MOTOROLA MC33201P

Order this document by MC33201/D
The MC33201/2/4 family of operational amplifiers provide rail–to–rail
operation on both the input and output. The inputs can be driven as high as
200 mV beyond the supply rails without phase reversal on the outputs, and
the output can swing within 50 mV of each rail. This rail–to–rail operation
enables the user to make full use of the supply voltage range available. It is
designed to work at very low supply voltages (± 0.9 V) yet can operate with a
supply of up to +12 V and ground. Output current boosting techniques
provide a high output current capability while keeping the drain current of the
amplifier to a minimum. Also, the combination of low noise and distortion with
a high slew rate and drive capability make this an ideal amplifier for audio
applications.
• Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
• Input Voltage Range Includes both Supply Rails
•
•
•
•
•
•
•
•
LOW VOLTAGE
RAIL–TO–RAIL
OPERATIONAL AMPLIFIERS
8
NC 1
8
NC
2
7
VCC
3
6
Output
VEE 4
5
NC
Inputs
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
(Single, Top View)
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
Output 1 1
8
VCC
7
Output 2
8
High Output Current (ISC = 80 mA, Typ)
1
2
1
Inputs 1
Low Supply Current (ID = 0.9 mA, Typ)
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
600 Ω Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
3
6
Inputs 2
2
VEE 4
5
(Dual, Top View)
Offered in New TSSOP Package Including Standard SOIC and
DIP Packages
14
Operational
Amplifier Function
Operating
Temperature
Range
Device
MC33201D
MC33201P
TA= –40 ° to +105°C
14
1
1
ORDERING INFORMATION
Package
P SUFFIX
PLASTIC PACKAGE
CASE 646
SO–8
Plastic DIP
14
Si l
Single
MC33201VD
TA = –55 ° to
+125°C
MC33201VP
MC33202D
MC33202P
TA= –40 ° to +105°C
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
1
SO–8
Plastic DIP
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G
(TSSOP–14)
SO–8
Plastic DIP
D l
Dual
MC33202VD
TA = –55 ° to
+125°C
MC33202VP
MC33204D
MC33204DTB
SO–8
Plastic DIP
SO–14
TA= –40
40 ° to +105°C
105°C
MC33204P
TSSOP–14
Plastic DIP
Q d
Quad
MC33204VD
MC33204VDTB
MC33204VP
TA = –55
55 ° to
+125°C
+125
C
SO–14
TSSOP–14
Output 1 1
2
Inputs 1
1
4
3
13
12
VCC 4
11
5
10
Inputs 2
6
2
3
Output 2 7
Plastic DIP
9
8
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
14 Output 4
Rev 2
1
MC33201 MC33202 MC33204
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic
VCC = 2.0 V
VCC = 3.3 V
VCC = 5.0 V
Input Offset Voltage
VIO (max)
MC33201
MC33202
MC33204
± 8.0
±10
±12
± 8.0
±10
±12
± 6.0
± 8.0
±10
Output Voltage Swing
VOH (RL = 10 kΩ)
VOL (RL = 10 kΩ)
1.9
0.10
3.15
0.15
4.85
0.15
Power Supply Current
per Amplifier (ID)
1.125
1.125
1.125
Unit
mV
Vmin
Vmax
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+13
V
Input Differential Voltage Range
VIDR
(Note 1)
V
Common Mode Input Voltage Range (Note 2)
VCM
VCC + 0.5 V to
VEE – 0.5 V
V
Output Short Circuit Duration
ts
(Note 3)
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
– 65 to +150
°C
Maximum Power Dissipation
PD
(Note 3)
mW
Supply Voltage (VCC to VEE)
NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back
diodes. For additional differential input voltage range, use current limiting resistors in series
with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs
to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by
more than 500 mV.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded. (See Figure 2)
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Figure
Symbol
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C
MC33201: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C
MC33202: TA = – 55° to +125°C
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C
MC33204: TA = – 55° to +125°C
3
VIO
Input Offset Voltage Temperature Coefficient (RS = 50 Ω)
TA = – 40° to +105°C
TA = – 55° to +125°C
4
Characteristic
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
5, 6
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
–
Common Mode Input Voltage Range
–
2
Min
Typ
Max
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
6.0
9.0
13
8.0
11
14
10
13
17
–
–
2.0
2.0
–
–
–
–
–
80
100
–
200
250
500
–
–
–
5.0
10
–
50
100
200
VEE
–
VCC
mV
∆VIO/∆T
µV/°C
IIB
nA
IIO
VICR
Unit
nA
V
MOTOROLA ANALOG IC DEVICE DATA
MC33201 MC33202 MC33204
DC ELECTRICAL CHARACTERISTICS (continued) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 kΩ
RL = 600 Ω
Output Voltage Swing (VID = ± 0.2 V)
RL = 10 kΩ
RL = 10 kΩ
RL = 600 Ω
RL = 600 Ω
Figure
Symbol
Min
Typ
Max
7
AVOL
50
25
300
250
–
–
VOH
VOL
VOH
VOL
4.85
–
4.75
–
4.95
0.05
4.85
0.15
–
0.15
–
0.25
60
90
–
500
25
–
50
80
–
–
–
0.9
0.9
1.125
1.125
Unit
kV/V
8, 9, 10
V
Common Mode Rejection (Vin = 0 V to 5.0 V)
11
CMR
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd
12
PSRR
Output Short Circuit Current (Source and Sink)
13, 14
ISC
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C
TA = – 55° to +125°C
15
ID
dB
µV/V
mA
mA
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Slew Rate
(VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 kΩ, AV = +1.0)
Figure
Symbol
16, 26
SR
Min
Typ
Max
0.5
1.0
–
Unit
V/µs
Gain Bandwidth Product (f = 100 kHz)
17
GBW
–
2.2
–
MHz
Gain Margin (RL = 600 Ω, CL = 0 pF)
20, 21, 22
AM
–
12
–
dB
Phase Margin (RL = 600 Ω, CL = 0 pF)
20, 21, 22
OM
–
65
–
Deg
23
CS
–
90
–
dB
BWP
–
28
–
kHz
–
–
0.002
0.008
–
–
–
100
–
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100)
Power Bandwidth (VO = 4.0 Vpp, RL = 600 Ω, THD ≤ 1 %)
Total Harmonic Distortion (RL = 600 Ω, VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
24
THD
%
ZO
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
Ω
Differential Input Resistance (VCM = 0 V)
Rin
–
200
–
kΩ
Differential Input Capacitance (VCM = 0 V)
Cin
–
8.0
–
pF
–
–
25
20
–
–
–
–
0.8
0.2
–
–
Equivalent Input Noise Voltage (RS = 100 Ω)
f = 10 Hz
f = 1.0 kHz
25
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25
MOTOROLA ANALOG IC DEVICE DATA
en
in
nV/
Hz
pA/
Hz
3
MC33201 MC33202 MC33204
Figure 1. Circuit Schematic
(Each Amplifier)
VCC
VCC
VEE
VCC
Vin –
Vout
VCC
Vin +
VEE
This device contains 70 active transistors (each amplifier).
4
MOTOROLA ANALOG IC DEVICE DATA
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage Distribution
2500
40
PERCENTAGE OF AMPLIFIERS (%)
PD(max) , MAXIMUM POWER DISSIPATION (mW)
MC33201 MC33202 MC33204
8 and 14 Pin DIP Pkg
2000
TSSOP–14 Pkg
1500
SO–14 Pkg
1000
SO–8 Pkg
500
0
– 55 – 40 – 25
0
25
50
85
TA, AMBIENT TEMPERATURE (°C)
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = + 5.0 V
VEE = Gnd
TA = 25°C
DIP Package
35
30
25
20
15
10
5.0
0
–10 – 8.0 – 6.0 – 4.0 – 2.0
0
2.0 4.0 6.0
VIO, INPUT OFFSET VOLTAGE (mV)
125
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
40
30
I IB , INPUT BIAS CURRENT (nA)
PERCENTAGE OF AMPLIFIERS (%)
200
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = + 5.0 V
VEE = Gnd
TA = 25°C
DIP Package
20
10
0
– 50 – 40 – 30 – 20
–10
0
10
20
30
40
VCC = + 5.0 V
VEE = Gnd
160
120
VCM = 0 V to 0.5 V
80
VCM > 1.0 V
40
0
– 55 – 40 – 25
50
TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
A VOL , OPEN LOOP VOLTAGE GAIN (kV/V)
100
50
0
– 50
–100
VCC = 12 V
VEE = Gnd
TA = 25°C
– 200
0
2.0
4.0
6.0
8.0
10
VCM, INPUT COMMON MODE VOLTAGE (V)
MOTOROLA ANALOG IC DEVICE DATA
25
70
85
125
Figure 7. Open Loop Voltage Gain versus
Temperature
150
–150
0
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Input Bias Current
versus Common Mode Voltage
I IB , INPUT BIAS CURRENT (nA)
10
Figure 5. Input Bias Current
versus Temperature
50
– 250
8.0
12
300
260
220
180
140
VCC = + 5.0 V
VEE = Gnd
RL = 600 Ω
∆VO = 0.5 V to 4.5 V
100
– 55 – 40 – 25
0
25
70
85
TA, AMBIENT TEMPERATURE (°C)
105
125
5
MC33201 MC33202 MC33204
Figure 8. Output Voltage Swing
versus Supply Voltage
RL = 600 Ω
TA = 25°C
10
8.0
6.0
4.0
2.0
0
±1.0
VCC
VSAT, OUTPUT SATURATION VOLTAGE (V)
VO, OUTPUT VOLTAGE (Vpp )
12
Figure 9. Output Saturation Voltage
versus Load Current
± 2.0
± 3.0
± 4.0
± 5.0
VCC,VEE SUPPLY VOLTAGE (V)
TA = – 55°C
TA = 125°C
VCC – 0.4 V
TA = – 55°C
CMR, COMMON MODE REJECTION (dB)
VCC = + 6.0 V
VEE = – 6.0 V
3.0 RL = 600 Ω
AV = +1.0
TA = 25°C
PSR, POWER SUPPLY REJECTION (dB)
VEE
20
15
80
60
40
120
100
PSR+
80
60
PSR–
40
VCC = + 6.0 V
VEE = – 6.0 V
TA = – 55° to +125°C
0
100 k
1.0 M
VCC = + 6.0 V
VEE = – 6.0 V
TA = – 55° to +125°C
20
1.0 M
Figure 12. Power Supply Rejection
versus Frequency
6
10
IL, LOAD CURRENT (mA)
100
0
10 k
100 k
f, FREQUENCY (Hz)
1.0 k
10 k
f, FREQUENCY (Hz)
5.0
0
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
VO, OUTPUT VOLTAGE (Vpp )
6.0
100
VEE + 0.2 V
Figure 11. Common Mode Rejection
versus Frequency
9.0
10
TA = 25°C
TA = 125°C
± 6.0
12
20
VEE + 0.4 V
VCC = + 5.0 V
VEE = – 5.0 V
Figure 10. Output Voltage
versus Frequency
0
1.0 k
VCC – 0.2 V
TA = 25°C
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Figure 13. Output Short Circuit Current
versus Output Voltage
100
Source
80
60
Sink
40
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
20
0
0
1.0
2.0
3.0
4.0
5.0
6.0
Vout, OUTPUT VOLTAGE (V)
MOTOROLA ANALOG IC DEVICE DATA
MC33201 MC33202 MC33204
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
I CC , SUPPLY CURRENT PER AMPLIFIER (mA)
150
125
VCC = + 5.0 V
VEE = Gnd
100
Source
75
Sink
50
25
0
– 55 – 40 – 25
0
25
70 85
TA, AMBIENT TEMPERATURE (°C)
105
125
2.0
1.6
TA = 125°C
1.2
TA = 25°C
0.8
TA = – 55°C
0.4
0
±0
Figure 16. Slew Rate
versus Temperature
–Slew Rate
0.5
25
70
85
105
0
– 55 – 40 – 25
0
25
70
85
105
Figure 18. Voltage Gain and Phase
versus Frequency
Figure 19. Voltage Gain and Phase
versus Frequency
40
VS = ± 6.0 V
TA = 25°C
RL = 600 Ω
80
120
2
A2
B
1
B
10
A
1.0
125
30
– 30
10 k
2.0
TA, AMBIENT TEMPERATURE (°C)
50
–10
VCC = + 2.5 V
VEE = – 2.5 V
f = 100 kHz
TA, AMBIENT TEMPERATURE (°C)
70
1A – Phase, CL = 0 pF
1B – Gain, CL = 0 pF
2A – Phase, CL = 300 pF
2B – Gain, CL = 300 pF
100 k
± 6.0
3.0
1.0 M
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
1
A
160
200
240
10 M
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
, OPEN LOOP VOLTAGE GAIN (dB)
VOL
0
4.0
GBW, GAIN BANDWIDTH PRODUCT (MHz)
+Slew Rate
1.0
O , EXCESS PHASE (DEGREES)
SR, SLEW RATE (V/µ s)
VCC = + 2.5 V
VEE = – 2.5 V
VO = ± 2.0 V
0
– 55 – 40 – 25
± 2.0
± 3.0
± 4.0
± 5.0
VCC, VEE, SUPPLY VOLTAGE (V)
Figure 17. Gain Bandwidth Product
versus Temperature
2.0
1.5
±1.0
70
30
– 30
10 k
1A – Phase, VS = ± 6.0 V
1B – Gain, VS = ± 6.0 V
2A – Phase, VS = ± 1.0 V
2B – Gain, VS = ± 1.0 V
100 k
2
B
1.0 M
80
1
A
2
A
10
–10
40
CL = 0 pF
TA = 25°C
RL = 600 Ω
50
1
B
125
120
160
200
240
10 M
f, FREQUENCY (Hz)
7
O , EXCESS PHASE (DEGREES)
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 14. Output Short Circuit Current
versus Temperature
MC33201 MC33202 MC33204
Figure 20. Gain and Phase Margin
versus Temperature
75
50
50
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600 Ω
CL = 100 pF
40
30
40
30
20
20
10
10
Gain Margin
0
– 55 – 40 – 25
0
25
70
85
105
O M , PHASE MARGIN (DEGREES)
60
A , GAIN MARGIN (dB)
M
O M , PHASE MARGIN (DEGREES)
60
60
60
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
45
30
15
0
0
125
10
100
60
Gain Margin
50
14
12
10
40
8.0
30
6.0
20
4.0
10
2.0
0
10
AV = 100
120
90
AV = 10
60
30
VCC = + 6.0 V
VEE = – 6.0 V
VO = 8.0 Vpp
TA = 25°C
0
100
1.0 k
CL, CAPACITIVE LOAD (pF)
VEE = – 5.0 V
RL = 600 Ω
AV = 1000
0.1
0.01
AV = 100
AV = 10
AV = 1.0
0.001
10
100
1.0 k
f, FREQUENCY (Hz)
8
10 k
100 k
en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
THD, TOTAL HARMONIC DISTORTION (%)
1.0
VCC = + 5.0 V
TA = 25°C
VO = 2.0 Vpp
10 k
f, FREQUENCY (Hz)
Figure 24. Total Harmonic Distortion
versus Frequency
10
0
100 k
150
0
1.0 k
100
10 k
Figure 23. Channel Separation
versus Frequency
A , GAIN MARGIN (dB)
M
CS, CHANNEL SEPARATION (dB)
O M , PHASE MARGIN (DEGREES)
Phase Margin
1.0 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
16
70
15
Gain Margin
Figure 22. Gain and Phase Margin
versus Capacitive Load
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600 Ω
AV = 100
TA = 25°C
45
30
TA, AMBIENT TEMPERATURE (°C)
80
75
Phase Margin
A , GAIN MARGIN (dB)
M
70
Phase Margin
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
50
5.0
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
40
30
4.0
3.0
Noise Voltage
20
10
2.0
1.0
Noise Current
0
10
100
1.0 k
10 k
0
100 k
i n , INPUT REFERRED NOISE CURRENT (pA/ Hz)
70
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
MC33201 MC33202 MC33204
General Information
Circuit Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail–to–rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide common
mode input voltage range even with low supply voltages.
Operation is guaranteed over an extended temperature
range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and
ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Rail–to–rail performance is achieved at the input of the
amplifiers by using parallel NPN–PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP stage is on. When the inputs are more than 800
mV greater than VEE, the NPN stage is on. This switching of
input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross–coupling
techniques have been used to keep this change to a
minimum.
In addition to its rail–to–rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 Ω loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600 Ω
CL = 100 pF
TA = 25°C
Figure 27. Small Signal Transient Response
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600 Ω
CL = 100 pF
TA = 25°C
V , OUTPUT VOLTAGE (50 mV/DIV)
O
V , OUTPUT VOLTAGE (2.0 mV/DIV)
O
Figure 26. Noninverting Amplifier Slew Rate
t, TIME (5.0 µs/DIV)
t, TIME (10 µs/DIV)
V , OUTPUT VOLTAGE (2.0 V/DIV)
O
Figure 28. Large Signal Transient Response
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600 Ω
CL = 100 pF
AV = 1.0
TA = 25°C
t, TIME (10 µs/DIV)
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
9
MC33201 MC33202 MC33204
OUTLINE DIMENSIONS
8
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
L
C
J
–T–
N
SEATING
PLANE
D
M
K
0.13 (0.005)
M
T A
B
M
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
8
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
0.25
H
E
M
B
M
1
4
e
h
A
C
X 45 _
SEATING
PLANE
DIM
A
A1
B
C
D
E
e
H
h
L
q
0.10
A1
B
0.25
M
C B
14
8
1
7
S
A
L
S
q
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
B
A
F
L
C
J
N
H
10
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
B
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
DIM
A
B
C
D
F
G
H
J
K
L
M
N
–A–
NOTE 2
G
D
SEATING
PLANE
K
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
MOTOROLA ANALOG IC DEVICE DATA
MC33201 MC33202 MC33204
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
–A–
14
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
B
M
M
R X 45 _
C
F
–T–
0.25 (0.010)
M
T B
S
A
S
0.10 (0.004)
M
T U
V
S
N
14
L/2
0.25 (0.010)
8
M
B
–U–
L
PIN 1
IDENT.
0.15 (0.006) T U
N
F
7
1
S
DETAIL E
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
A
–V–
K1
J J1
SECTION N–N
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
D
G
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
NOTES:
1 DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2 CONTROLLING DIMENSION: MILLIMETER.
3 DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4 DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5 DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6 TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7 DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
S
S
2X
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G–01
(TSSOP–14)
ISSUE O
14X K REF
0.15 (0.006) T U
J
M
K
D 14 PL
SEATING
PLANE
DIM
A
B
C
D
F
G
J
K
M
P
R
H
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
–––
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
–––
0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.020
0.024
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MOTOROLA ANALOG IC DEVICE
DATA
◊
11
MC33201/D
*MC33201/D*