MOTOROLA MC74HC4316N

SEMICONDUCTOR TECHNICAL DATA
# $"
#"% #"%
$"
" "
$
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
16
#!
1
High–Performance Silicon–Gate CMOS
The MC74HC4316 utilizes silicon–gate CMOS technology to achieve fast
propagation delays, low ON resistances, and low OFF–channel leakage
current. This bilateral switch/multiplexer/demultiplexer controls analog and
digital voltages that may vary across the full analog power–supply range
(from VCC to VEE).
The HC4316 is similar in function to the metal–gate CMOS MC14016 and
MC14066, and to the High–Speed CMOS HC4016 and HC4066. Each
device has four independent switches. The device control and Enable inputs
are compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs. The device has been designed so that the
ON resistances (RON) are much more linear over input voltage than RON of
metal–gate CMOS analog switches. Logic–level translators are provided so
that the On/Off Control and Enable logic–level voltages need only be VCC
and GND, while the switch is passing signals ranging between VCC and VEE.
When the Enable pin (active–low) is high, all four analog switches are turned
off.
D SUFFIX
SOIC PACKAGE
CASE 751B–05
16
1
ORDERING INFORMATION
MC74HCXXXXN
MC74HCXXXXD
Plastic
SOIC
PIN ASSIGNMENT
•
•
•
•
•
•
Logic–Level Translator for On/Off Control and Enable Inputs
Fast Switching and Propagation Speeds
High ON/OFF Output Voltage Ratio
Diode Protection on All Inputs/Outputs
Analog Power–Supply Voltage Range (VCC – VEE) = 2.0 to 12.0 Volts
Digital (Control) Power–Supply Voltage Range (VCC – GND) = 2.0 to
6.0 Volts, Independent of VEE
• Improved Linearity of ON Resistance
• Chip Complexity: 66 FETs or 16.5 Equivalent Gates
XA
1
16
YA
2
15
YB
3
14
XB
B ON/OFF
CONTROL
C ON/OFF
CONTROL
ENABLE
4
13
VCC
A ON/OFF
CONTROL
D ON/OFF
CONTROL
XD
5
12
YD
6
11
YC
7
10
XC
GND
8
9
VEE
FUNCTION TABLE
LOGIC DIAGRAM
XA
A ON/OFF CONTROL
XB
B ON/OFF CONTROL
XC
C ON/OFF CONTROL
XD
D ON/OFF CONTROL
ENABLE
1
15
7
3
L
L
H
X = don’t care
YB
ANALOG
OUTPUTS/INPUTS
ANALOG
SWITCH
11
ANALOG
SWITCH
12
YC
PIN 16 = VCC
PIN 8 = GND
PIN 9 = VEE
GND ≥ VEE
LEVEL
TRANSLATOR
13
14
ANALOG
SWITCH
YA
LEVEL
TRANSLATOR
10
6
2
LEVEL
TRANSLATOR
4
5
ANALOG
SWITCH
Inputs
On/Off
Enable
Control
YD
LEVEL
TRANSLATOR
ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD
10/95
 Motorola, Inc. 1995
1
REV 6
H
L
X
State of
Analog
Switch
On
Off
Off
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC74HC4316
MAXIMUM RATINGS*
Symbol
Parameter
Unit
– 0.5 to + 7.0
– 0.5 to + 14.0
V
VCC
Positive DC Supply Voltage
VEE
Negative DC Supply Voltage (Ref. to GND)
– 7.0 to + 0.5
V
VIS
Analog Input Voltage
VEE – 0.5
to VCC + 0.5
V
Vin
DC Input Voltage (Ref. to GND)
– 1.5 to VCC + 1.5
V
± 25
mA
750
500
mW
– 65 to + 150
_C
I
DC Current Into or Out of Any Pin
PD
Power Dissipation in Still Air
Tstg
Storage Temperature
TL
(Ref. to GND)
(Ref. to VEE)
Value
Plastic DIP†
SOIC Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
v
_C
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
v
260
* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
VCC
Positive DC Supply Voltage (Ref. to GND)
2.0
6.0
V
VEE
Negative DC Supply Voltage (Ref. to GND)
– 6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Ref. to GND)
GND
VCC
V
—
1.2
V
– 55
+ 125
_C
0
0
0
1000
500
400
ns
VIO*
Static or Dynamic Voltage Across Switch
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Control or Enable Inputs)
(Figure 10)
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
* For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input components.
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE = GND Except Where Noted
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
– 55 to
25_C
85_C
125_C
Unit
VIH
Minimum High–Level Voltage,
Control or Enable Inputs
Ron = Per Spec
2.0
4.5
6.0
1.5
3.15
4.2
1.5
3.15
4.2
1.5
3.15
4.2
V
VIL
Maximum Low–Level Voltage,
Control or Enable Inputs
Ron = Per Spec
2.0
4.5
6.0
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V
Iin
Maximum Input Leakage
Current, Control or Enable
Inputs
Vin = VCC or GND
VEE = – 6.0 V
6.0
± 0.1
± 1.0
± 1.0
µA
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
VIO = 0 V
6.0
6.0
2
8
20
80
40
160
ICC
µA
VEE = GND
VEE = – 6.0
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
MOTOROLA
2
High–Speed CMOS Logic Data
DL129 — Rev 6
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
v
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC74HC4316
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to VEE)
Guaranteed Limit
Symbol
Ron
Parameter
VCC
V
VEE
V
– 55 to
25_C
85_C
125_C
Vin = VIH
VIS = VCC to VEE
IS
2.0 mA (Figures 1, 2)
2.0*
45
4.5
6.0
0.0
0.0
– 4.5
– 6.0
—
210
95
75
—
230
105
85
—
250
110
90
Vin = VIH
VIS = VCC or VEE (Endpoints)
IS
2.0 mA (Figures 1, 2)
2.0
4.5
4.5
6.0
0.0
0.0
– 4.5
– 6.0
—
100
80
70
—
110
90
80
—
130
100
90
Test Conditions
Maximum “ON” Resistance
Unit
Ω
∆Ron
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIH
VIS = 1/2 (VCC – VEE)
IS
2.0 mA
2.0
4.5
4.5
6.0
0.0
0.0
– 4.5
– 6.0
—
20
15
10
—
30
25
20
—
40
30
25
Ω
Ioff
Maximum Off–Channel Leakage
Current, Any One Channel
Vin = VIL
VIO = VCC or VEE
Switch Off (Figure 3)
6.0
– 6.0
0.1
0.5
1.0
µA
Ion
Maximum On–Channel Leakage
Current, Any One Channel
Vin = VIH
VIS = VCC or VEE
(Figure 4)
6.0
– 6.0
0.1
0.5
1.0
µA
* At supply voltage (V CC – V EE) approaching 2 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage
operation, it is recommended that these devices only be used to control digital signals.
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Control or Enable tr = tf = 6 ns, VEE = GND)
Guaranteed Limit
Symbol
Parameter
VCC
V
– 55 to
25_C
85_C
125_C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figures 8 and 9)
2.0
4.5
6.0
50
10
10
75
15
13
90
18
15
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Control or Enable to Analog Output
(Figures 10 and 11)
2.0
4.5
6.0
250
50
43
312
63
54
375
75
64
ns
tPZL,
tPZH
Maximum Propagation Delay, Control or Enable to Analog Output
(Figures 10 and 11)
2.0
4.5
6.0
185
53
45
220
66
56
265
75
68
ns
Maximum Capacitance
—
10
10
10
pF
—
—
35
1.0
35
1.0
35
1.0
C
ON/OFF Control
and Enable Inputs
Control Input = GND
Analog I/O
Feedthrough
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
Power Dissipation Capacitance (Per Switch) (Figure 13)*
15
pF
* Used to determine the no–load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC . For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
High–Speed CMOS Logic Data
DL129 — Rev 6
3
MOTOROLA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC74HC4316
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
VCC
V
VEE
V
Limit*
25_C
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter
Reads – 3 dB
RL = 50 Ω, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
150
160
160
MHz
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 50
– 50
– 50
dB
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 40
– 40
– 40
Vin
1 MHz Square Wave (tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
RL = 600 Ω, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
60
130
200
RL = 10 kΩ, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
30
65
100
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 70
– 70
– 70
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 80
– 80
– 80
Symbol
Parameter
Test Conditions
BW
Maximum On–Channel Bandwidth or
Minimum Frequency Response
(Figure 5)
Off–Channel Feedthrough Isolation
(Figure 6)
—
—
—
THD
Feedthrough Noise, Control to
Switch
(Figure 7)
Crosstalk Between Any Two
Switches
(Figure 12)
Total Harmonic Distortion
(Figure 14)
fin = 1 kHz, RL = 10 kΩ, CL = 50 pF
THD = THDMeasured – THDSource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
Unit
mVPP
dB
%
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
0.10
0.06
0.04
* Limits not tested. Determined by design and verified by qualification.
MOTOROLA
4
High–Speed CMOS Logic Data
DL129 — Rev 6
MC74HC4316
300
3000
2500
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
125°C
2000
1500
25°C
1000
– 55°C
500
0
0
250
200
125°C
150
25°C
100
– 55°C
50
0
0.25 0.50 0.75 1.00 1.25
1.5 1.75 2.00
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1a. Typical On Resistance,
VCC – VEE = 2.0 V
Figure 1b. Typical On Resistance,
VCC – VEE = 4.5 V
160
120
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
140
125°C
120
25°C
100
80
– 55°C
60
40
20
0
0
0.5
1.0 1.5 2.0
2.5
3.0
3.5 4.0
4.5 5.0
5.5
100
80
125°C
60
25°C
40
20
0
0
6.0
– 55°C
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1c. Typical On Resistance,
VCC – VEE = 6.0 V
Figure 1d. Typical On Resistance,
VCC – VEE = 9.0 V
80
9.0
PLOTTER
70
Ron , ON RESISTANCE (OHMS)
4.5
125°C
60
PROGRAMMABLE
POWER
SUPPLY
25°C
50
40
–
DC ANALYZER
+
VCC
– 55°C
30
MINI COMPUTER
DEVICE
UNDER TEST
20
ANALOG IN
10
0
0
1.0
2.0 3.0 4.0
5.0
6.0 7.0 8.0
9.0 10.0 11.0 12.0
GND
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1e. Typical On Resistance,
VCC – VEE = 12.0 V
High–Speed CMOS Logic Data
DL129 — Rev 6
COMMON OUT
VEE
Figure 2. On Resistance Test Set–Up
5
MOTOROLA
MC74HC4316
VCC
VCC
16
VEE
VCC
16
A
A
VCC
OFF
VCC
N/C
ON
O/I
VEE
VIL
VIH
7
8
9
SELECTED
CONTROL
INPUT
7
8
9
SELECTED
CONTROL
INPUT
VEE
VEE
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
Figure 4. Maximum On Channel Leakage Current,
Test Set–Up
VIS
VCC
16
fin
VCC
RL
VCC
16
TO dB
METER
ON
0.1 µF
TO dB
METER
OFF
0.1 µF
CL*
RL
7
8
9
fin
VCC
RL
RL
7
8
9
SELECTED
CONTROL
INPUT
SELECTED
CONTROL
INPUT
VEE
VEE
*Includes all probe and jig capacitance.
*Includes all probe and jig capacitance.
Figure 5. Maximum On–Channel Bandwidth
Test Set–Up
CL*
Figure 6. Off–Channel Feedthrough Isolation,
Test Set–Up
VCC
16
TEST
POINT
ON/OFF
RL
7
8
9
VEE
RL
VCC
CL*
ANALOG IN
SELECTED
CONTROL
INPUT
50%
GND
tPLH
CONTROL
ANALOG OUT
tPHL
50%
*Includes all probe and jig capacitance.
Figure 7. Feedthrough Noise, Control to Analog Out,
Test Set–Up
MOTOROLA
Figure 8. Propagation Delays, Analog In to
Analog Out
6
High–Speed CMOS Logic Data
DL129 — Rev 6
MC74HC4316
VCC
16
ANALOG I/O
tr
ANALOG O/I
ON
tf
ENABLE
TEST
POINT
VCC
50%
CONTROL
50 pF*
GND
tPLZ
tPZL
7
8
9
SELECTED
CONTROL
INPUT
VCC
HIGH
IMPEDANCE
50%
ANALOG
OUT
tPZH
tPHZ
10%
VOL
90%
VOH
50%
HIGH
IMPEDANCE
*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set–Up
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
VIS
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
1
2
fin
VCC
VCC
RL
ON
CL*
TEST
POINT
ON/OFF
2
16
0.1 µF
1 kΩ
16
1
VCC
RL
ANALOG I/O
50 pF*
TEST
POINT
OFF
CONTROL
OR
ENABLE
7
8
9
8
9
VEE
*Includes all probe and jig capacitance.
RL
CL*
VCC
SELECTED
CONTROL
INPUT
*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Set–Up
Figure 12. Crosstalk Between Any Two Switches,
Test Set–Up (Adjacent Channels Used)
VCC
A
VIS
VCC
16
N/C
ON/OFF
10 µF
N/C
VOS
16
fin
ON
RL
7
8
9
VEE
SELECTED
CONTROL
INPUT
7
8
9
VEE
CONTROL
SELECTED
CONTROL
INPUT
CL*
TO
DISTORTION
METER
VCC
*Includes all probe and jig capacitance.
Figure 13. Power Dissipation Capacitance
Test Set–Up
High–Speed CMOS Logic Data
DL129 — Rev 6
Figure 14. Total Harmonic Distortion, Test Set–Up
7
MOTOROLA
MC74HC4316
0
– 10
FUNDAMENTAL FREQUENCY
– 20
– 30
dBm
– 40
– 50
DEVICE
– 60
SOURCE
– 70
– 80
– 90
– 100
1.0
2.0
3.0
FREQUENCY (kHz)
Figure 15. Plot, Harmonic Distortion
below, the difference between VCC and VEE is twelve volts.
Therefore, using the configuration in Figure 16, a maximum
analog signal of twelve volts peak–to–peak can be controlled.
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external diodes (Dx) are
recommended as shown in Figure 17. These diodes should
be small signal, fast turn–on types able to absorb the maximum anticipated current surges during clipping. An alternate
method would be to replace the Dx diodes with MOsorbs
(Motorola high current surge protectors). MOsorbs are fast
turn–on devices ideally suited for precise dc protection with
no inherent wear out mechanism.
APPLICATION INFORMATION
The Enable and Control pins should be at VCC or GND
logic levels, VCC being recognized as logic high and GND
being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to VCC or
VEE through a low value resistor. This minimizes crosstalk
and feedthrough noise that may be picked up by the unused
I/O pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In the example
VCC
VCC = 6 V
16
+6V
ANALOG I/O
ON
ANALOG O/I
+6V
SELECTED
CONTROL
INPUT
VEE
8
16
Dx
SELECTED
CONTROL
INPUT
Dx
Dx
+6V
ON
–6 V
–6 V
VCC
VCC
Dx
VEE
ENABLE CONTROL
INPUTS
(VCC OR GND)
VEE
VEE
ENABLE CONTROL
INPUTS
(VCC OR GND)
–6 V
Figure 16.
MOTOROLA
Figure 17. Transient Suppressor Application
8
High–Speed CMOS Logic Data
DL129 — Rev 6
MC74HC4316
VCC = 5 V
+5 V
16
ANALOG
SIGNALS
16
ANALOG
SIGNALS
ANALOG
SIGNALS
ANALOG
SIGNALS
R* R* R* R* R*
HC4316
7
5
6
14
15
TTL
HCT
BUFFER
VEE = 0
TO – 6 V
VEE = 0
TO – 6 V
5
LSTTL/
NMOS
ENABLE
AND
CONTROL 9
INPUTS
8
HC4016
6
CONTROL
INPUTS 9
14
15
7
R* = 2 TO 10 kΩ
a. Using Pull–Up Resistors
b. Using HCT Buffer
Figure 18. LSTTL/NMOS to HCMOS Interface
VCC = 12 V
R1
12 V
POWER
SUPPLY
GND = 6 V
R2
VEE = 0 V
R1 = R2
VCC
12 VPP
ANALOG
INPUT
SIGNAL
R3
C
1 OF 4
SWITCHES
ANALOG
OUTPUT
SIGNAL
0
R4
VEE
12 V
R1 = R2
R3 = R4
Figure 19. Switching a 0–to–12 V Signal Using a
Single Power Supply (GND ≠ 0 V)
CHANNEL 4
1 OF 4
SWITCHES
CHANNEL 3
1 OF 4
SWITCHES
CHANNEL 2
1 OF 4
SWITCHES
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
–
INPUT
1 OF 4
SWITCHES
+
OUTPUT
LF356 OR
EQUIVALENT
0.01 µF
1
2
3 4
CONTROL INPUTS
Figure 20. 4–Input Multiplexer
High–Speed CMOS Logic Data
DL129 — Rev 6
Figure 21. Sample/Hold Amplifier
9
MOTOROLA
MC74HC4316
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
–A
–
16
9
1
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
F
C
DIM
A
B
C
D
F
G
H
J
K
L
M
S
L
S
–T
–
SEATING
PLANE
K
H
D 16 PL
0.25 (0.010)
M
M
J
G
T A
M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
–A
–
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B
–
1
P 8 PL
0.25 (0.010)
8
M
B
M
G
K
F
R X 45°
C
–T
SEATING
–
PLANE
J
M
D 16 PL
0.25 (0.010)
M
T
B
S
A
S
INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
0.740 0.770 18.80 19.55
6.35
0.250 0.270
6.85
3.69
0.145 0.175
4.44
0.39
0.015 0.021
0.53
1.02
0.040 0.070
1.77
0.100 BSC
2.54 BSC
0.050 BSC
1.27 BSC
0.21
0.008 0.015
0.38
2.80
0.110 0.130
3.30
7.50
0.295 0.305
7.74
0°
0°
10°
10°
0.020 0.040
0.51
1.01
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80 10.00
4.00
3.80
1.75
1.35
0.49
0.35
1.25
0.40
1.27 BSC
0.25
0.19
0.25
0.10
7°
0°
6.20
5.80
0.50
0.25
INCHES
MIN
MAX
0.386 0.393
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0°
7°
0.229 0.244
0.010 0.019
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] –TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MOTOROLA
◊
CODELINE
10
*MC74HC4316/D*
MC74HC4316/D
High–Speed CMOS Logic Data
DL129 — Rev 6