Cirrus CS5341-CZZ 105 db, 192 khz, multi-bit audio a/d converter Datasheet

CS5341
105 dB, 192 kHz, Multi-Bit Audio A/D Converter
Features
General Description
Advanced Multi-bit Delta-Sigma Architecture
24-bit Conversion
Supports all audio sample rates including
192 kHz.
105 dB Dynamic Range at 5 V
-98 dB THD+N
High-pass Filter to Remove DC Offsets
Analog/digital Core Supplies from 3.3 V to
5V
Supports logic levels between 1.8 V and 5 V.
Low-latency Digital Filter
Auto-mode Selection
The CS5341 is a complete analog-to-digital converter for
digital audio systems. It performs sampling, analog-todigital conversion, and anti-alias filtering, generating
24-bit values for both left and right inputs in serial form at
sample rates up to 200 kHz per channel.
The CS5341 uses a 5th-order, multi-bit Delta-Sigma
modulator followed by digital filtering and decimation,
which removes the need for an external anti-alias filter.
The CS5341 is ideal for audio systems requiring wide dynamic range, negligible distortion and low noise, such as
set-top boxes, DVD-karaoke players, DVD recorders,
A/V receivers, and automotive applications.
ORDERING INFORMATION
CS5341-CZZ, Lead Free -10° to 70° C 16-pin TSSOP
CS5341-DZZ, Lead Free -40° to 85° C 16-pin TSSOP
CDB5341
Evaluation Board
VQ
FILT+
VL
1.8V - 5.0V SCLK LRCK SDOUT
REFGND
MCLK
RST
Serial Output Interface
Voltage Reference
M0
M1
+
AINL
LP Filter
Q
S/H
Digital
Decimation
Filter
High
Pass
Filter
Digital
Decimation
Filter
High
Pass
Filter
DAC
+
AINR
LP Filter
Q
S/H
DAC
VA
3.3V - 5.0V
Preliminary Product Information
www.cirrus.com
GND
VD
3.3V - 5.0V
This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.
Copyright © Cirrus Logic, Inc. 2004
(All Rights Reserved)
Aug ‘04
DS564PP2
1
CS5341
TABLE OF CONTENTS
1 CHARACTERISTICS AND SPECIFICATIONS ......................................................................... 4
SPECIFIED OPERATING CONDITIONS ................................................................................. 4
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 4
ANALOG CHARACTERISTIC-S (CS5341-CZ/CZZ) ................................................................ 5
ANALOG CHARACTERISTICS (CS5341-DZZ) ....................................................................... 7
DIGITAL FILTER CHARACTERISTICS (CS5341-CZ/CZZ/DZZ) ............................................. 9
DC ELECTRICAL CHARACTERISTICS................................................................................. 12
DIGITAL CHARACTERISTICS ............................................................................................... 12
THERMAL CHARACTERISTICS............................................................................................ 12
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT ................................................. 13
2 PIN DESCRIPTION ................................................................................................................. 15
3 TYPICAL CONNECTION DIAGRAM ....................................................................................... 16
4 APPLICATIONS ....................................................................................................................... 17
4.1 Single, Double, and Quad Speed Modes ......................................................................... 17
4.2 Operation as Either a Clock Master or Slave ................................................................... 17
4.2.1 Operation as a Clock Master ............................................................................... 18
4.2.2 Operation as a Clock Slave ................................................................................. 18
4.2.3 Master Clock ....................................................................................................... 19
4.3 Serial Audio Interface ....................................................................................................... 19
4.4 Power-up Sequence ........................................................................................................ 20
4.5 Analog Connections ......................................................................................................... 20
4.6 Grounding and Power Supply Decoupling ....................................................................... 20
4.7 Synchronization of Multiple Devices ................................................................................ 21
4.8 Capacitor Size on the Reference Pin (FILT+) .................................................................. 21
5 PARAMETER DEFINITIONS ................................................................................................... 22
6 PACKAGE DIMENSIONS ....................................................................................................... 23
7. REVISION HISTORY .............................................................................................................. 24
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to www.cirrus.com/
IMPORTANT NOTICE
“Preliminary” product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its
subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice
and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before
placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of
order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of
this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This
document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights,
trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for
copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does
not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (ìCRITICAL APPLICATIONSî). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR
USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR
SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMERíS RISK AND
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER
OR CUSTOMERíS CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE,
TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYSí FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
2
DS564PP2
CS5341
LIST OF FIGURES
Figure 1. Single Speed Mode Stopband Rejection ....................................................................... 10
Figure 2. Single Speed Mode Stopband Rejection ....................................................................... 10
Figure 3. Single Speed Mode Transition Band (Detail)................................................................. 10
Figure 4. Single Speed Mode Passband Ripple ........................................................................... 10
Figure 5. Double Speed Mode Stopband Rejection...................................................................... 10
Figure 6. Double Speed Mode Stopband Rejection...................................................................... 10
Figure 7. Double Speed Mode Transition Band (Detail) ............................................................... 11
Figure 8. Double Speed Mode Passband Ripple .......................................................................... 11
Figure 9. Quad Speed Mode Stopband Rejection ........................................................................ 11
Figure 10. Quad Speed Mode Stopband Rejection ...................................................................... 11
Figure 11. Quad Speed Mode Transition Band (Detail) ................................................................ 11
Figure 12. Quad Speed Mode Passband Ripple........................................................................... 11
Figure 13. Master Mode, Left Justified SAI ................................................................................... 14
Figure 14. Slave Mode, Left Justified SAI ..................................................................................... 14
Figure 15. Master Mode, I2S SAI .................................................................................................. 14
Figure 16. Slave Mode, I2S SAI .................................................................................................... 14
Figure 17. Typical Connection Diagram........................................................................................ 16
Figure 18. CS5341 Master Mode Clocking ................................................................................... 18
Figure 19. Left-Justified Serial Audio Interface ............................................................................. 19
Figure 20. I2S Serial Audio Interface............................................................................................. 19
Figure 21. CS5341 Recommended Analog Input Buffer............................................................... 20
Figure 22. CS5341 THD+N versus Frequency ............................................................................. 21
LIST OF TABLES
Table 1. Speed Modes and the Associated Output Sample Rates (Fs)........................................ 17
Table 2. CS5341 Mode Control..................................................................................................... 17
Table 3. Master Clock (MCLK) Ratios........................................................................................... 19
Table 4. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates .......................... 19
Table 5. Revision History .............................................................................................................. 24
DS564PP2
3
CS5341
1
CHARACTERISTICS AND SPECIFICATIONS
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical
performance characteristics and specifications are derived from measurements taken at typical supply voltages
and TA = 25°C.)
SPECIFIED OPERATING CONDITIONS
(GND = 0 V, all voltages with respect to 0 V.)
Parameter
Symbol
Min
Typ
Max
Unit
Analog
Digital
Logic
VA
VD
VL
3.1
3.1
1.7
(Note 1)
3.3
3.3
5.25
5.25
5.25
V
V
V
Commercial (-CZ/-CZZ)
(-DZZ)
TAC
TAC
-10
-40
-
70
85
°C
°C
Power Supplies
Ambient Operating Temperature
Notes: 1. This part is specified at typical analog voltages of 3.3 V and 5.0 V. See Analog Characteristics (CS5341CZ/CZZ) and Analog Characteristics (CS5341-DZZ), below, for details.
ABSOLUTE MAXIMUM RATINGS
(GND = 0 V, All voltages with respect to ground.) (Note 4)
Parameter
Symbol
Min
Max
Units
Analog
Logic
Digital
VA
VL
VD
-0.3
-0.3
-0.3
+6.0
+6.0
+6.0
V
V
V
Input Current
(Note 2)
Iin
-
±10
mA
Analog Input Voltage
(Note 3)
VIN
GND-0.7
VA+0.7
V
Digital Input Voltage
(Note 3)
DC Power Supplies:
VIND
-0.7
VL+0.7
V
Ambient Operating Temperature (Power Applied)
TA
-50
+95
°C
Storage Temperature
Tstg
-65
+150
°C
Notes: 2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SRC
latch-up.
3. The maximum over/under voltage is limited by the input current.
4. Operation beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
4
DS564PP2
CS5341
ANALOG CHARACTERISTICS (CS5341-CZ/CZZ) Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.
Parameter
VA = 3.3 V
Single Speed Mode
Fs = 48 kHz
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 5)
-1 dB
-20 dB
-60 dB
Double Speed Mode
Fs = 96 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 5)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
Quad Speed Mode
Fs = 192 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 5)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
VA = 5.0 V
Single Speed Mode
Fs = 48 kHz
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 5)
-1 dB
-20 dB
-60 dB
Double Speed Mode
Fs = 96 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
40 kHz bandwidth
DS564PP2
(Note 5)
-1 dB
-20 dB
-60 dB
-1 dB
Symbol
Min
Typ
Max
Unit
96
93
102
99
-
dB
dB
-
-95
-79
-39
-89
-
dB
dB
dB
96
93
-
102
99
96
-
dB
dB
dB
-
-95
-79
-39
-87
-89
-
dB
dB
dB
dB
96
93
-
102
99
96
-
dB
dB
dB
-
-95
-79
-39
-87
-89
-
dB
dB
dB
dB
99
96
105
102
-
dB
dB
-
-98
-82
-42
-92
-
dB
dB
dB
99
96
-
105
102
99
-
dB
dB
dB
-
-98
-82
-42
-95
-92
-
dB
dB
dB
dB
THD+N
THD+N
THD+N
THD+N
THD+N
5
CS5341
Quad Speed Mode
Dynamic Range
Fs = 192 kHz
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 5)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
Dynamic Performance for All Modes
Interchannel Isolation
DC Accuracy
Interchannel Gain Mismatch
Gain Error
Input Impedance
6
105
102
99
-
dB
dB
dB
-
-98
-82
-42
-95
-92
-
dB
dB
dB
dB
-
90
-
dB
-
0.1
-
-
±5
dB
%
-
ppm/°C
THD+N
Gain Drift
Analog Input Characteristics
Full-scale Input Voltage
Note:
99
96
-
-
±100
0.53*VA
0.56*VA
0.59*VA
Vpp
-
25
-
kΩ
5. Referred to the typical full-scale input voltage
DS564PP2
CS5341
ANALOG CHARACTERISTICS (CS5341-DZZ) Test conditions (unless otherwise specified):
Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.
Parameter
VA = 3.3 V
Single Speed Mode
Fs = 48 kHz
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 6)
-1 dB
-20 dB
-60 dB
Double Speed Mode
Fs = 96 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 6)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
Quad Speed Mode
Fs = 192 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 6)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
VA = 5.0 V
Single Speed Mode
Fs = 48 kHz
Dynamic Range
A-weighted
unweighted
Total Harmonic Distortion + Noise
(Note 6)
-1 dB
-20 dB
-60 dB
Double Speed Mode
Fs = 96 kHz
Dynamic Range
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
40 kHz bandwidth
DS564PP2
(Note 6)
-1 dB
-20 dB
-60 dB
-1 dB
Symbol
Min
Typ
Max
Unit
94
91
102
99
-
dB
dB
-
-95
-79
-39
-87
-
dB
dB
dB
94
91
-
102
99
96
-
dB
dB
dB
-
-95
-79
-39
-87
-87
-
dB
dB
dB
dB
94
91
-
102
99
96
-
dB
dB
dB
-
-95
-79
-39
-87
-87
-
dB
dB
dB
dB
97
94
105
102
-
dB
dB
-
-98
-82
-42
-90
-
dB
dB
dB
97
94
-
105
102
99
-
dB
dB
dB
-
-98
-82
-42
-95
-90
-
dB
dB
dB
dB
THD+N
THD+N
THD+N
THD+N
THD+N
7
CS5341
Quad Speed Mode
Dynamic Range
Fs = 192 kHz
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise
(Note 6)
-1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
Dynamic Performance for All Modes
Interchannel Isolation
DC Accuracy
Interchannel Gain Mismatch
Gain Error
Input Impedance
8
105
102
99
-
dB
dB
dB
-
-98
-82
-42
-95
-90
-
dB
dB
dB
dB
-
90
-
dB
-
0.1
-
-
±10
dB
%
-
ppm/°C
THD+N
Gain Drift
Analog Input Characteristics
Full-scale Input Voltage
Note:
97
94
-
-
±100
0.5*VA
0.56*VA
0.62*VA
Vpp
-
25
-
kΩ
6. Referred to the typical full-scale input voltage
DS564PP2
CS5341
DIGITAL FILTER CHARACTERISTICS (CS5341-CZ/CZZ/DZZ)
Parameter
Single Speed Mode
Passband
Symbol
Stopband
Stopband Attenuation
Total Group Delay (Fs = Output Sample Rate)
Passband
tgd
(-0.1 dB)
Stopband
Stopband Attenuation
Total Group Delay (Fs = Output Sample Rate)
Passband
Max
Unit
0
-
23.5
kHz
-
-
0.035
dB
27.3
-
-
kHz
70
-
-
dB
-
12/Fs
-
s
0
-
47
kHz
Fs = 96 kHz
Passband Ripple
Quad Speed Mode
Typ
Fs = 48 kHz
(-0.1 dB)
Passband Ripple
Double Speed Mode
Min
tgd
-
-
±0.025
dB
53.8
-
-
kHz
69
-
-
dB
-
9/Fs
-
s
0
-
50
kHz
-
-
±0.025
dB
96
-
-
kHz
Fs = 192 kHz
(-0.1 dB)
Passband Ripple
Stopband
Stopband Attenuation
Total Group Delay (Fs = Output Sample Rate)
tgd
60
-
-
dB
-
5/Fs
-
s
-
1
20
-
Hz
Hz
-
10
-
Deg
-
-
0
dB
High Pass Filter Characteristics
Frequency Response
Phase Deviation
Passband Ripple
Note:
-3.0 dB
-0.13 dB
(Note 7)
@ 20 Hz
(Note 7)
7. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.
DS564PP2
9
0
0
-10
-20
-30
-10
-20
-30
-40
-50
-60
-70
-40
-50
-60
-70
Amplitude (dB)
Amplitude (dB)
CS5341
-80
-90
-100
-110
-80
-90
-100
-110
-120
-130
-120
-130
-140
0.40 0.42 0.44
-140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0
0.10
-1
0.08
-2
0.06
-3
0.56
0.58
0.60
-4
-5
-6
-7
0.04
0.02
0.00
-0.02
-0.04
-8
-0.06
-9
-0.08
-0.10
0.46 0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0
0.55
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
Figure 3. Single Speed Mode Transition Band (Detail)
Figure 4. Single Speed Mode Passband Ripple
0
0
-10
-20
-30
-10
-20
-30
-40
-50
-60
-70
-40
-50
-60
-70
Amplitude (dB)
Amplitude (dB)
0.54
Figure 2. Single Speed Mode Stopband Rejection
Amplitude (dB)
Amplitude (dB)
Figure 1. Single Speed Mode Stopband Rejection
-80
-90
-100
-110
-120
-130
-80
-90
-100
-110
-120
-130
-140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Frequency (norm alized to Fs)
Figure 5. Double Speed Mode Stopband Rejection
10
0.52
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
-10
0.45
0.46 0.48 0.50
-140
0.40 0.42 0.44
0.46 0.48 0.50
0.52
0.54
0.56
0.58
0.60
Frequency (norm alized to Fs)
Figure 6. Double Speed Mode Stopband Rejection
DS564PP2
0
0.10
-1
0.08
-2
0.06
Amplitude (dB)
Amplitude (dB)
CS5341
-3
-4
-5
-6
-7
0.04
0.02
0.00
-0.02
-0.04
-8
-0.06
-9
-0.08
-10
0.46
0.47
0.48
0.49
0.50
0.51
-0.10
0.00 0.05
0.52
Frequency (norm alized to Fs)
Figure 7. Double Speed Mode Transition Band (Detail)
0.15
0.20 0.25 0.30 0.35 0.40 0.45 0.50
Figure 8. Double Speed Mode Passband Ripple
0
0
-10
-20
-30
-10
-20
-30
-40
-50
-60
-70
-40
-50
-60
-70
Amplitude (dB)
Amplitude (dB)
0.10
Frequency (norm alized to Fs)
-80
-90
-100
-110
-120
-130
-80
-90
-100
-110
-120
-130
-140
-140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
Figure 9. Quad Speed Mode Stopband Rejection
Figure 10. Quad Speed Mode Stopband Rejection
0
0.10
-1
0.08
0.06
-3
Amplitude (dB)
Amplitude (dB)
-2
-4
-5
-6
-7
-8
0.00
-0.02
-0.04
-0.08
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Frequency (norm alized to Fs)
Figure 11. Quad Speed Mode Transition Band (Detail)
DS564PP2
0.02
-0.06
-9
-10
0.10
0.04
-0.10
0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 0.28
Frequency (norm alized to Fs)
Figure 12. Quad Speed Mode Passband Ripple
11
CS5341
DC ELECTRICAL CHARACTERISTICS (GND = 0 V, all voltages with respect to 0 V.
MCLK=12.288 MHz; Master Mode)
Parameter
Symbol
Min
Typ
Max
Unit
Positive Analog
Positive Digital
Positive Logic
VA
VD
VL
3.1
3.1
1.7
-
5.25
5.25
5.25
V
V
V
VA = 5
VA = 3.3
VL,VD = 5
VL,VD = 3.3
V
V
V
V
IA
IA
ID
ID
-
21
18.2
15
9
23.1
20
16.5
10
mA
mA
mA
mA
VA = 5 V
VL,VD=5 V
IA
ID
-
1.5
0.4
-
mA
mA
VL, VD, VA = 5 V
VL, VD, VA = 3.3 V
(Power-Down Mode)
-
-
180
90
9.5
198
100
-
mW
mW
mW
PSRR
-
65
-
dB
VQ Nominal Voltage
Output Impedance
-
VA÷2
25
-
V
Filt+ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
VA
18
0.01
-
DC Power Supplies:
Power Supply Current
(Normal Operation)
Power Supply Current
(Power-Down Mode) (Note 8)
Power Consumption
(Normal Operation)
Power Supply Rejection Ratio
(1 kHz)
(Note 9)
kΩ
V
kΩ
mA
Notes: 8. Power Down Mode is defined as RST = Low with all clocks and data lines held static.
9. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection
Diagram.
DIGITAL CHARACTERISTICS
Parameter
Symbol
Min
Typ
Max
Units
High-Level Input Voltage
(% of VL)
VIH
70%
-
-
V
Low-Level Input Voltage
(% of VL)
VIL
-
-
30%
V
High-Level Output Voltage at Io = 100 µA
(% of VL)
VOH
70%
-
-
V
Low-Level Output Voltage at Io =100 µA
(% of VL)
VOL
-
-
15%
V
Iin
-
-
±10
µA
Input Leakage Current
THERMAL CHARACTERISTICS
Parameter
Symbol
Min
Typ
Max
Unit
-
-
135
°C
θJA
-
75
-
°C/W
TA
TA
-10
-40
-
+70
+85
°C
°C
Allowable Junction Temperature
Junction to Ambient Thermal Impedance
Ambient Operating Temperature
(Power Applied)
12
(-CZ/-CZZ)
(-DZZ)
DS564PP2
CS5341
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT
(Logic "0" = GND = 0 V;
Logic "1" = VL, CL = 20 pF)
Parameter
Symbol
Min
Typ
Max
Unit
tclkw
36
-
45
ns
72
-
1953
ns
MCLK Specifications
MCLK Period
MCLK Pulse Width High
tclkh
15
-
-
ns
MCLK Pulse Width Low
tclkl
15
-
-
ns
SCLK falling to LRCK
tmslr
-20
-
20
ns
SCLK falling to SDOUT valid
tsdo
0
-
32
ns
-
50
-
%
40
50
60
%
Master Mode
SCLK Duty Cycle
Slave Mode
Single Speed*
LRCK Duty Cycle
SCLK Period
tsclkw
156
-
-
ns
SCLK Low
tsclkhl
55
-
-
ns
SCLK falling to SDOUT valid
tdss
-
-
32
ns
SCLK falling to LRCK edge
tslrd
-20
-
20
ns
40
50
60
%
Double Speed*
LRCK Duty Cycle
SCLK Period
tsclkw
156
-
-
ns
SCLK Low
tsclkhl
55
-
-
ns
SCLK falling to SDOUT valid
tdss
-
-
32
ns
SCLK falling to LRCK edge
tslrd
-20
-
20
ns
40
50
60
%
Quad Speed*
LRCK Duty Cycle
SCLK Period
tsclkw
78
-
-
ns
SCLK Low
tsclkhl
40
-
-
ns
SCLK falling to SDOUT valid
tdss
-
-
32
ns
SCLK falling to LRCK edge
tslrd
-8
-
8
ns
* For a description of Speed Modes, please refer to Table 1 on page 17.
DS564PP2
13
CS5341
t sclkh t sclkl
SCLK input
SCLK output
t sclkw
t sl rd
t mslr
LRCK output
LRCK input
t lrdss
t sdo
MSB
SDOUT
MSB-1
Figure 13. Master Mode, Left Justified SAI
SDOUT
MSB
t dss
MSB-1
MSB-2
Figure 14. Slave Mode, Left Justified SAI
t sclkh t sclkl
SCLK input
SCLK output
t sclkw
t mslr
LRCK output
LRCK input
t dss
t sdo
S DOUT
Figure 15. Master Mode, I2S SAI
14
MSB
SDOUT
MSB
MSB-1
Figure 16. Slave Mode, I2S SAI
DS564PP2
CS5341
2
PIN DESCRIPTION
M0
MCLK
VL
SDOUT
GND
VD
SCLK
LRCK
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
M1
FILT+
REF_GND
VA
AINR
VQ
AINL
RST
Pin Name
#
Pin Description
M0
M1
1
16
Mode Selection (Input) - Determines the operational mode of the device.
MCLK
2
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
VL
3
Logic Power (Input) - Positive power for the digital input/output.
SDOUT
4
Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
GND
5,14
Ground (Input) - Ground reference. Must be connected to analog ground.
VD
6
Digital Power (Input) - Positive power supply for the digital section.
SCLK
7
Serial Clock (Input/Output) - Serial clock for the serial audio interface.
LRCK
8
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently
active on the serial audio data line.
RST
9
Reset (Input) - The device enters a low power mode when low.
AINL
AINR
10
12
Analog Input (Input) - The full scale analog input level is specified in the Analog Characteristics specification table.
VQ
11
Quiescent Voltage (Output) - Filter connection for the internal quiescent
reference voltage.
VA
13
Analog Power (Input) - Positive power supply for the analog section.
FILT+
15
Positive Voltage Reference (Output) - Positive reference voltage for the internal
sampling circuits.
DS564PP2
15
CS5341
3
TYPICAL CONNECTION DIAGRAM
3.3V to 5V
+
1 µF
0.1 µF
0.1 µF
+
1.8V to 5V
1 µF
**
3.3V to 5V
+
1 µF
0.1 µF
5.1Ω
VA
0.1 µF
VL
VD
FILT+
***+
1 µF
0.1 µF
REFGND
+
1µF
0.1 µF
VQ
CS5341
RST
M0
M1
Power Down
and Mode
Settings
VL or GND
A/D CONVERTER
10kΩ
AINL
Audio Data
Processor
SDOUT
Analog Input Buffer
Figure 21
*
AI NR
MCLK
Timing Logic
and Clock
LRCK
SCLK
* Pull-up to VL for I2S
Pull-down to GND for LJ
GND
** Resistor may only be
used if VD is derived from
VA. If used, do not drive any
other logic from VD
*** Capacitor value affects
low frequency distortion
performance as described
in Section 4.8
Figure 17. Typical Connection Diagram
16
DS564PP2
CS5341
4 APPLICATIONS
4.1
Single, Double, and Quad Speed Modes
The CS5341 can support output sample rates from 2 kHz to 200 kHz. The proper speed mode can be determined
by the desired output sample rate and the external MCLK/LRCK ratio, as shown in Table 1.
MCLK/LRCK
Ratio
512x
Output Sample Rate Range (kHz)
43 - 54
Double Speed Mode
256x
256x
2 - 54
86 - 108
Quad Speed Mode
128x
128x
50 - 108
172 - 200
64x*
100 - 200
Speed Mode
Single Speed Mode
* Quad Speed Mode, 64x only available in Master Mode.
Table 1. Speed Modes and the Associated Output Sample Rates (Fs)
4.2
Operation as Either a Clock Master or Slave
The CS5341 supports operation as either a clock master or slave. As a clock master, the LRCK and SCLK pins are
outputs with the left/right and serial clocks synchronously generated on-chip. As a clock slave, the LRCK and SCLK
pins are inputs and require the left/right and serial clocks to be externally generated. The selection of clock master
or slave is made via the Mode pins as shown in Table 2.
M1 (Pin 16)
0
0
1
1
M0 (Pin 1)
0
1
0
1
MODE
Clock Master, Single Speed Mode
Clock Master, Double Speed Mode
Clock Master, Quad Speed Mode
Clock Slave, All Speed Modes
Table 2. CS5341 Mode Control
DS564PP2
17
CS5341
4.2.1
Operation as a Clock Master
As a clock master, LRCK and SCLK operate as outputs. The left/right and serial clocks are internally derived from
the master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as shown in Figure 18.
÷1
÷ 256
Single
Speed
00
÷ 128
Double
Speed
01
÷ 64
Quad
Speed
10
0
M1
MCLK
÷2
LRCK Output
(Equal to Fs)
M0
1
Auto-Select
÷4
Single
Speed
00
÷2
Double
Speed
01
÷1
Quad
Speed
10
SCLK Output
Figure 18. CS5341 Master Mode Clocking
4.2.2
Operation as a Clock Slave
LRCK and SCLK operate as inputs in clock slave mode. It is recommended that the left/right clock be
synchronously derived from the master clock and must be equal to Fs. It is also recommended that the serial clock
be synchronously derived from the master clock and be equal to 64x Fs to maximize system performance.
A unique feature of the CS5341 is the automatic selection of either Single, Double or Quad speed mode when operating as a clock slave. The auto-mode select feature negates the need to configure the Mode pins to correspond
to the desired mode. The auto-mode selection feature supports all standard audio sample rates from 2 to 200 kHz.
However, there are ranges of non-standard audio sample rates that are not supported when operating with a fast
MCLK (512x, 256x, 128x for Single, Double, and Quad Speed Modes respectively). Please refer to Table 1 for supported sample rate ranges.
18
DS564PP2
CS5341
4.2.3
Master Clock
The CS5341 requires a Master clock (MCLK) which runs the internal sampling circuits and digital filters. There is
also an internal MCLK divider which is automatically activated based on the speed mode and frequency of the
MCLK. Table 3 shows a listing of the external MCLK/LRCK ratios that are required. Table 4 lists some common audio output sample rates and the required MCLK frequency. Please note that not all of the listed sample rates are
supported when operating with a fast MCLK (512x, 256x, 128x for Single, Double, and Quad Speed Modes respectively).
Single Speed Mode
Double Speed Mode
Quad Speed Mode
256x, 512x
128x, 256x
64x*,128x
MCLK/LRCK Ratio
* Quad Speed, 64x only available in Master Mode.
Table 3. Master Clock (MCLK) Ratios
SAMPLE RATE (kHz)
32
44.1
MCLK (MHz)
8.192
11.2896
22.5792
12.288
24.576
8.192
11.2896
22.5792
12.288
24.576
12.288
24.576
48
64
88.2
96
192
Table 4. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates
4.3
Serial Audio Interface
The CS5341 supports both I2S and Left Justified serial audio formats. Upon start-up, the CS5341 will detect the logic
level on SDOUT (pin 4). A 10 kΩ pull-up to VL is needed to select I2S format, and a 10 kΩ pull-down to GND is
needed to select Left Justified format. Please see Figures 13 through 16 on page 14, for more information on the
required timing for the two serial audio interface formats.
LR C K
Le ft C hann el
R ig ht C ha nnel
S C LK
SD A TA
23 22
9
8
7
6
5
4
3
2
1
0
23 22
9
8
7
6
5
4
3
2
1
0
23 22
Figure 19. Left-Justified Serial Audio Interface
Le ft C h an n e l
LRCK
R ig h t C h a nn el
S C LK
SDA TA
23 22
9
8
7
6
5
4
3
2
1
0
23 22
9
8
7
6
5
4
3
2
1
0
23 2 2
Figure 20. I2S Serial Audio Interface
DS564PP2
19
CS5341
4.4
Power-up Sequence
Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies drop below the
minimum specified operating voltages to prevent power glitch related issues.
4.5
Analog Connections
The analog modulator samples the input at 6.144 MHz. The digital filter will reject signals within the stopband of the
filter. However, there is no rejection for input signals which are multiples of the input sampling frequency
(n × 6.144 MHz), where n=0,1,2,... Refer to Figure 21 which shows the suggested filter that will attenuate any noise
energy at 6.144 MHz, in addition to providing the optimum source impedance for the modulators. The use of capacitors which have a large voltage coefficient (such as general purpose ceramics) must be avoided since these can
degrade signal linearity.
634 Ω
VA
470 pF
COG
100k Ω
91 Ω
-
4.7 uF
C S 5341 A IN L
+
A IN L
100kΩ
COG
2200 pF
VA
100k Ω
4.7 uF
91 Ω
+
A IN R
C S 5341 A IN R
100k Ω
470 pF
COG
COG
2200 pF
634 Ω
Figure 21. CS5341 Recommended Analog Input Buffer
4.6
Grounding and Power Supply Decoupling
As with any high resolution converter, the CS5341 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 17 shows the recommended power arrangements, with
VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the system logic supply
or may be powered from the analog supply via a resistor. In this case, no additional devices should be powered from
VD. Decoupling capacitors should be as near to the ADC as possible, with the low value ceramic capacitor being
the nearest. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.01 µF, must be
positioned to minimize the electrical path from FILT+ and REF_GND. The CDB5341 evaluation board demonstrates
the optimum layout and power supply arrangements. To minimize digital noise, connect the ADC digital outputs only
to CMOS inputs.
20
DS564PP2
CS5341
4.7
Synchronization of Multiple Devices
In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure
synchronous sampling, the MCLK and LRCK must be the same for all of the CS5341’s in the system. If only one
master clock source is needed, one solution is to place one CS5341 in Master mode, and slave all of the other
CS5341’s to the one master. If multiple master clock sources are needed, a possible solution would be to supply all
clocks from the same external source and time the CS5341 reset with the inactive (falling) edge of MCLK. This will
ensure that all converters begin sampling on the same clock edge.
4.8
Capacitor Size on the Reference Pin (FILT+)
The CS5341 requires an external capacitance on the internal reference voltage pin, FILT+. The size of this decoupling capacitor will affect the low frequency distortion performance as shown in Figure 22, with larger capacitor values used to optimize low frequency distortion performance.
1 uF
2.2 uF
3.3 uF
4.7 uF
5.6 uF
6.8 uF
10 uF
22 uF
47 uF
100 uF
Figure 22. CS5341 THD+N versus Frequency
DS564PP2
21
CS5341
5
PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale.
This technique ensures that the distortion components are below the noise level and do not affect the
measurement. This measurement technique has been accepted by the Audio Engineering Society,
AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response
at 1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with no signal to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog input for a full-scale digital output.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.
22
DS564PP2
CS5341
6 PACKAGE DIMENSIONS
16L TSSOP (4.4 mm BODY) PACKAGE DRAWING
N
D
E11
A2
E
A
∝
e
b2
SIDE VIEW
A1
L
END VIEW
SEATING
PLANE
1 2 3
TOP VIEW
DIM
A
A1
A2
b
D
E
E1
e
L
MIN
-0.002
0.03346
0.00748
0.193
0.248
0.169
-0.020
0°
∝
INCHES
NOM
-0.004
0.0354
0.0096
0.1969
0.2519
0.1732
0.026 BSC
0.024
4°
MAX
0.043
0.006
0.037
0.012
0.201
0.256
0.177
-0.028
8°
MIN
-0.05
0.85
0.19
4.90
6.30
4.30
-0.50
0°
MILLIMETERS
NOM
--0.90
0.245
5.00
6.40
4.40
0.065 BSC
0.60
4°
NOTE
MAX
1.10
0.15
0.95
0.30
5.10
6.50
4.50
-0.70
8°
2,3
1
1
JEDEC #: MO-153
Controlling Dimension is Millimeters
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per
side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not
reduce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
DS564PP2
23
CS5341
7.
REVISION HISTORY
Release
Date
A1
A2
February 2003
July 2003
PP1
June 2004
PP2
Aug 2004
Changes
-Initial Advance Release.
-Modified serial port timing specs.
-Added Applications section on speed mode detect.
-Change 2700 pF capacitors to 2200 pF in analog input buffer diagram.
-Update Output Sample Rate Range on page 17.
-Add new Applications section about capacitors on FILT+ pin.
-Corrected Max MCLK period under “Switching Characteristics” on page 13.
-Add CS5341-CZZ as an available part-number.
-Replace available part number CS5341-DZ with CS5341-DZZ.
-Initial Preliminary Product Release.
Update data sheet to include lead-free option.
Table 5. Revision History
24
DS564PP2
Similar pages