STMICROELECTRONICS ACS120-7SB

®
ACS120-7SB/SFP/ST
ASD™
AC Switch Family
MAIN APPLICATIONS
AC static switching in appliance control systems
Drive of low power high inductive or resistive
loads like
- relay, valve, solenoid, dispenser
- pump, fan, micro-motor
- defrost heater
■
AC LINE SWITCH
COM
■
G
OUT
DPAK
ACS120-7SB
FEATURES
■
■
■
■
■
■
Blocking voltage : VDRM / VRRM = +/-700V
Avalanche controlled : VCL typ = 1100 V
Nominal conducting current : IT(RMS) = 2A
Gate triggering current : IGT < 10 mA
Switch integrated driver
High noise immunity : static dV/dt >500V/µs
BENEFITS
Needs no more external protection snubber or
varistor
Enables equipment to meet IEC 61000-4-5
Reduces component count up to 80 %
Interfaces directly with the microcontroller
Eliminates any gate kick back on the
microcontroller
Allows straightforward connection of several
ACS™ on same cooling pad.
G
COM
OUT
TO-220FPAB
ACS120-7SFP
G
COM
OUT
■
■
■
TO-220AB
ACS120-7ST
■
■
■
FUNCTIONAL DIAGRAM
OUT
DESCRIPTION
The ACS120 belongs to the AC line switch family
built around the ASD™ concept. This high performance switch circuit is able to control a load up to 2
A.
The ACS™ switch embeds a high voltage clamping structure to absorb the inductive turn off energy
and a gate level shifter driver to separate the digital
controller from the main switch. It is triggered with
a negative gate current flowing out of the gate pin.
S
ON
D
COM
April 2003 - Ed: 2A
G
1/11
ACS120-7SB/SFP/ST
ABSOLUTE RATINGS (limiting values)
For either positive or negative polarity of pin OUT voltage in respect to pin COM voltage
Symbol
VDRM / VRRM
IT(RMS)
ITSM
I2t
Parameter
Repetitive peak off-state voltage
RMS on-state current full cycle sine
wave 50 to 60 Hz
Value
Unit
Tj = -10 °C
700
V
2
A
A
DPAK
Tc = 115 °C
TO-220FPAB
Tc = °C
TO-220AB
Tc = 115 °C
Non repetitive surge peak on-state current
Tj initial = 25°C, full cycle sine wave
F =50 Hz
20
F =60 Hz
11
A
Fusing capability
tp = 10ms
2.2
A²s
F = 120 Hz
50
A/µs
Tj = 125°C
dI/dt
Repetitive on-state current critical rate
of rise IG = 10mA (tr < 100ns)
VPP
Non repetitive line peak pulse voltage
2
kV
Tstg
Storage temperature range
- 40 to + 150
°C
Tj
Operating junction temperature range
- 30 to + 125
°C
Tl
Maximum lead soldering temperature during 10s
note 1
260
°C
Value
Unit
Note 1: according to test described by IEC61000-4-5 standard & Figure 3.
GATE CHARACTERISTICS (maximum values)
Symbol
PG (AV)
Parameter
0.1
W
IGM
Average gate power dissipation
Peak gate current (tp = 20µs)
1
A
VGM
Peak positive gate voltage (in respect to pin COM)
5
V
THERMAL RESISTANCES
Symbol
Rth (j-a)
Parameter
Junction to ambient
S = 0.5cm²
DPAK
TO-220FPAB
Rth (j-l)
Junction to tab/lead for full cycle sine wave
conduction
S = Copper surface under Tab
2/11
Value
Unit
70
°C/W
60
°C/W
TO-220AB
60
°C/W
DPAK
2.6
°C/W
TO-220FPAB
3.5
°C/W
TO-220AB
2.6
°C/W
ACS120-7SB/SFP/ST
PARAMETER DESCRIPTION
Parameter Symbol
Parameter description
IGT
Triggering gate current
VGT
Triggering gate voltage
VGD
Non-triggering gate voltage
IH
Holding current
IL
Latching current
VTM
Peak on-state voltage drop
VTO
On state threshold voltage
Rd
On state dynamic resistance
IDRM / IRRM
Maximum forward or reverse leakage current
dV/dt
Critical rate of rise of off-state voltage
(dV/dt)c
Critical rate of rise of commutating off-state voltage
(dI/dt)c
Critical rate of decrease of commutating on-state current
VCL
Clamping voltage
ICL
Clamping current
ELECTRICAL CHARACTERISTICS
For either positive or negative polarity of pin OUT voltage in respect to pin COM voltage.
Symbol
Test Conditions
Values
Unit
IGT
VOUT=12V (DC)
RL=140Ω
QII - QIII
Tj=25°C
MAX
10
mA
VGT
VOUT=12V (DC)
RL=140Ω
QII - QIII
Tj=25°C
MAX
1
V
VGD
VOUT=VDRM RL=3.3kΩ
Tj=125°C
MIN
0.15
V
IH
IOUT= 100mA gate open
Tj=25°C
MAX
45
mA
IL
IG= 20mA
Tj=25°C
MAX
65
mA
Tj=25°C
MAX
1.3
V
VTO
Tj=125°C
MAX
0.85
V
Rd
Tj=125°C
MAX
200
mΩ
Tj=25°C
MAX
2
µA
Tj=125°C
MAX
200
MIN
500
V/µs
VTM
IOUT = 2.8A
tp=380µs
IDRM /
IRRM
VOUT = 700V
dV/dt
VOUT=460V gate open
Tj=110°C
(dV/dt)c = 20V/µs
Tj=125°C
MIN
1
A/ms
ICL = 1mA
Tj=25°C
TYP
1100
V
(dI/dt)c
VCL
tp=1ms
3/11
ACS120-7SB/SFP/ST
AC LINE SWITCH BASIC APPLICATION
The ACS120 device is well adapted to Washing machine, dishwasher, tumble drier, refrigerator,
air-conditioning systems, and cookware. It has been designed especially to switch on & off low power loads
such as solenoid, valve, relay, dispenser, micro-motor, pump, fan and defrost heaters.
Pin COM: Common drive reference to connect to the power line neutral
Pin G: Switch Gate input to connect to the digital controller
Pin OUT: Switch Output to connect to the load
This ACS™ switch is triggered with a negative gate current flowing out of the gate pin G. It can be driven directly by the digital controller through a resistor as shown on the typical application diagram.
Thanks to its thermal and turn off commutation performances, the ACS120 switch is able to drive with no
turn off additional snubber an inductive load up to 2 A.
TYPICAL APPLICATION DIAGRAM
LOAD
L
L
AC
MAINS
M
R
N
OUT
ACS120
S
ON
D
COM
G
ST72 MCU
- Vcc
HIGH INDUCTIVE SWITCH-OFF OPERATION
At the end of the last conduction half-cycle, the load current reaches the holding current level IH , and the
ACS™ switch turns off. Because of the inductance L of the load, the current flows then through the avalanche diode D and decreases linearly to zero. During this time, the voltage across the switch is limited to
the clamping voltage VCL.
The energy stored in the inductance of the load depends on the holding current IH and the inductance (up
to 10 H); it can reach about 10 mJ and is dissipated in the clamping diode section. The ACS switch sustains
the turn off energy because its clamping section is designed for that purpose.
4/11
ACS120-7SB/SFP/ST
Fig. A: Turn-off operation of the ACS120 switch
with an electro-valve: waveform of the pin OUT
current IOUT and voltage VOUT.
Fig. B: ACS120 switch static characteristic.
IOUT
IH
VCL
VOUT
AC LINE TRANSIENT VOLTAGE RUGGEDNESS
The ACS120 switch is able to sustain safely the AC line transient voltages either by clamping the low energy spikes or by breaking over under high energy shocks, even with high turn-on current rises.
The test circuit of the figure C is representative of the final ACS application and is also used to stress the
ACS switch according to the IEC 61000-4-5 standard conditions. Thanks to the load, the ACS switch sustains the voltage spikes up to 2 kV above the peak line voltage. It will break over safely even on resistive
load where the turn on current rise is high as shown on figure D. Such non repetitive test can be done 10
times on each AC line voltage polarity.
Fig. C: Overvoltage ruggedness test circuit
for resistive and inductive loads according to
IEC61000-4-5 standards.
R = 150Ω, L = 10µH, VPP = 2kV.
R
Fig. D: Current and Voltage of the ACS120 during IEC61000-4-5 standard test with R, L & VPP .
L
OUT
ACSxx
S
SURGE VOLTAGE
AC LINE & GENERATOR
VAC + V PP
ON
D
G
COM
RG = 220Ω
5/11
ACS120-7SB/SFP/ST
OTHER FIGURES
Maximum power dissipation vs RMS on state current.
RMS on-state current vs ambient temperature, case temperature
Relative variation of thermal impedance junction to ambient vs pulse duration and package
Relative variation of gate trigger current vs junction temperature
Relative variation of holding, latching and gate current vs junction
Relative variation of dV/dt vs Tj
Relative variation of (dV/dt)c vs (di/dt)c
Surge peak on-state current vs number of cycles
Non repetitive surge peak on-state current for a sinusoidal pulse with tp<10ms, and corresponding of I²t.
On-state characteristics (maximal values)
Thermal resistance junction to ambient vs copper surface under tab (DPAK)
Relative variation of critical (di/dt)c vs junction temperature
Fig. 1: Maximum power dissipation versus RMS
on-state current.
Fig. 2-1: RMS on-state current versus case
temperature.
P(W)
IT(RMS)(A)
2.4
2.4
α=180°
2.2
α=180°
2.2
2.0
2.0
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
1.0
1.0
TO-220AB/DPAK
TO-220FPAB
0.8
0.8
0.6
0.6
180°
0.4
α
α
0.4
Tc(°C)
0.2
IT(RMS)(A)
0.2
0.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Fig. 2-2: RMS on-state current versus ambient
temperature.
0
25
50
75
100
125
Fig. 3: Relative variation of thermal impedance
versus pulse duration.
IT(RMS)(A)
K=[Zth/Rth]
1.8
1.E+00
α=180°
Printed circuit board FR4
Natural convection
S=0.5cm²
1.6
DPAK
Zth(j-c)
1.4
TO-220FPAB
1.2
DPAK
1.0
Zth(j-a)
1.E-01
0.8
TO-220FPAB
0.6
0.4
0.2
Tamb(°C)
tp(s)
0.0
0
25
50
75
100
125
1.E-02
1.E-02
6/11
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
ACS120-7SB/SFP/ST
Fig. 4: Relative variation of gate trigger current,
holding current and latching versus junction
temperature (typical values).
Fig. 5: Relative variation of static dV/dt versus
junction temperature.
dV/dt [Tj] / dV/dt [Tj = 125°C]
IGT, IH, IL[Tj] / IGT, IH, IL [Tj = 25°C]
4.0
8
3.5
7
VOUT=460V
6
3.0
IGT
2.5
5
2.0
4
3
1.5
IL & IH
2
1.0
0.5
1
Tj(°C)
Tj(°C)
0
0.0
-40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90 100 110 120 130
Fig. 6: Relative variation of critical rate of decrease of main current versus reapplied dV/dt
(typical values).
25
50
75
100
125
Fig. 7: Relative variation of critical rate of decrease
of main current versus junction temperature.
(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c
(dI/dt)c [Tj] / (dI/dt)c [Tj = 125°C]
5.0
20
VOUT=400V
4.5
16
3.5
14
3.0
12
2.5
10
2.0
8
1.5
6
1.0
4
0.5
VOUT=400V
18
4.0
2
(dV/dt)c (V/µs)
0.0
Tj(°C)
0
0
5
10
15
20
25
30
35
40
45
50
Fig. 8: Surge peak on-state current versus number
of cycles.
25
50
75
100
125
Fig. 9: Non repetitive surge peak on-state current
for a sinusoidal pulse with width tp < 10ms, and
corresponding value of I²t.
ITSM(A), I²t (A²s)
ITSM(A)
1000
22
Tj initial=25°C
20
dI/dt limitation:
50A/µS
18
t=20ms
Non repetitive
Tj initial=25°C
16
100
14
ITSM
12
10
8
Repetitive
Tab=105°C
10
6
I²t
4
2
tp(ms)
Number of cycles
1
0
1
10
100
1000
0.01
0.10
1.00
10.00
7/11
ACS120-7SB/SFP/ST
Fig. 10:
values).
On-state
characteristics
Fig. 11: Thermal resistance junction to ambient
versus copper surface under tab (printed circuit
board FR4, copper thickness: 35µm)
(maximum
Rth(j-a)(°C/W)
ITM(A)
100
10.00
DPAK
Tj max. :
Vto=0.85V
Rd=200mΩ
90
80
70
1.00
60
Tj=125°C
50
40
Tj=25°C
0.10
30
20
S(cm²)
10
VTM(V)
0
0.01
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0
3.5
5
10
15
20
25
30
ORDERING INFORMATION
ACS
1
20
-
7
S
AC Switch
VDRM
7 = 700V
Number of switches
IT(RMS)
20 = 2.0A
8/11
X
Package
B = DPAK
FP = TO-220FPAB
T = TO-220AB
Gate Sensitivity
S= 10mA
35
40
ACS120-7SB/SFP/ST
PACKAGE OUTLINE MECHANICAL DATA
DPAK
DIMENSIONS
REF.
Millimeters
Inches
Min.
Max
Min.
Max.
A
2.20
2.40
0.086
0.094
A1
0.90
1.10
0.035
0.043
A2
0.03
0.23
0.001
0.009
B
0.64
0.90
0.025
0.035
B2
5.20
5.40
0.204
0.212
C
0.45
0.60
0.017
0.023
C2
0.48
0.60
0.018
0.023
D
6.00
6.20
0.236
0.244
E
6.40
6.60
0.251
0.259
G
4.40
4.60
0.173
0.181
H
9.35
10.10
0.368
0.397
L2
0.80 typ.
0.031 typ.
L4
0.60
1.00
0.023
0.039
V2
0°
8°
0°
8°
FOOT PRINT
DPAK
6.7
6.7
3
3
1.6
1.6
2.3
2.3
9/11
ACS120-7SB/SFP/ST
PACKAGE OUTLINE MECHANICAL DATA
TO-220FPAB
DIMENSIONS
REF.
B
Dia
L6
L2
L7
L3
L5
D
F1
L4
Max.
Min.
Max.
A
4.4
4.6
0.173
0.181
B
2.5
2.7
0.098
0.106
F
G1
G
10/11
D
2.5
2.75
0.098
0.108
E
0.45
0.70
0.018
0.027
F
0.75
1
0.030
0.039
F1
1.15
1.70
0.045
0.067
F2
1.15
1.70
0.045
0.067
G
4.95
5.20
0.195
0.205
G1
2.4
2.7
0.094
0.106
H
10
10.4
0.393
0.409
L2
F2
E
Inches
Min.
A
H
Millimeters
16 Typ.
0.63 Typ.
L3
28.6
30.6
1.126
1.205
L4
9.8
10.6
0.386
0.417
L5
2.9
3.6
0.114
0.142
L6
15.9
16.4
0.626
0.646
L7
9.00
9.30
0.354
0.366
ACS120-7SB/SFP/ST
PACKAGE OUTLINE MECHANICAL DATA
TO-220AB
DIMENSIONS
REF.
A
H2
Dia
C
L5
L7
L6
L2
F2
F1
D
L9
L4
Min.
Max.
Min.
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
G1
E
G
Max.
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
F2
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
G1
2.40
2.70
0.094
0.106
H2
10
10.40
0.393
0.409
L4
M
Inches
A
L2
F
Millimeters
16.4 typ.
13
0.645 typ.
14
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
Diam.
2.6 typ.
3.75
3.85
0.102 typ.
0.147
0.151
OTHER INFORMATION
■
Ordering type
Marking
Package
Weight
Base qty
Delivery mode
ACS120-7SB
ACS1207S
DPAK
0.3 g
75
Tube
ACS120-7SB-TR
ACS1207S
DPAK
0.3 g
2500
Tape & reel
ACS120-7SFP
ACS1207S
TO-220FPAB
2.4 g
50
Tube
ACS120-7ST
ACS1207S
TO-220AB
2.3 g
250
Bulk
Epoxy meets UL94,V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
11/11