MITSUBISHI M5M4V64S40ATP-8

MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Some of contents are subject to change without notice.
The M5M4V64S40ATP is a 4-bank x 1048576-word x 16-bit
Synchronous DRAM, with LVTTL interface. All inputs and
outputs are referenced to the rising edge of CLK. The
M5M4V64S40ATP achieves very high speed data rate up to
125MHz, and is suitable for main memory or graphic memory
in computer systems.
FEATURES
- Single 3.3v±0.3v power supply
- Clock frequency 125MHz /100MHz
- Fully synchronous operation referenced to clock rising edge
- 4 bank operation controlled by BA0, BA1 (Bank Address)
- /CAS latency- 2/3 (programmable)
- Burst length- 1/2/4/8/Full Page (programmable)
- Burst type- sequential / interleave (programmable)
- Column access - random
- Burst Write / Single Write (programmable)
- Auto precharge / All bank precharge controlled by A10
- Auto refresh and Self refresh
- 4096 refresh cycles /64ms
- Column address A0-A7
- LVTTL Interface
- 400-mil, 54-pin Thin Small Outline Package (TSOP II) with
0.8mm lead pitch
Max.
Frequency
CLK Access
Time
M5M4V64S40ATP-8A
125MHz
6ns
M5M4V64S40ATP-8
100MHz
6ns
M5M4V64S40ATP-10
100MHz
8ns
Vdd
DQ0
VddQ
DQ1
DQ2
VssQ
DQ3
DQ4
VddQ
DQ5
DQ6
VssQ
DQ7
Vdd
DQML
/WE
/CAS
/RAS
/CS
BA0(A13)
BA1(A12)
A10
A0
A1
A2
A3
Vdd
CLK
CKE
/CS
/RAS
/CAS
/WE
DQ0-15
DQML/U
A0-11
BA0,1
Vdd
VddQ
Vss
VssQ
MITSUBISHI ELECTRIC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
400mil 54pin TSOP(II)
PIN CONFIGURATION
(TOP VIEW)
DESCRIPTION
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
Vss
DQ15
VssQ
DQ14
DQ13
VddQ
DQ12
DQ11
VssQ
DQ10
DQ9
VddQ
DQ8
Vss
NC (Vref)
DQMU
CLK
CKE
NC
A11
A9
A8
A7
A6
A5
A4
Vss
: Master Clock
: Clock Enable
: Chip Select
: Row Address Strobe
: Column Address Strobe
: Write Enable
: Data I/O
: Output Disable/ Write Mask
: Address Input
: Bank Address
: Power Supply
: Power Supply for Output
: Ground
: Ground for Output
1
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
DQ0-15
BLOCK DIAGRAM
I/O Buffer
Memory Array Memory Array Memory Array Memory Array
Bank #0
Bank #1
Bank #2
Bank #3
Mode
Register
Control Circuitry
Address Buffer
A0-11 BA0,1
Control Signal Buffer
Clock Buffer
CLK
/CS /RAS /CAS /WE DQM
CKE
Type Designation Code
This rule is applied to only Synchronous DRAM family.
M 5M 4 V 64 S 4 0 A TP - 8
Access Item
Package Type TP: TSOP(II)
Process Generation
Function 0: Random Column, 1: 2N-rule
Organization 2n 2: x4, 3: x8, 4: x16
Synchronous DRAM
Density 64:64M bits
Interface S: SSTL, V:LVTTL
Memory Style (DRAM)
Use, Recommended Operating Conditions, etc
Mitsubishi Main Designation
MITSUBISHI ELECTRIC
2
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
PIN FUNCTION
CLK
Input
Master Clock: All other inputs are referenced to the rising edge of CLK.
CKE
Input
Clock Enable: CKE controls internal clock. When CKE is low, internal clock
for the following cycle is ceased. CKE is also used to select auto / self
refresh. After self refresh mode is started, CKE becomes asynchronous
input. Self refresh is maintained as long as CKE is low.
/CS
Input
Chip Select: When /CS is high, any command means No Operation.
/RAS, /CAS, /WE
Input
Combination of /RAS, /CAS, /WE defines basic commands.
A0-11
Input
A0-11 specify the Row / Column Address in conjunction with BA0,1. The
Row Address is specified by A0-11. The Column Address is specified by
A0-7 . A10 is also used to indicate precharge option. When
A10 is high at a read / write command, an auto precharge is performed.
When A10 is high at a precharge command, all banks are precharged.
BA0,1
Input
Bank Address: BA0,1 specifies one of four banks to which a command is
applied. BA0,1 must be set with ACT, PRE, READ, WRITE commands.
DQ0-15
Input / Output
Data In and Data out are referenced to the rising edge of CLK.
Din Mask / Output Disable: When DQMU/L is high in burst write, Din for the
current cycle is masked. When DQMU/L is high in burst read,
Dout is disabled at the next but one cycle.
DQMU/L
Input
Vdd, Vss
Power Supply
Power Supply for the memory array and peripheral circuitry.
VddQ, VssQ
Power Supply
VddQ and VssQ are supplied to the Output Buffers only.
MITSUBISHI ELECTRIC
3
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
BASIC FUNCTIONS
The M5M4V64S40ATP provides basic functions, bank (row) activate, burst read / write, bank (row)
precharge, and auto / self refresh.
Each command is defined by control signals of /RAS, /CAS and /WE at CLK rising edge. In addition to 3
signals, /CS ,CKE and A10 are used as chip select, refresh option, and precharge option, respectively.
To know the detailed definition of commands, please see the command truth table.
CLK
/CS
Chip Select : L=select, H=deselect
/RAS
Command
/CAS
Command
/WE
Command
CKE
Refresh Option @refresh command
A10
Precharge Option @precharge or read/write command
define basic commands
Activate (ACT) [/RAS =L, /CAS =/WE =H]
ACT command activates a row in an idle bank indicated by BA.
Read (READ) [/RAS =H, /CAS =L, /WE =H]
READ command starts burst read from the active bank indicated by BA. First output data appears after
/CAS latency. When A10 =H at this command, the bank is deactivated after the burst read (auto-precharge,
READA).
Write (WRITE) [/RAS =H, /CAS =/WE =L]
WRITE command starts burst write to the active bank indicated by BA. Total data length to be written is
set by burst length. When A10 =H at this command, the bank is deactivated after the burst write (autoprecharge, WRITEA).
Precharge (PRE) [/RAS =L, /CAS =H, /WE =L]
PRE command deactivates the active bank indicated by BA. This command also terminates burst read /
write operation. When A10 =H at this command, both banks are deactivated (precharge all, PREA).
Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H]
REFA command starts auto-refresh cycle. Refresh address including bank address are generated internally. After this command, the banks are precharged automatically.
MITSUBISHI ELECTRIC
4
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
COMMAND TRUTH TABLE
COMMAND
MNEMONIC
CKE
n-1
CKE
n
/CS
Deselect
DESEL
H
X
H
X
No Operation
NOP
H
X
L
Row Address Entry &
Bank Activate
ACT
H
X
Single Bank Precharge
PRE
H
Precharge All Banks
PREA
Column Address Entry
& Write
/RAS /CAS
/WE
BA0,1
A11
A10
A0-9
X
X
X
X
X
X
H
H
H
X
X
X
X
L
L
H
H
V
V
V
V
X
L
L
H
L
V
X
L
X
H
X
L
L
H
L
X
X
H
X
WRITE
H
X
L
H
L
L
V
X
L
V
Column Address Entry
& Write with AutoPrecharge
WRITEA
H
X
L
H
L
L
V
X
H
V
Column Address Entry
& Read
READ
H
X
L
H
L
H
V
X
L
V
Column Address Entry
& Read with AutoPrecharge
READA
H
X
L
H
L
H
V
X
H
V
Auto-Refresh
REFA
H
H
L
L
L
H
X
X
X
X
Self-Refresh Entry
REFS
H
L
L
L
L
H
X
X
X
X
Self-Refresh Exit
REFSX
L
H
H
X
X
X
X
X
X
X
L
H
L
H
H
H
X
X
X
X
Burst Terminate
TBST
H
X
L
H
H
L
X
X
X
X
Mode Register Set
MRS
H
X
L
L
L
L
L
L
L
V*1
H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number
NOTE:
1. A7-A9 =0, A0-A6 =Mode Address
MITSUBISHI ELECTRIC
5
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
FUNCTION TRUTH TABLE
Current State
/CS
/RAS
/CAS
/WE
IDLE
H
X
X
X
X
DESEL
NOP
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
Auto-Refresh*5
L
L
L
L
Op-Code,
Mode-Add
MRS
Mode Register Set*5
H
X
X
X
X
DESEL
NOP
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
NOP
L
H
L
H
BA, CA, A10
READ / READA
Begin Read, Latch CA,
Determine Auto-Precharge
L
H
L
L
BA, CA, A10
WRITE /
WRITEA
Begin Write, Latch CA,
Determine Auto-Precharge
L
L
H
H
BA, RA
ACT
Bank Active / ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
Precharge / Precharge All
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
Terminate Burst
ROW ACTIVE
READ
L
H
L
H
Address
BA, CA, A10
Command
Action
READ / WRITE ILLEGAL*2
Bank Active, Latch RA
NOP*4
Terminate Burst, Latch CA,
READ / READA Begin New Read, Determine
Auto-Precharge*3
WRITE /
WRITEA
Terminate Burst, Latch CA,
Begin Write, Determine AutoPrecharge*3
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
MITSUBISHI ELECTRIC
Bank Active / ILLEGAL*2
Terminate Burst, Precharge
6
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
FUNCTION TRUTH TABLE(continued)
Current State
/CS
/RAS
/CAS
/WE
WRITE
H
X
X
X
L
H
H
L
H
H
L
READ with
AUTO
PRECHARGE
WRITE with
AUTO
PRECHARGE
H
L
Command
Action
X
DESEL
NOP (Continue Burst to END)
H
X
NOP
NOP (Continue Burst to END)
L
BA
TBST
Terminate Burst
H
Address
BA, CA, A10
Terminate Burst, Latch CA,
READ / READA Begin Read, Determine AutoPrecharge*3
WRITE /
WRITEA
Terminate Burst, Latch CA,
Begin Write, Determine AutoPrecharge*3
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP (Continue Burst to END)
L
H
H
H
X
NOP
NOP (Continue Burst to END)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
H
BA, CA, A10
L
H
L
L
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
Bank Active / ILLEGAL*2
Terminate Burst, Precharge
READ / READA ILLEGAL
WRITE /
WRITEA
ILLEGAL
Bank Active / ILLEGAL*2
ILLEGAL*2
READ / READA ILLEGAL
WRITE /
WRITEA
MITSUBISHI ELECTRIC
ILLEGAL
Bank Active / ILLEGAL*2
ILLEGAL*2
7
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
FUNCTION TRUTH TABLE(continued)
Current State
/CS
/RAS
/CAS
/WE
PRE CHARGING
H
X
X
X
X
DESEL
NOP (Idle after tRP)
L
H
H
H
X
NOP
NOP (Idle after tRP)
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
L
L
H
L
BA, A10
PRE / PREA
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP (Row Active after tRCD)
L
H
H
H
X
NOP
NOP (Row Active after tRCD)
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL*2
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP
L
H
H
H
X
NOP
NOP
L
H
H
L
BA
TBST
ILLEGAL*2
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL*2
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL*2
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
ROW
ACTIVATING
WRITE RECOVERING
Address
Command
Action
READ / WRITE ILLEGAL*2
ILLEGAL*2
NOP*4 (Idle after tRP)
READ / WRITE ILLEGAL*2
READ / WRITE ILLEGAL*2
MITSUBISHI ELECTRIC
8
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
FUNCTION TRUTH TABLE(continued)
Current State
/CS
/RAS
/CAS
/WE
REFRESHING
H
X
X
X
X
DESEL
NOP (Idle after tRC)
L
H
H
H
X
NOP
NOP (Idle after tRC)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
H
X
X
X
X
DESEL
NOP (Idle after tRSC)
L
H
H
H
X
NOP
NOP (Idle after tRSC)
L
H
H
L
BA
TBST
ILLEGAL
L
H
L
X
BA, CA, A10
L
L
H
H
BA, RA
ACT
ILLEGAL
L
L
H
L
BA, A10
PRE / PREA
ILLEGAL
L
L
L
H
X
REFA
ILLEGAL
L
L
L
L
Op-Code,
Mode-Add
MRS
ILLEGAL
MODE
REGISTER
SETTING
Address
Command
Action
READ / WRITE ILLEGAL
READ / WRITE ILLEGAL
ABBREVIATIONS:
H=High Level, L=Low Level, X=Don't Care
BA=Bank Address, RA=Row Address, CA=Column Address, NOP=No OPeration
NOTES:
1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.
2. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of
that bank.
3. Must satisfy bus contention, bus turn around, write recovery requirements.
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA.
5. ILLEGAL if any bank is not idle.
ILLEGAL = Device operation and/or data-integrity are not guaranteed.
MITSUBISHI ELECTRIC
9
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
FUNCTION TRUTH TABLE for CKE
Current State
SELFREFRESH*1
POWER
DOWN
ALL BANKS
IDLE*2
ANY STATE
other than
listed above
CKE
n-1
CKE
n
/CS
H
X
X
X
L
H
H
L
H
L
/RAS /CAS
/WE
Add
Action
X
X
X
INVALID
X
X
X
X
Exit Self-Refresh (Idle after tRC)
L
H
H
H
X
Exit Self-Refresh (Idle after tRC)
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
NOP (Maintain Self-Refresh)
H
X
X
X
X
X
X
INVALID
L
H
X
X
X
X
X
Exit Power Down to Idle
L
L
X
X
X
X
X
NOP (Maintain Self-Refresh)
H
H
X
X
X
X
X
Refer to Function Truth Table
H
L
L
L
L
H
X
Enter Self-Refresh
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
X
X
X
ILLEGAL
L
X
X
X
X
X
X
Refer to Current State =Power Down
H
H
X
X
X
X
X
Refer to Function Truth Table
H
L
X
X
X
X
X
Begin CLK Suspend at Next Cycle*3
L
H
X
X
X
X
X
Exit CLK Suspend at Next Cycle*3
L
L
X
X
X
X
X
Maintain CLK Suspend
ABBREVIATIONS:
H=High Level, L=Low Level, X=Don't Care
NOTES:
1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be
satisfied before any command other than EXIT.
2. Power-Down and Self-Refresh can be entered only from the All Banks Idle State.
3. Must be legal command.
MITSUBISHI ELECTRIC
10
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
SIMPLIFIED STATE DIAGRAM
SELF
REFRESH
REFS
REFSX
MRS
MODE
REGISTER
SET
REFA
IDLE
AUTO
REFRESH
CKEL
CKEH
CLK
SUSPEND
ACT
POWER
DOWN
CKEL
CKEH
TBST (for Full Page)
WRITE
WRITE
SUSPEND
READ
WRITEA
CKEL
TBST (for Full Page)
ROW
ACTIVE
READA
READ
WRITE
WRITE
CKEL
READ
CKEH
CKEH
WRITEA
READA
WRITEA
READA
CKEL
WRITEA
SUSPEND
CKEL
PRE
WRITEA
CKEH
POWER
APPLIED
READ
SUSPEND
POWER
ON
PRE
PRE
READA
PRE
CKEH
READA
SUSPEND
PRE
CHARGE
Automatic Sequence
Command Sequence
MITSUBISHI ELECTRIC
11
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
POWER ON SEQUENCE
Before starting normal operation, the following power on sequence is necessary to prevent a SDRAM
from damaged or malfunctioning.
1. Apply power and start clock. Attempt to maintain CKE high, DQM high and NOP condition at the inputs.
2. Maintain stable power, stable clock, and NOP input conditions for a minimum of 200µs.
3. Issue precharge commands for all banks. (PRE or PREA)
4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands.
5. Issue a mode register set command to initialize the mode register.
After these sequence, the SDRAM is idle state and ready for normal operation.
MODE REGISTER
CLK
Burst Length, Burst Type and /CAS Latency can be programmed by
setting the mode register (MRS). The mode register stores these data
until the next MRS command, which may be issued when both banks
are inÅ@ idle state. After tRSC from a MRS command, the SDRAM is
ready for new command.
/CS
/RAS
/CAS
/WE
V
BA0,1 A11-A0
BA0 BA1 A11 A10 A9
0
0
0
LATENCY
MODE
CL
000
001
010
011
100
101
110
111
WRITE
MODE
0
1
0
A8
WM 0
A7 A6
0
/CAS LATENCY
R
R
2
3
R
R
R
R
BURST
SINGLE BIT
A5
A4 A3
LTMODE
A2
A1 A0
BT
BL
BURST
LENGTH
BL
BT= 0
BT= 1
000
001
010
011
100
101
110
111
1
2
4
8
R
R
R
FP
1
2
4
8
R
R
R
R
0
SEQUENTIAL
INTERLEAVED
1
R: Reserved for Future Use
FP: Full Page
BURST
TYPE
MITSUBISHI ELECTRIC
12
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
CLK
Command
Read
Write
Y
Y
Address
Q0
DQ
CL= 3
BL= 4
/CAS Latency
Q1
Q2
Q3
D0
Burst Length
D1
D2
D3
Burst Length
Burst Type
Initial Address BL
Column Addressing
A2
A1 A0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
0
1
0
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
0
1
1
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
Sequential
Interleaved
8
1
0
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
1
0
1
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
1
1
0
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
1
1
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
-
0
0
0
1
2
3
0
1
2
3
-
0
1
1
2
3
0
1
0
3
2
4
-
1
0
2
3
0
1
2
3
0
1
-
1
1
3
0
1
2
3
2
1
0
-
-
0
0
1
0
1
1
0
1
0
2
-
-
1
MITSUBISHI ELECTRIC
13
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ /CAS LATENCY ]
/CAS latency, CL, is used to synchronize the first output data with the CLK frequency, i.e., the
speed of CLK determines which CL should be used. First output data is available after CL cycles
from READ command.
/CAS Latency Timing(BL=4)
CLK
ACT
Command
READ
tRCD
X
Address
Y
CL=2
DQ
Q0
CL=3
DQ
Q1
Q2
Q3
Q0
Q1
Q2
CL=2
Q3
CL=3
[ BURST LENGTH ]
The burst length, BL, determines the number of consecutive writes or reads that will be
automatically
performed after the initial write or read command. For BL=1,2,4,8, the output data is tristated
(Hi-Z)
after the last read. For BL=FP (Full Page), the TBST (Burst Terminate) command must be
used to stop the output of data.
Burst Length Timing( CL=2 )
tRCD
CLK
Command
ACT
READ
Address
X
Y
DQ
Q0
DQ
Q0
Q1
DQ
Q0
Q1
Q2
Q3
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
BL=1
BL=2
BL=4
BL=8
Q8
M5M4V64S20A : m=1023
M5M4V64S30A : m=511
M5M4V64S40A : m=255
MITSUBISHI ELECTRIC
Qm
Q0
Q1
BL=FP
Full Page counter rolls over
and continues to count.
14
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
OPERATIONAL DESCRIPTION
BANK ACTIVATE
The SDRAM has four independent banks. Each bank is activated by the ACT command with the bank
addresses (BA0,1). A row is indicated by the row addresses A11-0. The minimum activation interval between one bank and the other bank is tRRD. Maximum 2 ACT commands are allowed within tRC, although
the number of banks which are active concurrently is not limited.
PRECHARGE
The PRE command deactivates the bank indicated by BA0,1. When multiple banks are active, the precharge
all command (PREA, PRE + A10=H) is available to deactivate them at the same time. After tRP from the
precharge, an ACT command to the same bank can be issued.
Bank Activation and Precharge All (BL=4, CL=3)
CLK
2 ACT command / tRCmin
tRCmin
Command
ACT
ACT READ
tRRD
A0-9
PRE
ACT
tRAS
Xa
Xb
Y
0
tRP
Xb
tRCD
A10
Xa
Xb
A11
Xa
Xb
BA0,1
00
DQ
01
1
Xb
Xb
00
01
Qa0
Qa1
Qa2
Qa3
Precharge all
READ
After tRCD from the bank activation, a READ command can be issued. 1st output data is available after
the /CAS Latency from the READ, followed by (BL -1) consecutive data when the Burst Length is BL. The
start address is specified by A7-0(X16), and the address sequence of burst data is defined by the
Burst Type. A READ command may be applied to any active bank, so the row precharge time (tRP) can be
hidden behind continuous output data by interleaving the multiple banks. When A10 is high at a READ
command, the auto-precharge (READA) is performed. Any command (READ, WRITE, PRE, ACT) to the
same bank is inhibited till the internal precharge is complete. The internal precharge starts at BL after
READA. The next ACT command can be issued after (BL + tRP) from the previous READA.
MITSUBISHI ELECTRIC
15
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Multi Bank Interleaving READ (BL=4, CL=3)
CLK
Command
ACT
A0-9
Xa
Y
Xb
Y
A10
Xa
0
Xb
0
0
A11
Xa
10
00
Qa1
Qa2
READ ACT
READ PRE
tRCD
BA0,1
Xb
00
00
10
DQ
Qa0
/CAS latency
Qa3
Qb0
Qb1
Qb2
Burst Length
READ with Auto-Precharge (BL=4, CL=3)
CLK
BL + tRP
Command
ACT
READ
A0-9
Xa
Y
Xa
A10
Xa
1
Xa
A11
Xa
tRCD
BA0,1
00
ACT
BL
tRP
Xa
00
00
Qa0
DQ
Qa1
Qa2
Qa3
Internal precharge start
READ Auto-Precharge Timing (BL=4)
CLK
Command
ACT
READ
BL
CL=3
DQ
CL=2
DQ
Qa0
Qa0
Qa1
Qa2
Qa1
Qa2
Qa3
Qa3
Internal Precharge Start Timing
MITSUBISHI ELECTRIC
16
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
WRITE
After tRCD from the bank activation, a WRITE command can be issued. 1st input data is set at the same
cycle as the WRITE. Following (BL -1) data are written into the RAM, when the Burst Length is BL. The
start address is specified by A7-0 (x 16), and the address sequence of burst data is defined by the
Burst Type. A WRITE command may be applied to any active bank, so the row precharge time (tRP) can be
hidden behind continuous input data by interleaving the multiple banks. From the last input data to the PRE
command, the write recovery time (tWR) is required. When A10 is high at a WRITE command, the autoprecharge (WRITEA) is performed. Any command (READ, WRITE, PRE, ACT) to the same bank is inhibited till the internal precharge is complete. The internal precharge begins at tWR after the last input data
cycle. The next ACT command can be issued after tRP from the internal precharge timing. The Mode
Register can be programmed for burst read and single write. In this mode the write data is only clocked in
when the WRITE command is issued and the remaining burst length is ignored. The read data burst length
os unaffected while in this mode
Multi Bank Interleaving WRITE (BL=4)
CLK
Command
ACT
Write
ACT
tRCD
Write
PRE
PRE
0
0
0
0
10
00
10
Db0
Db1
tRCD
A0-9
Xa
Y
Xb
Y
A10
Xa
0
Xb
0
A11
Xa
BA0,1
00
Xb
DQ
00
10
Da0
Da1
Da2
Da3
Db2
Db3
WRITE with Auto-Precharge (BL=4)
CLK
Command
ACT
Write
ACT
tRCD
tWR
tRP
A0-9
Xa
Y
Xa
A10
Xa
1
Xa
A11
Xa
BA0,1
00
DQ
Xa
00
Da0
00
Da1
Da2
Da3
Internal precharge starts
MITSUBISHI ELECTRIC
17
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ BURST WRITE ]
A burst write operation is enabled by setting A9=0. A burst write starts in the same cycle as a
write command set. (The latency of data input is 0.) The burst length can be set to 1,2,4,8,
and full-page, like burst read operations.
tRCD
CLK
Command
Address
ACT
X
WRITE
Y
DQ
Q0
DQ
Q0
Q1
DQ
Q0
Q1
Q2
Q3
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
DQ
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
BL=1
BL=2
BL=4
BL=8
Q8
Q9
M5M4V64S20A : m=1023
M5M4V64S30A : m=511
M5M4V64S40A : m=255
Q10
Qm
Q0
Q1
BL=FP
Full Page counter rolls over
and continues to count.
[ SINGLE WRITE ]
A single write operation is enabled by setting A9=1. In a single write operation, data is only
written to the column address specified by the write command set cycle without regard to the
burst length setting. (The latency of data input is 0.)
CLK
Command
ACT
WRITE
tRCD
Address
DQ
X
Y
Q0
MITSUBISHI ELECTRIC
18
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
BURST INTERRUPTION
[ Read Interrupted by Read ]
Burst read operation can be interrupted by new read of any bank. Random column access is allowed.
READ to READ interval is minimum 1 CLK.
Read Interrupted by Read (BL=4, CL=3)
CLK
Command
READ READ
READ
READ
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
00
00
10
01
A11
BA0,1
Qai0 Qaj0
DQ
Qaj1 Qbk0 Qbk1 Qbk2
Qal0
Qal1 Qal2 Qal3
[ Read Interrupted by Write ]
Burst read operation can be interrupted by write of any bank. Random column access is allowed. In this
case, the DQ should be controlled adequately by using the DQM to prevent the bus contention. The output
is disabled automatically 1 cycle after WRITE assertion.
Read Interrupted by Write (BL=4, CL=3)
CLK
READ
Write
A0-9
Yi
Yj
A10
0
0
00
00
Command
A11
BA0,1
DQM
Q
D
Qai0
Daj0
Daj1
Daj2
Daj3
DQM control Write control
MITSUBISHI ELECTRIC
19
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ Read Interrupted by Precharge ]
Burst read operation can be interrupted by precharge of the same bank . READ to PRE interval is minimum 1 CLK. A PRE command to output disable latency is equivalent to the /CAS Latency. As a result,
READ to PRE interval determines valid data length to be output. The figure below shows examples of
BL=4.
Read Interrupted by Precharge (BL=4)
CLK
Command
READ
PRE
DQ
Command
READ
Q0
Q1
Q0
Q1
Q2
PRE
CL=3
DQ
Command
READ PRE
Q0
DQ
Command
READ
Q0
DQ
Command
CL=2
READ
DQ
Q1
Q2
PRE
Q0
DQ
Command
PRE
Q1
READ PRE
Q0
MITSUBISHI ELECTRIC
20
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ Read Interrupted by Burst Terminate ]
Similar to a precharge, the burst terminate command, TBST, can interrupt the burst read operation
and disable the data output. The READ to TBST interval is a minimum of one CLK. TBST is mainly
used to interrupt FP bursts. The figures below show examples, of how the output data is terminated
with TBST.
Read Interrupted by Burst Terminate(BL=4)
CLK
Command
READ
TBST
DQ
CL=3
Command
Q0
READ
Q0
Command
READ
TBST
Q0
READ
DQ
Q1
Q2
Q3
TBST
DQ
Command
Q2
Q0
DQ
CL=2
Q1
Q3
READ TBST
DQ
Command
Q2
TBST
DQ
Command
Q1
Q0
Q1
Q2
READ TBST
Q0
MITSUBISHI ELECTRIC
21
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ Write Interrupted by Write ]
Burst write operation can be interrupted by new write of any bank. Random column access is allowed.
WRITE to WRITE interval is minimum 1 CLK.
Write Interrupted by Write (BL=4)
CLK
Command
Write Write
Write
Write
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
BA0,1
00
00
10
00
DQ
Dai0
Daj0
A11
Daj1
Dbk0 Dbk1 Dbk2 Dal0
Dal1
Dal2
Dal3
[ Write Interrupted by Read ]
Burst write operation can be interrupted by read of the same or the other bank. Random column access is
allowed. WRITE to READ interval is minimum 1 CLK. The input data on DQ at the interrupting READ
cycle is "don't care".
Write Interrupted by Read (BL=4, CL=3)
CLK
Command
Write READ
Write
READ
A0-9
Yi
Yj
Yk
Yl
A10
0
0
0
0
00
00
10
00
A11
BA0,1
DQM
DQ
Dai0
Qaj0 Qaj1
Dbk0 Dbk1
MITSUBISHI ELECTRIC
Qal0
22
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
[ Write Interrupted by Precharge ]
Burst write operation can be interrupted by precharge of the same bank . Random column access is allowed. Write recovery time (tWR) is required from the last data to PRE command.
Write Interrupted by Precharge (BL=4)
CLK
Command
Write
PRE
tWR
A0-9
Yi
A10
0
ACT
tRP
Xb
0
Xb
Xb
A11
BA0,1
00
00
00
DQM
Dai0
DQ
Dai1
Dai2
[ Write Interrupted by Burst Terminate ]
A burst terminate command TBST can be used to terminate a burst write operation. In this case,
the write recovery time is not required and the bank remains active (Please see the waveforms
below). The WRITE to TBST minimum interval is one CLK.
Write Interrupted by Burst Terminate(BL=4)
CLK
Command
WRITE
A0-9
Yi
A10
0
BA
0
TBST
DQMU/DQML
(DQM)
DQ
Dai0
Dai1
Dai2
MITSUBISHI ELECTRIC
23
SDRAM (Rev.1.3)
Mar'98
MITSUBISHI LSIs
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
AUTO REFRESH
Single cycle of auto-refresh is initiated with a REFA (/CS= /RAS= /CAS= L, /WE= /CKE= H) command.
The refresh address is generated internally. 4096 REFA cycles within 64ms refresh 64Mbit memory cells.
The auto-refresh is performed on 4 banks concurrently. Before performing an auto-refresh, all banks must
be in the idle state. Auto-refresh to auto-refresh interval is minimum tRC. Any command must not be
supplied to the device before tRC from the REFA command.
Auto-Refresh
CLK
/CS
NOP or DESELECT
/RAS
/CAS
/WE
CKE
minimum tRC
A0-11
BA0,1
Auto Refresh on All Banks
Auto Refresh on All Banks
MITSUBISHI ELECTRIC
24
SDRAM (Rev.1.3)
Mar'98
MITSUBISHI LSIs
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
SELF REFRESH
Self-refresh mode is entered by issuing a REFS command (/CS= /RAS= /CAS= L, /WE= H, CKE= L).
Once the self-refresh is initiated, it is maintained as long as CKE is kept low. During the self-refresh mode,
CKE is asynchronous and the only enabled input ,all other inputs including CLK are disabled and ignored,
so that power consumption due to synchronous inputs is saved. To exit the self-refresh, supplying stable
CLK inputs, asserting DESEL or NOP command and then asserting CKE (REFSX) for longer than tSRX.
After tRC from REFSX all banks are in the idle state and a new command can be issued, but DESEL or NOP
commands must be asserted till then.
Self-Refresh
CLK
Stable CLK
NOP
/CS
/RAS
/CAS
/WE
CKE
tSRX
new command
X
A0-11
00
BA0,1
Self Refresh Entry
Self Refresh Exit
MITSUBISHI ELECTRIC
minimum tRC
+1 CLOCK
for recovery
25
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
CLK SUSPEND
CKE controls the internal CLK at the following cycle. Figure below shows how CKE works. By negating
CKE, the next internal CLK is suspended. The purpose of CLK suspend is power down, output suspend or
input suspend. CKE is a synchronous input except during the self-refresh mode. CLK suspend can be performed either when the banks are active or idle. A command at the suspended cycle is ignored.
ext.CLK
CKE
int.CLK
Power Down by CKE
CLK
Standby Power Down
CKE
Command
PRE
NOP
NOP
NOP NOP
Active Power Down
CKE
Command
NOP NOP NOP
ACT
NOP
NOP
NOP NOP NOP
NOP NOP
DQ Suspend by CKE
CLK
CKE
Command
DQ
Write
D0
READ
D1
D2
D3
MITSUBISHI ELECTRIC
Q0
Q1
Q2
Q3
26
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
DQM CONTROL
DQMU/L is a dual function signal defined as the data mask for writes and the output disable for reads.
During writes, DQMU/L masks input data word by word. DQMU/L to write mask latency is 0.
During reads, DQMU/L forces output to Hi-Z word by word. DQMU/L to output Hi-Z latency is 2.
DQM Function
CLK
Command
Write
READ
DQMU/L
DQ
D0
D2
D3
masked by DQMU/L=H
MITSUBISHI ELECTRIC
Q0
Q1
Q3
disabled by DQMU/L=H
27
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Conditions
Ratings
Unit
Vdd
Supply Voltage
with respect to Vss
-0.5 ~ 4.6
V
VddQ
Supply Voltage for Output
with respect to VssQ
-0.5 ~ 4.6
V
VI
Input Voltage
with respect to Vss
-0.5 ~ Vdd+0.5
V
VO
Output Voltage
with respect to VssQ
-0.5 ~ VddQ+0.5
V
IO
Output Current
50
mA
Pd
Power Dissipation
1000
mW
Topr
Operating Temperature
0 ~ 70
°C
Tstg
Storage Temperature
-65 ~ 150
°C
Ta = 25 °C
RECOMMENDED OPERATING CONDITIONS
(Ta=0 ~ 70°C, unless otherwise noted)
Limits
Symbol
Parameter
Unit
Min.
Typ.
Max.
Vdd
Supply Voltage
3.0
3.3
3.6
V
Vss
Supply Voltage
0
0
0
V
VddQ
Supply Voltage for Output
3.0
3.3
3.6
V
VssQ
Supply Voltage for Output
0
0
0
V
VIH
High-Level Input Voltage all inputs
2.0
Vdd+0.3
V
VIL
Low-Level Input Voltage all inputs
-0.3
0.8
V
Note:*
VIH (max) = Vdd+2.0V AC for pulse width<=3ns acceptable.
VIL(min) = -2V AC for pulse width<=3ns acceptable.
CAPACITANCE
(Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3v, Vss = VssQ = 0v, unless otherwise noted)
Symbol
Parameter
Test Condition
min.
max.
Unit
CI(A)
Input Capacitance, address pin
VI=Vss
2.5
5
pF
CI(C)
Input Capacitance, control pin
f=1MHz
2.5
5
pF
CI(K)
Input Capacitance, CLK pin
Vi=25mVrms
2.5
4
pF
CI/O
Input Capacitance, I/O pin
4
6.5
pF
MITSUBISHI ELECTRIC
28
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
AVERAGE SUPPLY CURRENT from Vdd
(Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3v, Vss = VssQ = 0v, Output Open, unless otherwise noted)
Limits (max)
Symbol
Parameter
Test Conditions
Unit
-8A
-8
-10
Icc1s
operating current, single bank
tRC=min, tCLK=min, BL=1, CL=3
115
115
90
mA
Icc1d
operating current, dual bank
tRC=90ns, tCLK=min, BL=1, CL=3
140
125
125
mA
Icc2h
standby current, CKE=H
all banks idle, tCLK=min
25
22
22
mA
Icc2l
standby current, CKE=L
all banks idle, tCLK=min
2
2
2
mA
Icc3h
active standby current, CKE=H
all banks active, tCLK=min
55
55
45
mA
Icc3l
active standby current, CKE=L
all banks active, tCLK=min
5
5
2
mA
Icc4
burst current
all banks active, tCLK=min, BL=4,
CL=3
140
125
125
mA
Icc5
auto-refresh current
tRC=min, tCLK=min
150
150
115
mA
1
1
1
mA
Icc6
self-refresh current
CKE <0.2v
0.5
0.5
mA
-8A,-8,-10
-8L,-10L
AC OPERATING CONDITIONS AND CHARACTERISTICS
(Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3v, Vss = VssQ = 0v, unless otherwise noted)
Limits
Symbol
Parameter
Test Conditions
Unit
Min.
VOH (DC) High-Level Output Voltage (DC)
IOH=-2mA
VOL (DC)
Low-Level Output Voltage (DC)
IOL= 2mA
Off-state Output Current
Q floating VO=0 ~ VddQ
Input Current
VIH = 0 ~ VddQ+0.3V
IOZ
II
MITSUBISHI ELECTRIC
Max.
2.4
V
0.4
V
-5
5
µA
-5
5
µA
29
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
AC TIMING REQUIREMENTS
(Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3v, Vss = VssQ = 0v, unless otherwise noted)
Input Pulse Levels:
0.8V to 2.0V
Input Timing Measurement Level:
1.4V
Limits
Symbol Parameter
-8A
Min.
tCLK
-8
Max.
Unit
-10
Min.
Max.
Min.
note
Max.
CL=2
12
15
15
ns
CL=3
8
10
10
ns
CLK cycle time
tCH
CLK High pulse width
3
3
4
ns
1
tCL
CLK Low pulse width
3
3
4
ns
1
tT
Transition time of CLK
1
tIS
Input Setup time (all inputs)
2
2
3
ns
1
tIH
Input Hold time (all inputs)
1
1
1
ns
1
tRC
Row Cycle time
72
70
90
ns
tRCD
Row to Column Delay
20
20
30
ns
tRAS
Row Active time
48
tRP
Row Precharge time
20
20
30
ns
tWR
Write Recovery time
10
10
10
ns
tRRD
Act to Act Delay time
16
20
20
ns
tCCD
Col to Col Delay time
8
10
10
ns
tRSC
Mode Register Set
Cycle time
16
20
20
ns
tSRX
Self Refresh Exit time
8
10
10
ns
tREF
Refresh Interval time
Note:1
2
10
100K
1
10
50
1
100K
64
64
60
10
100K
64
ns
ns
2
ms
The timing requirements are assumed tT=1ns. If tT is longer than 1ns, (tT-1)ns should be
added to the parameter.
2 ACT commands are allowed within tRC.
CLK
1.4V
Signal
1.4V
MITSUBISHI ELECTRIC
Any AC timing is
referenced to the input
signal crossing through
1.4V.
30
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
SWITCHING CHARACTERISTICS
(Ta=0 ~ 70°C, Vdd = VddQ = 3.3 ± 0.3v, Vss = VssQ = 0v, unless otherwise notedsee note3)
Limits
Symbol Parameter
-8A
Min.
tAC
-8
Max.
Min.
-10
Max.
Min.
Unit
Max.
CL=2
8
9
9
ns
CL=3
6
6
8
ns
Access time from CLK
tOH
Output Hold time from
CLK
2.5
3
3
ns
tOLZ
Delay time, output low
impedance from CLK
0
0
0
ns
tOHZ
Delay time, output high
impedance from CLK
2.5
Note:3
6
3
6
3
8
ns
If tr(clock rising time) is longer than 1ns, (tT/2-0.5)ns should be added to the parameter.
Output Load Condition
VTT=1.4V
CLK
1.4V
50Ω
VREF =1.4V
DQ
1.4V
VOUT
50pF
Output Timing
Measurement
Reference Point
CLK
1.4V
DQ
1.4V
tAC
tOH
tOHZ
MITSUBISHI ELECTRIC
31
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Write (single bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
tWR
CKE
DQMU/L
A0-7
X
Y
A10
X
X
A8,9,11
X
X
BA0,1
0
0
D0
DQ
ACT#0
X
0
D0
WRITE#0
D0
0
D0
Y
0
D0
PRE#0
ACT#0
D0
D0
D0
WRITE#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
32
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Write (multi bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
tWR
tWR
CKE
DQMU/L
A0-7
X
X
A10
X
A8,9,11
BA0,1
Y
X
X
X
X
X
X
X
X
X
0
1
0
D0
DQ
ACT#0
Y
D0
WRITE#0
ACT#1
D0
D0
1
0
D1
D1
0
D1
PRE#0
WRITE#1
D1
1
2
Y
0
D0
ACT#0
D0
D0
D0
ACT#2 WRITE#0
PRE#1
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
33
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Read (single bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQMU/L
DQM read latency =2
A0-7
X
A10
X
X
A8,9,11
X
X
BA0,1
0
Y
X
0
0
0
Y
0
CL=3
Q0
DQ
ACT#0
READ#0
Q0
Q0
PRE#0
Q0
Q0
ACT#0
Q0
READ#0
READ to PRE ≥BL allows full data out
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
34
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Read (multiple bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
tRAS
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQMU/L
DQM read latency =2
A0-7
X
X
A10
X
A8,9,11
BA0,1
Y
Y
X
X
X
X
X
X
X
X
X
0
1
0
1
CL=3
ACT#0
READ#0
ACT#1
0
1
2
Q1
Q1
Q1
0
CL=3
Q0
DQ
0
Y
Q0
Q0
Q0
PRE#0
READ#1
Q1
ACT#0
PRE#1
Q0
READ#0
ACT#2
Italic parameter indicates minimum case
35
MITSUBISHI ELECTRIC
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Write (multi bank) with Auto-Precharge @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
/RAS
tRCD
tRCD
tRCD
/CAS
BL-1+ tWR + tRP
BL-1+ tWR + tRP
/WE
CKE
DQMU/L
A0-7
X
X
A10
X
X
X
X
A8,9,11
X
X
X
X
BA0,1
0
1
Y
0
D0
DQ
ACT#0
ACT#1
Y
X
1
D0
D0
WRITE#0 with
AutoPrecharge
D0
D1
D1
D1
Y
X
0
0
1
D1
D0
D0
ACT#0
WRITE#1 with
AutoPrecharge
Y
1
D0
WRITE#0
ACT#1
D0
D1
WRITE#1
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
36
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Burst Read (multiple bank) with Auto-Precharge @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
tRC
/CS
tRRD
tRRD
/RAS
tRCD
tRCD
tRCD
/CAS
BL+tRP
BL+tRP
/WE
CKE
DQMU/L
DQM read latency =2
A0-7
X
X
Y
Y
A10
X
X
X
X
A8,9,11
X
X
X
X
BA0,1
0
1
0
1
CL=3
ACT#0
ACT#1
Y
0
0
CL=3
Q0
DQ
X
READ#0 with
Auto-Precharge
Q0
Q0
X
Y
1
1
CL=3
Q0
Q1
Q1
ACT#0
READ#1 with
Auto-Precharge
Q1
Q1
Q0
Q0
READ#0
ACT#1
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
37
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Page Mode Burst Write (multi bank) @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
A0-7
X
X
A10
X
X
A8,9,11
X
X
BA0,1
0
1
Y
Y
Y
Y
0
0
1
0
D0
DQ
ACT#0
D0
WRITE#0
ACT#1
D0
D0
D0
D0
D0
D0
D1
D1
WRITE#0
D1
D1
D0
D0
D0
WRITE#0
WRITE#1
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
38
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Page Mode Burst Read (multi bank) @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
DQM read latency=2
A0-7
X
X
A10
X
X
A8,9,11
X
X
0
1
BA0,1
Y
Y
Y
Y
0
0
1
0
CL=3
CL=3
Q0
DQ
ACT#0
READ#0
ACT#1
Q0
Q0
Q0
CL=3
Q0
Q0
Q0
READ#0
Q0
Q1
Q1
Q1
Q1
READ#0
READ#1
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
39
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Write Interrupted by Write / Read @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
tCCD
/CAS
/WE
CKE
DQMU/L
A0-7
X
X
A10
X
X
A8,9,11
X
X
BA0,1
0
1
Y
Y
Y
Y
Y
0
0
0
1
0
CL=3
DQ
D0
D0
D0
D0
D0
D0
D1
D1
Q0
Q0
Q0
Q0
ACT#0
WRITE#0 WRITE#0 WRITE#0
READ#0
ACT#1
WRITE#1
Burst Write can be interrupted by Write or Read of any active bank.
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
40
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Read Interrupted by Read / Write @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
DQM read latency=2
A0-7
X
X
A10
X
X
A8,9,11
X
X
0
1
BA0,1
DQ
ACT#0
Y
Y
Y
Y
Y
Y
0
0
0
1
0
0
Q0
Q0
Q0
Q0
Q0
Q0
Q1
Q1
Q0
D0
D0
READ#0 READ#0 READ#0
READ#0
WRITE#0
ACT#1
READ#1
blank to prevent bus contention
Burst Read can be interrupted by Read or Write of any active bank.
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
41
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Write Interrupted by Precharge @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
A0-7
X
X
A10
X
X
X
A8,9,11
X
X
X
0
1
BA0,1
DQ
Y
Y
0
D0
D0
ACT#0
WRITE#0
ACT#1
D0
D0
X
1
0
D1
D1
1
1
1
D1
PRE#0
WRITE#1
PRE#1
Burst Write is not interrupted by
Precharge of the other bank.
Y
ACT#1
D1
D1
WRITE#1
Burst Write is interrupted by
Precharge of the same bank.
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
42
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Read Interrupted by Precharge @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRRD
tRP
/RAS
tRCD
tRCD
/CAS
/WE
CKE
DQMU/L
DQM read latency=2
A0-7
X
X
A10
X
X
X
A8,9,11
X
X
X
0
1
BA0,1
Y
Y
0
Q0
DQ
ACT#0
READ#0
ACT#1
X
1
0
1
Q0
Q0
Q0
1
Q1
PRE#0
READ#1
PRE#1
Burst Read is not interrupted
by Precharge of the other bank.
Y
1
Q1
ACT#1
READ#1
Burst Read is interrupted
by Precharge of the same bank.
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
43
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Mode Register Setting
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRSC
tRC
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
M
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
0
Y
0
D0
DQ
Auto-Ref (last of 8 cycles)
Mode
Register
Setting
ACT#0
D0
D0
D0
WRITE#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
44
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Auto-Refresh @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
tRC
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
Y
0
D0
DQ
D0
D0
Auto-Refresh
ACT#0
Before Auto-Refresh,
all banks must be idle state.
After tRC from Auto-Refresh,
all banks are idle state.
D0
WRITE#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
45
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Self-Refresh
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
CLK can be stopped
tRC
/CS
/RAS
/CAS
/WE
tSRX
CKE
CKE must be low to maintain Self-Refresh
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
DQ
Self-Refresh Entry
Self-Refresh Exit
Before Self-Refresh Entry,
all banks must be idle state.
ACT#0
After tRC from Self-Refresh Exit,
all banks are idle state.
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
46
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
DQM Write Mask @BL=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
Y
Y
Y
0
0
0
masked
D0
DQ
ACT#0
D0
WRITE#0
D0
D0
masked
D0
WRITE#0
D0
D0
WRITE#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
47
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
DQM Read Mask @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
DQM read latency=2
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
Y
Y
Y
0
0
0
masked
Q0
DQ
ACT#0
READ#0
Q0
Q0
Q0
masked
Q0
READ#0
Q0
Q0
READ#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
48
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Power Down
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
/CAS
/WE
Standby Power Down
Active Power Down
CKE
CKE latency=1
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
DQ
Precharge All
ACT#0
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
49
MITSUBISHI LSIs
SDRAM (Rev.1.3)
Mar'98
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
CLK Suspend @BL=4 CL=3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CLK
/CS
/RAS
tRCD
/CAS
/WE
CKE
CKE latency=1
CKE latency=1
DQMU/L
A0-7
X
A10
X
A8,9,11
X
BA0,1
0
Y
Y
0
0
D0
DQ
ACT#0
D0
D0
D0
Q0
WRITE#0
READ#0
CLK suspended
Q0
Q0
Q0
CLK suspended
Italic parameter indicates minimum case
MITSUBISHI ELECTRIC
50
SDRAM (Rev.1.3)
Mar'98
MITSUBISHI LSIs
M5M4V64S40ATP-8A,-8L,-8, -10L, -10
64M (4-BANK x 1048576-WORD x 16-BIT) Synchronous DRAM
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making
semiconductor products better and more reliable,but there is always the
possibility that trouble may occur with them. Trouble with semiconductors
consideration to safety when making your circuit designs,with appropriate
measures such as (i) placement of substitutive,auxiliary circuits,(ii) use of
non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1.These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the
customer's application;they do not convey any license under any
intellectual property rights,or any other rights,belonging to Mitsubishi
Electric Corporation or a third party.
2.Mitsubishi Electric Corporation assumes no responsibility for any damage,
or infringement of any third-party's rights,originating in the use of any
product data,diagrams,charts or circuit application examples contained in
these materials.
3.All information contained in these materials,including product data,
diagrams and charts,represent information on products at the time of
DQMU/L
publication of these materials,and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other
reasons. It is therefore recommended that customers contact Mitsubishi
Electric Corporation or an authorized Mitsubishi Semiconductor product
A0-7 distributor for the latest product information before purchasing a product
listed herein.
4.Mitsubishi Electric Corporation semiconductors are not designed or
A10 manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor when considering the use of a product contained herein
A8,9,11for special applications,such as apparatus or systems for transportation,
vehicular,medical,aerospace,nuclear,or undersea repeater use.
5.The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.
6.If these products or technologies are subject the Japanese export
control restrictions,they must be exported under a license from the
Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and
regulations of Japan and/or the country of destination is prohibited.
7.Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or
the products contained therein.
MITSUBISHI ELECTRIC
51