VISHAY SIHF730A

IRF730A, SiHF730A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg results in Simple Drive
Requirement
400
RDS(on) (Ω)
VGS = 10 V
5.5
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Qg (Max.) (nC)
22
Qgs (nC)
5.8
Qgd (nC)
9.3
• Fully
Characterized
Capacitance
Avalanche Voltage and Current
Single
• Effective Coss Specified (See AN1001)
Configuration
Available
RoHS*
COMPLIANT
and
• Lead (Pb)-free Available
D
APPLICATIONS
TO-220
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
G
• High Speed Power Switching
TYPICAL SMPS TOPOLOGIES
S
G
D
S
• Single Transistor Flyback Xfmr. Reset
N-Channel MOSFET
• Single Transistor Forward Xfmr. Reset
(Both US Line Input Only)
ORDERING INFORMATION
Package
TO-220
IRF730APbF
Lead (Pb)-free
SiHF730A-E3
IRF730A
SnPb
SiHF730A
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
UNIT
VGS
± 30
V
Gate-Source Voltage
VGS at 10 V
Continuous Drain Current
TC = 25 °C
ID
TC = 100 °C
Pulsed Drain Currenta
5.5
3.5
A
IDM
22
0.6
W/°C
Single Pulse Avalanche Energyb
EAS
290
mJ
Repetitive Avalanche Currenta
IAR
5.5
A
Repetitive Avalanche Energya
EAR
7.4
mJ
Linear Derating Factor
Maximum Power Dissipation
TC = 25 °C
PD
74
W
dV/dt
4.6
V/ns
TJ, Tstg
- 55 to + 150
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 19 mH, RG = 25 Ω, IAS = 5.5 A (see fig. 12).
c. ISD ≤ 5.5 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRF730A, SiHF730A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Case (Drain)
RthJC
-
1.70
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Ambient
RthJA
-
62
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
VDS
VGS = 0 V, ID = 250 µA
400
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.5
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.5
V
nA
IGSS
IDSS
RDS(on)
gfs
VGS = ± 30 V
-
-
± 100
VDS = 400 V, VGS = 0 V
-
-
25
VDS = 320 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
1.0
Ω
VDS = 50 V, ID = 3.3 A
3.1
-
-
S
ID = 3.3 Ab
VGS = 10 V
µA
Dynamic
Input Capacitance
Ciss
VGS = 0 V,
-
600
-
Output Capacitance
Coss
VDS = 25 V,
-
103
-
Reverse Transfer Capacitance
Crss
f = 1.0 MHz, see fig. 5
-
4.0
-
Output Capacitance
Coss
VDS = 1.0 V, f = 1.0 MHz
-
890
-
VDS = 320 V, f = 1.0 MHz
-
30
-
-
45
-
-
-
22
-
-
5.8
-
-
9.3
-
10
-
-
22
-
-
20
-
-
16
-
-
-
5.5
-
-
22
Effective Output Capacitance
Coss eff.
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Rise Time
Turn-Off Delay Time
Fall Time
VGS = 0 V
tr
td(off)
VDS = 0 V to 320
VGS = 10 V
Vc
ID = 3.5 A, VDS = 320 V
see fig. 6 and 13b
VDD = 200 V, ID = 3.5 A
RG = 12 Ω, RD = 57 Ω,
see fig. 10b
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 5.5 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 3.5 A, dI/dt = 100 A/µsb
-
-
1.6
V
-
370
550
ns
-
1.6
2.4
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. COSS eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
IRF730A, SiHF730A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
BOTTOM 4.5 V
10
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
0.1
10
TJ = 25 °C
1
4.5 V
VDS = 50 V
20 µs PULSE WIDTH
20 µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
0.1
4.0
100
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
2.5
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
BOTTOM 4.5 V
1
4.5 V
0.1
0.01
0.1
20 µs PULSE WIDTH
TJ = 25 °C
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
100
RDS(on), Drain-to-Source On Resistance
(Normalized)
10
5.0
6.0
7.0
8.0
9.0
10.0
VGS, Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
TOP
ID, Drain-to-Source Current (A)
TJ = 150 °C
ID = 5.5 A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10 V
0
20
40
60
80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRF730A, SiHF730A
Vishay Siliconix
100
VGS = 0 V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
10000
1000
Ciss
Coss
100
10
ISD, Reverse Drain Current (A)
C, Capacitance (pF)
100000
TJ = 150 °C
10
TJ = 25 °C
1
Crss
1
1
10
100
0.1
0.4
1000
16
1.2
1.0
Fig. 7 - Typical Source-Drain Diode Forward Voltage
100
VDS = 320 V
VDS = 200 V
VDS = 80 V
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ID, Drain Current (A)
VGS, Gate-to-Source Voltage (V)
ID = 5.5 A
0.6
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
VGS = 0 V
0.8
12
8
10 us
10
100 us
1 ms
1
10 ms
4
TC = 25 °C
TJ = 150 °C
Single Pulse
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
5
10
15
20
25
QG, Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
0.1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
IRF730A, SiHF730A
Vishay Siliconix
RD
6.0
VDS
VGS
ID, Drain Current (A)
5.0
D.U.T.
RG
4.0
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
3.0
Fig. 10a - Switching Time Test Circuit
2.0
VDS
90 %
1.0
0.0
75
50
25
100
TC, Case Temperature
125
150
10 %
VGS
(°C)
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
10
1
D = 0.50
0.20
0.10
PDM
0.05
0.1
t1
0.02
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t1 / t2
2. Peak TJ = PDM x ZthJC + TC
0.01
0.00001
0.001
0.0001
0.01
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
L
VDS
D.U.T.
RG
IAS
20 V
tp
tp
Driver
+
A
- VDD
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRF730A, SiHF730A
Vishay Siliconix
610
ID
2.5 A
3.5 A
BOTTOM 5.5 A
TOP
600
600
VDSav, Avalanche Voltage (V)
EAS, Single Pulse Avalanche Energy (mJ)
700
500
400
300
200
590
580
570
560
550
100
540
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
0.0
1.0
2.0
3.0
4.0
Iav, Avalanche Current (A)
5.0
6.0
Fig. 12d - Typical Drain Source Voltage
vs. Avalanche Current
Current regulator
Same type as D.U.T.
QG
10 V
50 kΩ
12 V
QGS
0.2 µF
0.3 µF
QGD
+
D.U.T.
-
VDS
VG
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
IRF730A, SiHF730A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Body diode
VDD
forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91045.
Document Number: 91045
S-Pending-Rev. A, 19-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1