MITSUBISHI M52732SP

MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M52732SP is a semiconductor integrated circuit that has 3channels of built-in amplifiers in the broad-band video amplifier
1
28 OUTPUT (B)
amplifier, contrast control (main and sub), and brightness control. It
INPUT (B)
2
27 HOLD (B)
accordingly has an optimal configuration for use with high
SUB CONTRAST
CONTROL (B)
GND (B)
3
26 NC
4
25 GND (B)
VCC (G)
5
24 OUTPUT (G)
23 HOLD (G)
resolution color display monitors.
FEATURES
•
•
•
It realize low power dissipation so that 3-channels are built in.
(VCC=12V, ICC=63mA)
Input..........................................................................0.7V P-P (typ.)
Output.....................................................................4.5V P-P (max.)
Frequency band.................................................75MHz (at 3V P-P)
To adjust contrast, two types of controls are provided, main and
sub.
The main controls adjusts 3-channels of contrast concurrently.
The sub contrast controls adjusts either channel independentry.
INPUT (G)
6
SUB CONTRAST
CONTROL (G)
GND (G)
7
VCC (R)
9
M52732SP
VCC (B)
having a 75MHz band. Every channel is provided with a broad-band
8
21 GND (G)
20 OUTPUT (R)
19 HOLD (R)
INPUT (R) 10
SUB CONTRAST 11
CONTROL (R)
GND (R) 12
18 NC
17 GND (R)
MAIN CONTRAST
CONTROL 13
CP IN 14
APPLICATION
22 NC
16 VCC
15 BRIGHTNESS
CONTROL
Display monitor
Outline 28P4B
RECOMMENDED OPERATING CONDITION
NC : NO CONNECTION
Supply voltage range....................................................11.5 to 12.5V
Rated supply voltage................................................................12.0V
BLOCK DIAGRAM
HOLD (B)
OUTPUT (B)
28
NC
27
1
1
HOLD(G)
OUTPUT (G)
26
25
24
22
21
20
19
VCC
18
G-ch
Brt
R-ch
Brt
B-ch
Hold
G-ch
Hold
R-ch
Hold
B-ch
Amp
G-ch
Amp
R-ch
Amp
B-ch
CONTRAST
G-ch
CONTRAST
R-ch
CONTRAST
2
3
4
5
GND (B)
SUB CONTRAST
CONTROL (B)
6
INPUT (G)
VCC (G)
7
8
9
GND (G)
SUB CONTRAST
CONTROL (G)
10
INPUT (R)
VCC (R)
BRIGHTNESS
CONTROL
GND (R)
NC
OUTPUT (R)
NC
23
HOLD (R)
GND (G)
B-ch
Brt
INPUT (B)
VCC (B)
GND (B)
11
17
16
12
13
GND (R)
15
14
CP IN
SUB CONTRAST MAIN CONTRAST
CONTROL (R)
CONTROL
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol
VCC
Pd
Topr
Tstg
Vopr
Vopr’
Surge
Parameter
Supply voltage
Power dissipation
Ambient temperature
Storage temperature
Recommended supply voltage
Recommended supply voltage range
Electrostatic discharge
Ratings
Unit
13.0
1580
-20 to +85
-40 to +150
12.0
11.5 to 12.5
±200
V
mW
°C
°C
V
V
V
ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25°C, unless otherwise noted)
Test conditions
Symbol
Parameter
ICC
Circuit current
Vomax
Output dynamic range
Vimax
Maximum input
Gv
Maximum gain
∆Gv
Relative maximum gain
VCR1
∆VCR1
VCR2
Contrast control
characteristics (typical)
Contrast control relative
characteristics (typical)
Contrast control
characteristics
(minimum)
∆VCR2
Contrast control relative
characteristics (minimum)
VSCR1
Sub contrast control
characteristics (typical)
∆VSCR1
Sub contrast control
relative characteristics
(typical)
VSCR2
Sub contrast control
characteristics
(minimum)
∆VSCR2
Sub contrast control relative
characteristics (minimum)
VCR2
Contrast/sub contrast
control characteristics
(typical)
∆VCR2
Contrast/sub contrast
control relative
characteristics (typical)
VB1
Brightness control
characteristics
(maximum)
∆VB1
Brightness control relative
characteristics (maximum)
Test
point (s) SW10
R-ch
A
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
Input
External power supply (V)
SW6
G-ch
SW2
B-ch
V3
V13
V15
SW14
a
−
a
−
a
−
12
12
5
b
SG1
b
SG1
b
SG1
12
12
b
SG1
b
SG1
b
SG1
12
b
SG1
b
SG1
b
SG1
12
b
SG1
b
SG1
b
SG1
12
Typ.
Max.
b
SG6
45
72
110
mA
Variable
a
−
5.8
6.8
9.0
VP-P
6
Variable
a
−
1.9
2.4
2.9
VP-P
12
VT
a
−
13
17
20
dB
0.8
1
1.2
−
4.0
7.4
10.1
dB
0.8
1
1.2
−
5
30
70
mVP-P
0.8
1
1.3
−
9.9
14
18.1
dB
0.8
1
1.2
−
50
300
600
mVP-P
0.8
1
1.2
−
0.9
1.3
1.7
VP-P
0.8
1
1.2
−
3.6
4.3
5.0
V
-100
0
100
mV
6
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG1
b
SG1
b
SG1
12
3.5
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG1
b
SG1
b
SG1
6
12
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG1
b
SG1
b
SG1
3
12
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG1
b
SG1
b
SG1
6
6
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
a
−
a
−
a
−
12
Unit
Min.
Relative to measured values above
T.P.20
T.P.24
T.P.28
Limits
Pulse
input
12
5.5
Relative to measured values above
b
SG6
2
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions
Symbol
VB2
Brightness control
characteristics (typical)
∆VB2
Brightness control relative
characteristics (typical)
VB3
Brightness control
characteristics
(minimum)
∆VB3
Brightness control relative
characteristics (minimum)
FC1
Frequency
characteristics 1
(f=50MHz;maximum)
∆FC1
Frequency relative
characteristics 1
(f=50MHz;maximum)
FC1’
Frequency
characteristics 1
(f=75MHz;maximum)
∆FC1’
Frequency relative
characteristics 1
(f=75MHz;maximum)
FC2
∆FC2’
3
Parameter
Frequency
characteristics 2
(f=50MHz; maximum)
Frequency relative
characteristics 2
(f=75MHz; maximum)
C.T.1
Crosstalk 1 (f=50MHz)
C.T.1’
Crosstalk 1 (f=75MHz)
C.T.2
Crosstalk 2 (f=50MHz)
C.T.2’
Crosstalk 2 (f=75MHz)
C.T.3
Crosstalk 3 (f=50MHz)
C.T.3’
Crosstalk 3 (f=75MHz)
Tr
Pulse characteristics 1
Tf
Pulse characteristics 2
V14th
Clamp pulse threshold
voltage
W14
Clamp pulse minimum
width
V27
Hold voltage
Test
point (s) SW10
R-ch
T.P.20
T.P.24
T.P.28
a
−
Input
External power supply (V)
a
−
SW2
B-ch
V3
V13
V15
SW14
Min.
Typ.
Max.
a
−
a
−
12
12
5
b
SG6
3.0
3.7
4.4
V
-100
0
100
mV
2.5
3.2
4.0
VDC
-100
0
100
mV
-2
0
3
dB
-1
0
1
dB
-3
0
3
dB
-1
0
1
dB
a
−
a
−
12
12
4.5
b
SG6
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG3
b
SG3
b
SG3
12
7.5
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
b
SG4
b
SG4
b
SG4
12
7.5
VT
a
−
Relative to measured values above
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
T.P.20
T.P.24
T.P.28
Unit
SW6
G-ch
Relative to measured values above
T.P.20
T.P.24
T.P.28
Limits
Pulse
input
b
SG3
b
SG3
b
SG3
12
5
VT
a
−
-0.5
0
3
dB
b
SG4
b
SG4
b
SG4
12
5
VT
a
−
-0.5
0
3
dB
b
SG3
a
−
a
−
12
12
VT
a
−
−
-36
-24
dB
b
SG4
a
−
a
−
12
12
VT
a
−
−
-28
-18
dB
a
−
b
SG3
a
−
12
12
VT
a
−
−
-36
-24
dB
a
−
b
SG4
a
−
12
12
VT
a
−
−
-28
-18
dB
a
−
a
−
b
SG3
12
12
VT
a
−
−
-36
-24
dB
a
−
a
−
b
SG4
12
12
VT
a
−
−
-28
-18
dB
b
SG5
b
SG5
b
SG5
12
7
3
b
SG6
−
3
7
nsec
b
SG5
b
SG5
b
SG5
12
7
3
b
SG6
−
6
9
nsec
a
−
a
−
a
−
12
12
3
b
SG6
0.7
1.5
2.5
VDC
a
−
a
−
a
−
12
12
3
b
SG6
−
0.3
1.5
µsec
a
−
a
−
a
−
12
12
3
b
SG6
5.2
6.4
VDC
4
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
ELECTRICAL CHARACTERISTICS TEST METHOD
1. About switch numbers (SW Nos.) since those for the signal and
Gv Maximum gain
∆Gv Relative maximum gain
pulse input pins are listed in Attached Table 1, the following
1. Under conditions in attached Table.
notes omit them. Only SW Nos. for the external power supply will
2. Input SG1 to pin 10 (pin 6, 2). Read amplitude of the output at
be indicated in the Notes.
2. since sub contrast voltges V3, V7, and V11, they are also set to
T.P20 (T.P24, 28), which is VOR1 (VOG1, VOB1).
3. The maximum gain G is:
the same value, so that V3 in attached Table 1 represents all.
GV=20LOG
ICC Circuit current
Conditions shall be as indicated in Attached Table 1. Measure
4. The maximum relative gain ∆G is calculated by the equation
below:
these conditions using ampere meter A with SW1 set to a.
Vomax Output dynamic range
1. Follow the procedure below to set V15.
Input SG1 to pin 10 (pin 6, 2) and raise V15 slowly. Read the
voltage of V15 when the higher peak of output waveform of T.P20
(T.P24, 28) begins distortion. This voltage is V TR1 (VTG1, VTB1)
Next, reduce V15 slowly. Read the voltage of V15 when the lower
peak of output waveform of T.P20 (T.P24, 28) begins distortion.
VOR1 (VOG1, VOB1) [VP-P]
[VP-P]
0.7
∆GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1
VCR1 Contrast control characteristics (typical)
∆VCR1 Contrast control relative characteristics (typical)
1. Conditions are identical with those in Attached Table except
setting V13 to 6.0V.
2. Then read amplitude of the output at T.P20 (T.P24, 28), which is
VOR2 (VOG2, VOB2)
3. The contrast control characteristics VCR1 and relative contrast
This voltage is VTR2 (VTG2, VTB2).
control characteristics ∆VCR1 are calculated by the equations
(V)
below:
VCR1=20LOG
VOR2 (VOG2, VOB2) [VP-P]
[VP-P]
0.7
∆VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2
5.0
VCR2 Contrast control characteristics (minimum)
∆VCR2 Contrast control relative characteristics (minimum)
1. Conditions are identical with those in Attached Table except
setting V13 to 3.0V.
2. Then read amplitude of the output at T.P20 (T.P24, 28), which is
0.0
Waveform output at T.P20
(Identical to output at T.P24 and T.P28.)
From the above result, VT (VTR, VTG, VTB) is determined as
VOR3 (VOG3, VOB3) and also VCR2.
3. The relative contrast control characteristics ∆VCR2 is:
∆VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3
follows:
VTR (VTG, VTB)=
VTR1 (VTG1, VTB1) + VTR2 (VTG2, VTB2)
2
Change the procedure according to output pins.
Use VTR1 when measuring T.P20. Similarly, VTG1 for T.P24, VTB1
for T.P28.
2. Set V15 to VTR (VTG, VTB), then slowly raise SG1 amplitude
starting from 700mV. Measure the output amplitude when the
VSCR1 Sub contrast control characteristics (typical)
∆VSCR1 Sub contrast control relative characteristics (typical)
1. Conditions are identical with those in Attached Table except
setting V3, V7, and V11 to 6.0V.
2. Then read amplitude of the output at T.P20 (T.P24, 28), which is
VOR4 (VOG4, VOB4).
3. The sub contrast control characteristics V SCR1 and relative sub
contrast control characteristics ∆VSCR1 are:
higher and lower peaks of T.P20 (T.P24, T.P28) output waveform
simultaneously begin distortion.
VSCR1=20LOG
VOR4 (VOG4, VOB4) [VP-P]
[VP-P]
0.7
∆VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4
Vimax Maximum input
Under the conditions in Note 2, vary V13 to 6.7V as indicated in
Attached Table 1, then slowly raise amplitude of the input signal
starting from 700mVP-P. Read the amplitude of the input signal
when the output signal begins distortion.
4
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
VSCR2 Sub contrast control characteristics (minimum)
∆VSCR2 Sub contrast control relative characteristics (minimum)
VB3 Brightness control characteristics (minimum)
∆VB3 Brightness control relative characteristics (minimum)
1. Conditions are identical with those in Attached Table expect
1. Under conditions in Attached Table.
setting V3, V7, and V11 to 3.0V.
2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28),
2. Then read amplitude of the output at T.P20 (T.P24, 28), which is
which is VOR7'' (VOG7'', VOB7''). This value is VB3.
3. In addition, the relative brightness control characteristic ∆VB3 is
VOR5 (VOG5, VOB5) and also VSCR2.
3. The relative sub contrast control characteristics ∆VSCR2 is:
∆VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5
determined from VOR7'', VOG7'', and VOB7'' by calculating
differences between each channel.
∆VB3 =VOR7''-VOG7''
VCR2 Contrast/sub contrast control characteristics (typical)
∆VCR2 Contrast/sub contrast control relative
=VOG7''-VOB7''
[mV]
=VOB7''-VOR7''
characteristics (typical)
1. Conditions are identical with those in Attached Table expect
setting V13, to 6.0V and V3, V7, and V11 to 6.0V.
2. Then read amplitude of the output at T.P20 (T.P24, 28), which is
∆FC1 Frequency relative characteristics1
(f=50MHz; maximum)
FC1' Frequency characteristics1 (f=75MHz; maximum)
VOR6 (VOG6, VOB6).
3. The gain and relative gain when the contrast and sub contrast
are typical, are:
VCR3=20LOG
FC1 Frequency characteristics1 (f=50MHz; maximum)
VOR6 (VOG6, VOB6) [VP-P]
[VP-P]
0.7
∆VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6
∆FC1' Frequency relative characteristics1
(f=75MHz; maximum)
1. Under conditions in Attached Table.
2. Use SG3 and SG4. Measure amplitude of the output waveform
at T.P20 (T.P24, T.P28) following the procedure in G V, ∆GV.
3. The frequency characteristics FC1, FC1' are calculated by the
equations below:
VB1 Brightness control characteristics (maximum)
∆VB1 Brightness control relative characteristics (maximum)
FC1=20LOG
VOR8 (VOG8, VOB8)
VOR1 (VOG1, VOB1)
[VP-P]
[VP-P]
FC1'=20LOG
VOR9 (VOG9, VOB9)
VOR1 (VOG1, VOB1)
[VP-P]
[VP-P]
1. Under conditions in Attached Table.
2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28),
which is VOR7 (VOG7, VOB7). This value is VB1.
3. In addition, the relative brightness control characteristic is
determined from VOR7, VOG7, and VOB7 by calculating differences
between each channel.
above. (VOR1 (VOG1, VOB1) is the value measured in GV, ∆GV.)
∆VB1 =VOR7-VOG7
=VOG7-VOB7
Whre, VOR8 (VOG8, VOB8) is the output amplitude when inputting
SG3, and VOR9 (VOG9, VOB9), SG4, which are measured in 2
[mV]
=VOB7-VOR7
4. The relative frequency characteristics ∆FC1, ∆FC1' are
determined by calculating differences between each channel's
FC1 and FC1'.
VB2 Brightness control characteristics (typical)
∆VB2 Brightness control relative characteristics (typical)
1. Under conditions in Attached Table.
2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28),
which is VOR7' (VOG7', VOB7'). This value is VB2.
FC2 Frequency characteristics2 (f=50MHz; maximum)
∆FC2' Frequency relative characteristics2
(f=75MHz; maximum)
The procedure is identical with that in FC1, ∆FC1, FC1', ∆FC1' except
that the contrast (V13) is reduced to 5.0V.
3. In addition, the relative brightness control characteristic is
determined from VOR7', VOG7', and VOB7' by calculating
differences between each channel.
∆VB2 =VOR7'-VOG7'
=VOG7'-VOB7'
=VOB7'-VOR7'
C.T.1 Crosstalk1 (f=50MHz)
C.T.1' Crosstalk1 (f=75MHz)
1. Under conditions in attached Table.
[mV]
2. Input SG2 (or SG4) to pin 10 (R-ch) only. Then measure
amplitude of the output waveform at T.P20 (T.P24, T.P28), which
are VOR, VOG, and VOB, respectively.
3. Crosstalk C.T. is:
C.T. =20LOG
(C.T. ')
5
VOG or VOB
VOR
[VP-P]
[dB]
[VP-P]
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
C.T.2 Crosstalk2 (f=50MHz)
C.T.2' Crosstalk2 (f=75MHz)
V14th Clamp pulse threshold voltage
1. Afterthe input pin from 10 (R-ch) to 6 (G-ch) and read the output
2. Then slowly reduce the level of SG6 monitoring the output
1. Under conditions in attached Table.
following the procedure in C.T.1, C.T.1'.
(approx.2.0VDC) and measure the level of SG6 when the output
2. Crosstalk C.T. is:
becomes 0V.
C.T. =20LOG
(C.T. ')
VOR or VOB
VOG
[VP-P]
[dB]
[VP-P]
W14 Clamp pulse minimum width
Under the conditions in V14th, slowly reduce the pulse width of
SG6 monitoring the output.
C.T.3 Crosstalk3 (f=50MHz)
C.T.3' Crosstalk3 (f=75MHz)
Then measure the pulse width of SG6 when the output becomes
1. After the input pin from 10 (R-ch) to 2 (B-ch) and read the output
following the procedure in C.T.1, C.T.1'.
0V.
V27 Hold voltage
2. Crosstalk C.T. is:
1. Under conditions in attached Table.
VOR or VOB
C.T. =20LOG
VOG
(C.T. ')
[VP-P]
[dB]
[VP-P]
2. Read T.P19, 23 and 27 with a voltmeter.
Tr Pulse characteristics1
Tf Pulse characteristics2
1. Under conditions in attached Table.
2. Measure 10% to 90% rise Tr1 and fall Tf1 of the input pulse
using an active probe.
3. Next, measure 10% to 90% rise Tr2 and fall Tf2 of the output
pulse using an active probe.
4. Pulse characteristics Tr and Tf are calculated by the equations
below :
Tr (nsec)= (Tr2)2-(Tr1)2
Tf (nsec)= (Tf2)2-(Tf1)2
100%
90%
10%
0%
Tr
Tf
6
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
INPUT SIGNAL
SG No.
Signals
Sine wave of amplitude 0.7VP-P (75kHz, amplitude partlym variable∗)
SG1
SG2
SG3
SG4
0.7VP-P
Sine wave with amplitude of 0.7VP-P (f=10MHz)
Sine wave with amplitude of 0.7VP-P (f=50MHz)
Sine wave with amplitude of 0.7VP-P (f=75MHz)
Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%)
SG5
0.7VP-P
Pulses of amplitude 2.0VP-P and width 3.0 synchronizing to the pedestal of the standard video staircase
2.0VP-P
SG6
0V
3.0µs
3.0µs
SG7
Standard
video
staircase
∗ See Notes
7
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
TEST CIRCUIT
TP28
TP27
TP24
TP23
2.2µ
TP19
2.2µ
1k
28
TP20
2.2µ
1k
26
25
NC
GND
27
23
24
100µ
1k
22
21
NC
GND
20
100
19
18
17
16
NC
GND
VCC
V15
15
M52732SP
VCC
1
3
2
100µ
GND
VCC
4
5
6
100µ
0.01µ
7
VCC
8
9
GND
10
100µ
0.01µ
V3
GND
11
12
13
14
0.01µ
V7
V11
V13
SW14
a
SW2
a
SW6
SG1
SG2
SG3
SG4
SG5
A
0.01µ
a
SW1
b
b
a
SW10
b
a
SG6
b
50
47µ
b
Units Resistance : Ω
Capacitance : F
12V
TYPICAL CHARACTERISTICS
THERMAL DERATING (MAXIMUM RATING)
POWER DISSIPATION Pd (mW)
1800
1600
1400
1200
1000
800
600
400
200
-20
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE Ta (°C)
8
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
APPLICATION EXAMPLE
CRT
110V
DC CLAMP
1k
28
1k
27
NC
26
25
24
1k
23
NC
22
21
0 to 12V
20
19
NC
18
17
16
15
9
10
11
12
13
14
M52732SP
1
2
3
4
5
6
7
8
0 to 12V
0 to 12V
0 to 12V
0 to 12V
12V
INPUT
(B)
INPUT
(G)
INPUT
(R)
CLAMP
Units Resistance : Ω
Capacitance : F
9
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
DESCRIPTION OF PIN
Pin No.
1
5
9
Name
VCC (B-ch)
VCC (G-ch)
VCC (R-ch)
DC voltage (V )
Peripheral circuit of pins
Description of function
−
The voltage to be applied
to 3 channels shall be
equal.
12
VCC
24.7k
1k
2
6
10
B-IN
G-IN
R-IN
2.9
3.6k
GND
Vcc
3
7
11
B SUB
CONTRAST
G SUB
CONTRAST
R SUB
CONTRAST
4k
4.0
72k
GND
0.12mA
4, 25
8, 21
12, 17
GND (B-ch)
GND (G-ch)
GND (R-ch)
−
GND
Vcc
4k
13
CONTRAST
6.9
72k
GND
0.4mA
VCC
50k
14
CLAMP
PULSE
14
GND
10
MITSUBISHI ICs (Monitor)
M52732SP
3-CHANNEL VIDEO AMPLIFICATION
DESCRIPTION OF PIN (cont.)
Pin No.
Name
DC voltage (V )
Peripheral circuit of pins
Description of function
VCC
30k
15
BRIGHT
15
GND
16
18
22
26
VCC
−
12
NC
Vcc
19
23
27
R HOLD
G HOLD
B HOLD
Variable
1k
GND
VCC
20
24
28
B OUT
G OUT
R OUT
A resistor is needed at
the GND side. Choose
any resistance value
under 15mA according to
the driving capability
required.
Variable
50
11