWITCHING CHARACTERISTICS
(TYPICAL)
103
Tch = 25°C
Ciss
Coss
Crss
102
7
5
SWITCHING TIME (ns)
CAPACITANCE
Ciss, Coss, Crss (pF)
VDS = –10V
Pulse Test
–100
–10
103
3
2
–10V
40
2
7 VGS = 0V
5
7
5
80
FORWARD TRANSFER ADMITTANCE
VS.DRAIN CURRENT
(TYPICAL)
104 f = 1MHZ
3
2
VGS = –4V
TRANSFER CHARACTERISTICS
(TYPICAL)
–10
2
120
DRAIN CURRENT ID (A)
–20
0
160
GATE-SOURCE VOLTAGE VGS (V)
–30
0
Tc = 25°C
Pulse Test
0
–10–1 –2 –3 –5 –7–100 –2 –3 –5–7 –101 –2 –3 –5 –7–102
–10
Tc = 25°C
VDS = –10V
Pulse Test
–40
DRAIN-SOURCE ON-STATE
RESISTANCE rDS (ON) (mΩ)
–4.0
0
DRAIN CURRENT ID (A)
200
Tc = 25°C
Pulse Test
FORWARD TRANSFER
ADMITTANCE yfs (S)
DRAIN-SOURCE ON-STATE
VOLTAGE VDS (ON) (V)
–5.0
ON-STATE RESISTANCE VS.
DRAIN CURRENT
(TYPICAL)
Tch = 25°C
7
VGS = –10V
5 VDD = –15V
4 RGEN = RGS = 50Ω
3
2
td(off)
102
7
5
4
3
tf
tr
td(on)
2
3
2
–3 –5–7–100 –2 –3 –5–7 –101 –2 3 –5–7 –102 –2 –3
DRAIN-SOURCE VOLTAGE VDS (V)
101
–5 –7 –100 –2 –3
–5 –7–101
–2 –3
–5
DRAIN CURRENT ID (A)
Jan.1999
MITSUBISHI Pch POWER MOSFET
RY
A
N
I
.
.
nge
tion
ifica t to cha
pec
al s subjec
in
f
are
ot a
is n limits
his
e: T ametric
ic
t
r
No e pa
Som
IM
REL
FX30ASJ-03
P
HIGH-SPEED SWITCHING USE
–10
SOURCE CURRENT IS (A)
–6
–4
VDS = –10V
–20V
–25V
–2
0
10
20
30
40
–20
–10
0
–0.4
–0.8
–1.2
–1.6
–2.0
SOURCE-DRAIN VOLTAGE VSD (V)
ON-STATE RESISTANCE VS.
CHANNEL TEMPERATURE
(TYPICAL)
THRESHOLD VOLTAGE VS.
CHANNEL TEMPERATURE
(TYPICAL)
–4.0
VGS = –10V
ID = 1/2ID
Pulse Test
100
7
5
4
3
2
–50
0
50
100
VDS = –10V
ID = –1mA
–3.2
–2.4
–1.6
–0.8
0
150
CHANNEL TEMPERATURE Tch (°C)
BREAKDOWN VOLTAGE VS.
CHANNEL TEMPERATURE
(TYPICAL)
1.4
VGS = 0V
ID = –1mA
1.2
1.0
0.8
0.6
0.4
TC = 25°C
75°C
125°C
GATE CHARGE Qg (nC)
2
10–1
–30
0
101
7
5
4
3
VGS = 0V
Pulse Test
–40
50
GATE-SOURCE THRESHOLD
VOLTAGE VGS (th) (V)
DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (25°C)
DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (t°C)
DRAIN-SOURCE BREAKDOWN VOLTAGE V (BR) DSS (t°C)
–50
Tch = 25°C
ID = –30A
–8
0
DRAIN-SOURCE BREAKDOWN VOLTAGE V (BR) DSS (25°C)
SOURCE-DRAIN DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
–50
0
50
100
150
CHANNEL TEMPERATURE Tch (°C)
–50
0
50
100
150
CHANNEL TEMPERATURE Tch (°C)
TRANSIENT THERMAL IMPEDANCE Zth (ch–c) (°C/W)
GATE-SOURCE VOLTAGE VGS (V)
GATE-SOURCE VOLTAGE
VS.GATE CHARGE
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE
CHARACTERISTICS
101
7
5 D=1
3
0.5
2
0.2
100
7 0.1
5
3
2
10–1
7
5
0.05
0.02
0.01
Single Pulse
PDM
tw
T
D= tw
T
3
2
10–2 –4
10 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
PULSE WIDTH tw (s)
Jan.1999