ONSEMI TL064

Order this document by TL062/D
These JFET input operational amplifiers are designed for low power
applications. They feature high input impedance, low input bias current and
low input offset current. Advanced design techniques allow for higher slew
rates, gain bandwidth products and output swing.
The commercial and vehicular devices are available in Plastic dual in–line
and SOIC packages.
• Low Supply Current: 200 µA/Amplifier
•
•
•
•
•
•
LOW POWER JFET INPUT
OPERATIONAL AMPLIFIERS
SEMICONDUCTOR
TECHNICAL DATA
Low Input Bias Current: 5.0 pA
DUAL
High Gain Bandwidth: 2.0 MHz
High Slew Rate: 6.0 V/µs
High Input Impedance: 1012 Ω
8
8
Large Output Voltage Swing: ±14 V
P SUFFIX
PLASTIC PACKAGE
CASE 626
Output Short Circuit Protection
Representative Schematic Diagram
(Each Amplifier)
PIN CONNECTIONS
Inputs 1
VEE
Q7
J2
J1
8
1
2
3
7
–
+
VCC
Output 2
6
–
+
4
5
Inputs 2
(Top View)
D2
Inputs
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
VCC
Output 1
–
1
1
R3
R4
+
+
Output
D1
Q4
Q3
QUAD
C1
C2
Q1
Q2
R1
Q5
14
R2
VEE
R5
14
1
1
Q6
N SUFFIX
PLASTIC PACKAGE
CASE 646
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
PIN CONNECTIONS
ORDERING INFORMATION
Op Amp
Function
Device
TL062CD, ACD
TL062CP, ACP
Dual
TL062VD
TL062VP
TL064CD, ACD
TL064CN, ACN
Quad
TL064VD
TL064VN
Operating
Temperature Range
Output 1
Package
TA = 0° to +70°C
SO–8
Plastic DIP
TA = –40° to +85°C
SO–8
Plastic DIP
TA = 0° to +70°C
SO–14
Plastic DIP
TA = –40° to +85°C
SO–14
Plastic DIP
2
*
3
+
Inputs 1
VCC
Output 2
6
4
*
13
+
12
+
2
3
–
+
–
Output 4
Inputs 4
11
7
VEE
10
Inputs 3
9
8
Output 3
(Top View)
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
1
4
5
Inputs 2
14
1
Rev 5
1
TL062 TL064
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
VIDR
±30
V
Input Voltage Range (Notes 1 and 2)
VIR
±15
V
Output Short Circuit Duration (Note 3)
tSC
Indefinite
sec
Operating Junction Temperature
TJ
+150
°C
Tstg
–60 to +150
°C
Supply Voltage (from VCC to VEE)
Input Differential Voltage Range (Note 1)
Storage Temperature Range
NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input
terminal.
2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V,
whichever is less.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded. (See Figure 1.)
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 0° to +70°C, unless otherwise noted.)
TL062AC
TL064AC
Characteristics
Min
Typ
Max
Min
Typ
Max
—
—
3.0
—
6.0
7.5
—
—
3.0
—
15
20
—
10
—
—
10
—
µV/°C
—
—
0.5
—
100
2.0
—
—
0.5
—
200
2.0
pA
nA
—
—
3.0
—
200
2.0
—
—
3.0
—
200
10
pA
nA
—
–11.5
+14.5
–12.0
+11.5
—
—
–11
+14.5
–12.0
+11
—
V
4.0
4.0
58
—
—
—
3.0
3.0
58
—
—
—
VO+
VO–
+10
—
+14
–14
—
–10
+10
—
+14
–14
—
–10
VO+
VO–
+10
—
—
—
—
–10
+10
—
—
—
—
–10
Common Mode Rejection
(RS = 50 Ω, VCM = VICR min, VO = 0 V, TA = 25°C)
CMR
80
84
—
70
84
—
dB
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
PSR
80
86
—
70
86
—
dB
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
ID
—
200
250
—
200
250
µA
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
PD
—
6.0
7.5
—
6.0
7.5
mW
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = 0° to +70°C
Average Temperature Coefficient for Offset Voltage
(RS = 50 Ω, VO = 0 V)
Symbol
TL062C
TL064C
VIO
∆VIO/∆T
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
IIO
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
IIB
Input Common Mode Voltage Range
TA = 25°C
VICR
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = 0° to +70°C
AVOL
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
TA = 0° to +70°C
2
Unit
mV
V/mV
V
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = Tlow to Thigh [Note 4], unless otherwise noted.)
TL062V
Characteristics
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = Tlow to Thigh
Average Temperature Coefficient for Offset Voltage
(RS = 50 Ω, VO = 0 V)
Symbol
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = Tlow to Thigh
IIB
Input Common Mode Voltage Range (TA = 25°C)
VICR
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = Tlow to Thigh
AVOL
CMR
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
PSR
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
ID
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
PD
4. Tlow = –40°C
Min
Typ
Max
Unit
—
—
3.0
—
6.0
9.0
—
—
3.0
—
9.0
15
—
10
—
—
10
—
—
—
5.0
—
100
20
—
—
5.0
—
100
20
pA
nA
—
—
30
—
200
50
—
—
30
—
200
50
pA
nA
—
–11.5
+14.5
–12.0
+11.5
—
—
–11.5
+14.5
–12.0
+11.5
—
V
4.0
4.0
58
—
—
—
4.0
4.0
58
—
—
—
+10
—
+10
—
+14
–14
—
—
—
–10
—
–10
+10
—
+10
—
+14
–14
—
—
—
–10
—
–10
80
84
—
80
84
—
80
86
—
80
86
—
—
200
250
—
200
250
—
6.0
7.5
—
6.0
7.5
mV
µV/°C
V/mV
V
VO+
VO–
VO+
VO–
Common Mode Rejection
(RS = 50 Ω, VCM = VICR min, VO = 0, TA = 25°C)
NOTE:
Max
∆VIO/∆T
IIO
TA = Tlow to Thigh
Typ
VIO
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = Tlow to Thigh
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
TL064V
Min
dB
dB
µA
mW
Thigh = +85°C for TL062,4V
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = +25°C, unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
Unit
SR
2.0
6.0
—
V/µs
Rise Time (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
tr
—
0.1
—
µs
Overshoot (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
OS
—
10
—
%
—
—
1.6
2.2
—
—
GBW
—
2.0
—
MHz
Equivalent Input Noise (RS = 100 Ω, f = 1.0 kHz)
en
—
47
—
nV/ √ Hz
Input Resistance
Ri
—
1012
—
W
Channel Separation (f = 10 kHz)
CS
—
120
—
dB
Slew Rate (Vin = –10 V to +10 V, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
Settling Time
(VCC = +15 V, VEE = –15 V, AV = –1.0,
RL = 10 kΩ, VO = 0 V to +10 V step)
Gain Bandwidth Product (f = 200 kHz)
MOTOROLA ANALOG IC DEVICE DATA
µs
tS
To within 10 mV
To within 1.0 mV
3
TL062 TL064
Figure 2. Output Voltage Swing
versus Supply Voltage
2400
VO, OUTPUT VOLTAGE SWING (Vpp )
P D , MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation versus
Temperature for Package Variations
2000
1600
SO–14
1200
800
SO–8
400
0
20
40
60
80
30
25
20
15
10
5.0
100 120 140 160
0
2.0
4.0
6.0
8.0
10
12
TA, AMBIENT TEMPERATURE (°C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 3. Output Voltage Swing
versus Temperature
Figure 4. Output Voltage Swing
versus Load Resistance
VO, OUTPUT VOLTAGE SWING (Vpp )
35
30
25
20
15
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
10
5.0
–50
–25
0
25
50
75
100
14
16
6.0
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
Figure 6. Large Signal Voltage Gain
versus Temperature
RL = 10 kΩ
TA = 25°C
VCC = +12 V, VEE = –12 V
20
15
VCC = +5.0 V, VEE = –5.0 V
VCC = +2.5 V, VEE = –2.5 V
0
100
12
Figure 5. Output Voltage Swing
versus Frequency
VCC = +15 V, VEE = –15 V
5.0
18
RL, LOAD RESISTANCE (kΩ)
25
10
VCC = +15 V
VEE = –15 V
TA = 25°C
TA, AMBIENT TEMPERATURE (°C)
35
30
24
0
0.1
125
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10 M
A VOL , LARGE SIGNAL VOLTAGE GAIN (V/mV)
VO, OUTPUT VOLTAGE SWING (Vpp )
RL = 10 kΩ
TA = 25°C
30
0
–75
VO, OUTPUT VOLTAGE SWING (Vpp )
35
0
0
–55 –40 –20
40
4
40
100
70
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
50
40
30
20
10
–75
–50
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
Figure 8. Supply Current per Amplifier
versus Supply Voltage
100
80
60
Gain
Phase
0
45
40
90
20
0
1.0
135
10
100
1.0 k
10 k
100 k
1.0 M
I CC , SUPPLY CURRENT (µ A)
250
VCC = +15 V
VEE = –15 V
VO = 0 V
RL = 10 kΩ
CL = 0 pF
TA = 25°C
φ , EXCESS PHASE (DEGREES)
A VOL , OPEN LOOP VOLTAGE GAIN (dB)
Figure 7. Open Loop Voltage Gain
and Phase versus Frequency
200
150
100
TA = 25°C
VO = 0 V
RL = ∞Ω
50
0
180
10 M 100 M
0
2.0
4.0
f, FREQUENCY (Hz)
CMR, COMMON MODE REJECTION (dB)
P D, TOTAL POWER DISSIPATION (MW)
100
VCC = +15 V
VEE = –15 V
VO = 0 V
RL = ∞Ω
–50
–25
0
25
50
75
100
125
16
18
20
TL064
20
15
VCC = +15 V
VEE = –15 V
VO = 0 V
RL = ∞Ω
TL062
10
5.0
0
–75
–50
–25
0
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
Figure 11. Common Mode Rejection
versus Temperature
Figure 12. Common Mode Rejection
versus Frequency
88
VCC = +15 V
VEE = –15 V
VO = 0 V
RL = 10 kΩ
85
84
83
82
81
80
–75
14
TA, AMBIENT TEMPERATURE (°C)
CMR, COMMON MODE REJECTION (dB)
I CC , SUPPLY CURRENT (µ/A)
150
86
12
25
200
87
10
Figure 10. Total Power Dissipation
versus Temperature
250
0
–75
8.0
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 9. Supply Current per Amplifier
versus Temperature
50
6.0
–50
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
100
125
125
140
120
100
VCC = +15 V
VEE = –15 V
∆VCM = ±1.5 V
TA = 25°C
∆VCM
CMR = 20 Log
80
–
ADM
+
∆VCM
∆VO
∆VO
X ADM
60
40
20
0
100
1k
10 k
100 k
1M
f, FREQUENCY (Hz)
5
TL062 TL064
Figure 14. Normalized Gain Bandwidth
Product, Slew Rate and Phase
Margin versus Temperature
Figure 13. Power Supply Rejection
versus Frequency
+PSR = 20Log
–PSR = 20Log
∆VO/ADM
∆VEE
+PSR (∆VCC = ±1.5 V)
100
–PSR (∆VEE = ±1.5 V)
80
60
VCC = +15 V
VEE = –15 V
TA = 25°C
40
20
–
ADM
+
VCC
∆VO
VEE
0
100
1.0 k
10 k
100 k
1.08
1.4
1.0 M
1.2
GBW
1.1
Slew Rate
1.0
0.8
0.94
0.6
–75
–50
–25
0
25
50
75
100
0.92
125
TA, AMBIENT TEMPERATURE (°C)
Figure 16. Input Noise Voltage
versus Frequency
70
e n , INPUT NOISE VOLTAGE ( nV/ √ Hz )
I IB , INPUT BIAS CURRENT (pA)
1.02
0.96
0.7
1000
VCC = +15 V
VEE = –15 V
VCM = 0 V
10
1.0
0.1
0.01
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
60
50
40
30
20
125
t, TIME (0.5 µs/DIV)
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 18. Large Signal Response
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
CL = 0 pF
AV = +1.0
V O , OUTPUT VOLTAGE (5.0 V/DIV)
V O , OUTPUT VOLTAGE (10 mV/DIV)
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
CL = 0 pF
AV = +1.0
VCC = +15 V
VEE = –15 V
RS = 100 Ω
TA = 25°C
10
Figure 17. Small Signal Response
6
1.04
0.98
Phase Margin
Figure 15. Input Bias Current
versus Temperature
0.001
–55
1.06
1.0
0.9
f, FREQUENCY (Hz)
100
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
CL = 0 pF
1.3
φ m , NORMALIZED PHASE MARGIN
120
∆VO/ADM
∆VCC
NORMALIZED GAIN BANDWIDTH
PRODUCT AND SLEW RATE
PSR, POWER SUPPLY REJECTION (dB)
140
t, TIME (2.0 µs/DIV)
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
Figure 19. AC Amplifier
Figure 20. High–Q Notch Filter
VCC
0.1 µF
VCC
–
10 kΩ
1/2
1.0 MΩ
10 kΩ
R1
–
1/2
Inputs
+
50 Ω
5
VEE
R3
C2
C1
R1 = R2 = 2R3 = 1.5 MΩ
C1 = C2 =
250 kΩ
0.1 µF
Output
TL062
+
C3
Output
TL062
1
10 kΩ
R2
Input
C3
= 110 pF
2
1
fo =
= 1.0 kHz
2π R1 C1
Figure 21. Instrumentation Amplifier
VCC
–
100 kΩ
Input A
TL064
+
10 kΩ
0.1%
10 kΩ
0.1%
VEE
VCC
–
TL064
Output
+
100 kΩ
1.0
MΩ
VEE
100 kΩ
VCC
VCC
+
Input B
–
TL064
TL064
–
VEE
10 kΩ
0.1%
10 kΩ
0.1%
100 Ω
+
VEE
Figure 22. 0.5 Hz Square–Wave Oscillator
Figure 23. Audio Distribution Amplifier
RF = 100 kΩ
3.3 kΩ
+15 V
VCC
TL062
+
1.0 µF
1.0 kΩ
9.1 kΩ
100 kΩ
2π RF CF
VCC
–
TL064
+
100 kΩ
100 kΩ
100 µF
MOTOROLA ANALOG IC DEVICE DATA
–
TL064
+
Input
3.3 kΩ
1
Output A
+
–
–15 V
f=
TL064
1.0 MΩ
1/2
CF = 3.3 µF
VCC
–
100 kΩ
Output B
VCC
VCC
–
TL064
+
Output C
7
TL062 TL064
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
0.13 (0.005)
T A
M
B
M
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
8
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
F
–T–
0.25 (0.010)
M
K
D 14 PL
M
T B
S
MOTOROLA ANALOG IC DEVICE DATA
M
R X 45 _
C
SEATING
PLANE
B
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
9
TL062 TL064
NOTES
10
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
NOTES
MOTOROLA ANALOG IC DEVICE DATA
11
TL062 TL064
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*TL062/D*
MOTOROLA ANALOG IC DEVICE
DATA
TL062/D