STMICROELECTRONICS LF251

LF151
LF251 - LF351
WIDE BANDWIDTH
SINGLE J-FET OPERATIONAL AMPLIFIER
.
..
..
.
..
.
INTERNALLY ADJUSTABLE INPUT OFFSET
VOLTAGE
LOW POWER CONSUMPTION
WIDE COMMON-MODE (UP TO VCC+) AND
DIFFERENTIAL VOLTAGE RANGE
LOW INPUT BIAS AND OFFSET CURRENT
OUTPUT SHORT-CIRCUIT PROTECTION
HIGH INPUT IMPEDANCE J–FET INPUT
STAGE
INTERNAL FREQUENCY COMPENSATION
LATCH UP FREE OPERATION
HIGH SLEW RATE : 16V/µs (typ)
N
DIP8
(Plastic Package)
D
SO8
(Plastic Micropackage)
DESCRIPTION
These circuits are high speed J–FET input single
operationalamplifiers incorporatingwell matched,high
voltage J–FET and bipolar transistors in a monolithic
integrated circuit.
The devicesfeaturehigh slew rates, low input bias and
offset currents, and low offset voltage temperature
coefficient.
ORDER CODES
Part Number
Temperature
Package
N
D
LF351
0 C, +70 C
•
•
LF251
–40oC, +105oC
•
•
LF151
–55 C, +125 C
•
•
o
o
o
o
PIN CONNECTIONS (top view)
October 1997
1
8
2
7
3
6
4
5
1
2
3
4
5
6
7
8
- Offset Null 1
- Inverting input
- Non-inverting input
- VCC- Offset Null 2
- Output
- VCC+
- N.C.
1/9
LF151 - LF251 - LF351
SCHEMATIC DIAGRAM
VCC
input
Non-inverting
Inveinput
rting
100 Ω
200 Ω
Output
100 Ω
30k
8.2k
1.3k
1.3k
35k
35k
100 Ω
VCC
Offse t Null1
Offse t Null2
INPUT OFFSET VOLTAGE NULL CIRCUITS
LF35 1
N2
N1
10 0kΩ
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Unit
Supply Voltage - (note 1)
±18
V
Vi
Input Voltage - (note 3)
±15
V
Vid
Differential Input Voltage - (note 2)
±30
V
Ptot
Power Dissipation
680
mW
VCC
Output Short-circuit Duration - (note 4)
Toper
Operating Free Air Temperature Range
Tstg
Storage Temperature Range
Notes :
2/9
Value
Infinite
LF351
LF251
LF151
0 to 70
–40 to 105
–55 to 125
o
–65 to 150
o
C
C
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the
zero reference level is the midpoint between VCC+ and VCC–.
2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the
dissipation rating is not exceeded.
LF151 - LF251 - LF351
ELECTRICAL CHARACTERISTICS
VCC = ±15V, Tamb = 25oC (unless otherwise specified)
Symbol
Vio
DV io
Iio
Iib
Avd
SVR
ICC
LF151 - LF251 - LF351
Parameter
Min.
Max.
Input Offset Voltage (R S = 10kΩ)
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
3
10
13
Input Offset Voltage Drift
10
Input Offset Current *
Tamb = 25oC
Tmin. ≤ Tamb ≤ Tmax.
5
100
4
pA
nA
Input Bias Current *
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
20
200
20
pA
nA
mV
Large Signal Voltage Gain (RL = 2kΩ, VO = ±10V)
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
50
25
200
Supply Voltage Rejection Ratio (R S = 10kΩ)
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
80
80
86
dB
Supply Current (no load)
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
mA
1.4
Input Common Mode Voltage Range
±11
+15
-12
CMR
Common Mode Rejection Ratio (RS = 10kΩ)
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
70
70
86
Output Short-circuit Current
o
Tamb = 25 C
Tmin. ≤ Tamb ≤ Tmax.
10
10
40
10
12
10
12
12
13.5
12
16
±VOPP
Output Voltage Swing
Tamb = 25oC
Tmin. ≤ Tamb ≤ Tmax.
SR
tr
KOV
GBP
Ri
THD
en
∅m
µV/oC
V/mV
Vicm
Ios
Unit
Typ.
3.4
3.4
V
dB
mA
60
60
V
RL
RL
RL
RL
=
=
=
=
2kΩ
10kΩ
2kΩ
10kΩ
Slew Rate
(Vi = 10V, R L = 2kΩ, C L = 100pF, T amb = 25oC, unity gain)
V/µs
Rise Time
o
(Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain)
0.1
Overshoot
o
(Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain)
10
Gain Bandwidth Product
o
(f = 100kHz, Tamb = 25 C, V in = 10mV, RL = 2kΩ, CL = 100pF)
Input Resistance
Total Harmonic Distortion (f = 1kHz, AV = 20dB, R L = 2kΩ,
o
CL = 100pF, Tamb = 25 C, VO = 2VPP)
µs
%
MHz
2.5
4
1012
Ω
%
0.01
Equivalent Input Noise Voltage (f = 1kHz, Rs = 100Ω)
15
nV
√

Hz
Phase Margin
45
Degrees
* The input bias currents are junction leakage currents which approximately double for every 10oC increase in the junction temperature.
3/9
LF151 - LF251 - LF351
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
30
VCC = 15V
R L= 2kΩ
Tamb = +25 C
See Figure 2
25
20
VCC = 10V
15
10
VCC =
5V
5
0
100
1K
10K
100K
1M
10M
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
30
25
V CC = 15V
20
V CC = 10V
15
10
5
0
100
1K
10K
15V
15
Ta mb = -55 C
10
5
Ta mb = +125 C
10k
40k
100k
400k
1M
4M
10M
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
VCC =
R L = 2kΩ
Se e Figure 2
0
1M
10M
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREE AIR TEMP.
30
20
100K
FREQUENCY (Hz)
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
25
5V
VCC =
FREQUENCY (Hz)
Tamb = +25 C
R L= 10kΩ
T amb = +25 C
S e e F igure 2
30
25
20
15
R
L
= 10kΩ
R
L
= 2kΩ
10
V CC =
5
15V
S e e Figu re 2
0
-75
-50
-25
0
25
50
75
-50
125
TEMPER ATURE ( C)
FREQUENCY (Hz)
4/9
30
25
VCC= 15V
Ta mb= +25 C
S e e Figu re 2
20
15
10
5
0
0.1 0.2
0.4
0.7 1
2
4
LOAD RESISTANCE (kΩ)
7
10
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS SUPPLY VOLTAGE
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUMPEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS LOAD RESISTANCE
30
25
R L = 10 kΩ
Ta mb = +25 C
20
15
10
5
0
2
4
6
8
10
12
S UPP LY VOLTAGE (V)
14
16
LF151 - LF251 - LF351
INPUT BIAS CURRENT VERSUS
FREE AIR TEMPERATURE
LARGE SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION VERSUS
FREE AIR TEMPERATURE
1000
VCC =
1 5V
DIFFERENTIAL VOLTAGE
AMPLIFICATION (V/V)
INPUT BIAS CURRENT (nA)
1 00
10
1
0 .1
0 .01
-50
400
200
100
40
20
10
4
2
1
-25
0
25
50
75
10 0
125
VCC = 15V
VO = 10V
R L = 2kΩ
-75 -50
-25
TEMPERATURE ( C)
DIFFERENTIAL
VOLTAGE
AMPLIFICATION
(le ft s ca le )
P HASE S HIFT
(right sca le)
180
10
1
100
90
R L = 2kΩ
C L = 100pF
V CC = 15V
T a mb = +125 C
1K
10K
0
100K
1M
10M
FREQUENCY (Hz)
VCC = 15V
No signa l
No loa d
-25
0
25
50
50
75
100 125
75
TEMPERATURE ( C)
10 0 125
250
225 V CC +/-15V
200 No s igna l
No loa d
175
150
100
75
50
25
0
-75 -50 -25
0
25
50
75
100 125
TEMPERATURE ( C)
SUPPLY CURRENT PER AMPLIFIER
VERSUS SUPPLY VOLTAGE
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
SUPPLY CURRENT PER AMPLIFIER
VERSUS FREE AIR TEMPERATURE
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-75 -50
25
TOTAL POWER DISSIPATION VERSUS
FREE AIR TEMPERATURE
TOTAL POWER DISSIPATION (mV)
DIFFERENTIAL VOLTAGE
AMPLIFICATION(V/V)
LARGE SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION AND PHASE
SHIFT VERSUS FREQUENCY
100
0
TEMPERATURE ( C )
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
Ta mb= +25 C
No s igna l
No load
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
5/9
LF151 - LF251 - LF351
VOLTAGE FOLLOWER LARGE SIGNAL
PULSE RESPONSE
INPUT AND OUTPUT VOLTAGES
(V)
COMMON MODE MODE REJECTION
RATIO (dB)
COMMON MODE REJECTION RATIO
VERSUS FREE AIR TEMPERATURE
89
88
R L = 10 kΩ
VCC = 15V
87
86
85
84
83
-75 -50
-25
0
25
50
75
100
125
6
4
OUTPUT
INPUT
2
0
VCC = 15V
R L = 2 kΩ
C L= 100pF
Ta mb = +25 C
-2
-4
-6
0
0.5
1
TEMPERATURE ( C)
OUTPUT VOLTAGE VERSUS
ELAPSED TIME
OVERSHOOT
90%
16
12
4
0
-4
VCC= 15V
R L= 2kΩ
Ta mb = +25 C
10%
tr
0
0.1 0.2 0.3 0.4
0.5
50
40
3.5
30
20
10
0
10
0.6 0.7
40
100
400 1k
4k
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION VERSUS
FREQUENCY
TOTAL HARMONIC DISTORTION
(%)
3
VCC = 15V
A V = 10
R S = 100 Ω
Ta mb = +25 C
60
TIME (µs )
1
0.4
0.1
0.04
VV
= = 15V
15V
CC
CC
AA
V V= =1 1
VV(rms)
= 6V
O O (rms)= 6V
=
+25 C
TaTmb
a mb = +25 C
0.01
0.004
0.001
100
400
1k
4k
10k
FREQUE NCY (Hz)
6/9
2.5
70
EQUIVALENT INPUT NOISE
VOLTAGE (nV/VHz)
OUTPUT VOLTAGE (mV)
24
8
2
EQUIVALENT INPUT NOISE VOLTAGE
VERSUS FREQUENCY
28
20
1.5
TIME (µs )
40k
100k
10k
40k 100k
LF151 - LF251 - LF351
PARAMETER MEASUREMENT INFORMATION
Figure 1 : Voltage Follower
Figure 2 : Gain-of-10 Inverting Amplifier
10k Ω
1k Ω
LF351
eI
-
eI
eo
RL = 2kΩ
CL= 100pF
eo
LF351
Ρ
L
CL= 100pF
TYPICAL APPLICATION
(0.5Hz) SQUARE WAVE OSCILLATOR
R F = 100k Ω
3.3k Ω
+15V
-
LF351
1k Ω
-15V
C F = 3.3 µF
3.3k Ω
f osc =
9.1k Ω
1
2 x R F CF
HIGH Q NOTCH FILTER
LF351
R1
R2
fo =
1
= 1kHz
2 x R1 C1
C3
R3
C3
C1 = C2 = = 100pF
2
R1 = R2 = 2R3 = 1.5MΩ
C1
C2
7/9
LF151 - LF251 - LF351
PM-DIP8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
A
a1
B
b
b1
D
E
e
e3
e4
F
i
L
Z
8/9
Min.
Millimeters
Typ.
3.32
0.51
1.15
0.356
0.204
Max.
1.65
0.55
0.304
10.92
9.75
7.95
Min.
0.020
0.045
0.014
0.008
Max.
0.065
0.022
0.012
0.430
0.384
0.313
2.54
7.62
7.62
3.18
Inches
Typ.
0.131
0.100
0.300
0.300
6.6
5.08
3.81
1.52
0.125
0260
0.200
0.150
0.060
DIP8.TBL
Dimensions
LF151 - LF251 - LF351
PM-SO8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Min.
Millimeters
Typ.
0.1
0.65
0.35
0.19
0.25
Max.
1.75
0.25
1.65
0.85
0.48
0.25
0.5
Min.
Inches
Typ.
0.026
0.014
0.007
0.010
Max.
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
o
45 (typ.)
4.8
5.8
5.0
6.2
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
0.157
0.050
0.024
SO8.TBL
Dimensions
o
8 (max.)
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON
Microelectronics. Specifications mentioned in this publ ication are subject to change without notice. This pub lication supersedes
and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical
components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
ORDER CODE :
 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdo m - U.S.A.
9/9