STMICROELECTRONICS M28W640FSU70ZA6E

M28W320FSU
M28W640FSU
32Mbit (2Mb x16) and 64Mbit (4Mb x16)
3V Supply, Uniform Block, Secure Flash Memories
FEATURES SUMMARY
■
■
■
■
■
■
■
■
■
■
■
■
■
SUPPLY VOLTAGE
– VDD = 2.7V to 3.6V Core Power Supply
– VDDQ= 2.7V to 3.6V for Input/Output
– VPP = 12V for fast Program (optional)
ACCESS TIME: 70ns
PROGRAMMING TIME:
– 10µs typical
– Double Word Programming Option
– Quadruple Word Programming Option
COMMON FLASH INTERFACE
UNIFORM BLOCKS
64-KWord UNIFORM MEMORY BLOCKS
– M28W320FSU: 32 Blocks
– M28W640FSU: 64 Blocks
HARDWARE PROTECTION
– VPP Pin for Write protect of All Blocks
SECURITY FEATURES
– 128 bit User-programmable OTP segment
– 64 bit Unique Device Identifier
– KRYPTO Features:
Modify Protection,
Read Protection,
Device Authentication
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h
– Device Codes:
M28W320FSU: 880Ch,
M28W640FSU: 8857h
PACKAGE
– Compliant with Lead-Free Soldering
Processes
– Lead-Free Version
May 2005
Figure 1. Package
BGA
TBGA64 (ZA)
10 x 13mm
1/49
M28W320FSU, M28W640FSU
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2.
Figure 3.
Table 1.
Figure 4.
Figure 5.
Figure 6.
M28W320FSU Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
M28W640FSU Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
M28W320FSU and M28W640FSU Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
HARDWARE PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
VPP ≤ VPPLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SECURITY FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2/49
M28W320FSU, M28W640FSU
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Read Protection Register and Protection Register Lock . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 17
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 10. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 11. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 13.TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline . . . . . . . . 29
Table 17. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data . . . . . . . . . . . 29
3/49
M28W320FSU, M28W640FSU
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 18. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 19. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 20. Block Addresses, M28W320FSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 21. Block Addresses, M28W640FSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 22. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 23. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 24. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 26. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 27. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 14.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 15.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 16.Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 17.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 42
Figure 18.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 20.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 46
Table 28. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 29. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4/49
M28W320FSU, M28W640FSU
SUMMARY DESCRIPTION
The M28W320FSU and the M28W640FSU are 32
Mbit (2Mbit x 16) and 64 Mbit (4Mbit x 16) Secure
Flash memories. The devices can be erased electrically at block level and programmed in-system
on a Word-by-Word basis using a 2.7V to 3.6V
VDD supply for the circuitry and a 2.7V to 3.6V
VDDQ supply for the Input/Output pins. An optional
12V VPP power supply is provided to speed up
customer programming.
The M28W320FSU and M28W640FSU feature 32
Mbits and 64 Mbits respectively and are divided
into thirty-two and sixty-four 64-KWord Uniform
blocks, respectively. Refer to Figure 5. for a detailed description of the devices memory architecture and map.
All devices are equipped with hardware and software block protection features to avoid unwanted
program/erase (modify) or read of the Flash memory content:
■
Hardware Protection:
– When VPP ≤ VPPLK all blocks are
protected against program or erase.
■
Software Protection thanks to KRYPTO
Security Features:
– Modify Protection: volatile and nonvolatile.
– Read Protection.
The KRYPTO Security features are described in a
dedicated Application Note. Please contact STMicroelectronics for further details.
Two registers are available for protection purpose:
The Protection Register
■
The KRYPTO Protection Register.
The Protection Register is a 192 bit Protection
Register to increase the protection of a system design. The Protection Register is divided into a 64
bit segment and a 128 bit segment. The 64 bit segment contains a unique device number written by
ST, while the second one is one-time-programmable by the user. The user programmable segment
can be permanently protected. Figure 6., shows
the Protection Register Memory Map.
The KRYPTO Protection Register is used to manage the Modify and Read protection modes. It also
features a Device Authentication mechanism. The
KRYPTO Protection Register is described in a
dedicated Application Note. Please contact STMicroelectronics for further details.
Each block can be erased separately. Erase can
be suspended in order to perform either read or
program in any other block and then resumed.
Program can be suspended to read data in any
other block and then resumed. Each block can be
programmed and erased over 100,000 cycles.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the timings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
All the devices are offered in a TBGA64 (10 x
13mm) package. In addition to the standard version, the package is also available in Lead-free
version, in compliance with JEDEC Std J-STD020B, the ST ECOPACK 7191395 Specification,
and the RoHS (Restriction of Hazardous Substances) directive. The package is compliant with
Lead-free soldering processes.
All devices are supplied with all the bits erased
(set to ’1’).
■
5/49
M28W320FSU, M28W640FSU
Figure 2. M28W320FSU Logic Diagram
Figure 3. M28W640FSU Logic Diagram
VDD VDDQ VPP
VDD VDDQ VPP
21
22
16
16
A0-A21
A0-A20
DQ0-DQ15
W
DQ0-DQ15
W
E
E
M28W320FSU
G
G
RP
RP
M28W640FSU
VSS
VSS
AI10660
AI10659
Table 1. Signal Names
M28W320FSU
M28W640FSU
A0-A20
A0-A21
DQ0-DQ15
Address Inputs
Data Input/Output
E
Chip Enable
G
Output Enable
W
Write Enable
RP
Reset
VDD
Core Power Supply
VDDQ
6/49
Signal Names
Power Supply for
Input/Output
VPP
Optional Supply Voltage for
Fast Program & Erase
VSS
Ground
NC
Not Connected Internally
M28W320FSU, M28W640FSU
Figure 4. TBGA Connections (Top view through package)
1
2
3
4
5
6
7
8
A
A0
A5
A7
VPP
A12
VDD
A17
A21
B
A1
VSS
A8
E
A13
NC
A18
NC
C
A2
A6
A9
A11
A14
NC
A19
A20
D
A3
A4
A10
RP
NC
NC
A15
A16
E
DQ8
DQ1
DQ9
DQ3
DQ4
NC
DQ15
NC
F
NC
DQ0
DQ10
DQ11
DQ12
NC
NC
G
G
NC
NC
DQ2
VDDQ
DQ5
DQ6
DQ14
W
H
NC
NC
VDD
VSSQ
DQ13
VSS
DQ7
NC
AI09910b
Note: 1. The above figure gives the TBGA connections for M28W640FSU. On M28W320FSU, A21 is NC.
7/49
M28W320FSU, M28W640FSU
Figure 5. M28W320FSU and M28W640FSU Block Addresses
M28W640FSU
Block Addresses
M28W320FSU
Block Addresses
3FFFFFh
1FFFFFh
64 KWords
64 KWords
3F0000h
3EFFFFh
1F0000h
1EFFFFh
64 KWords
64 KWords
1E0000h
3E0000h
Total of 64
1 Mbit Uniform Blocks
Total of 32
1 Mbit Uniform Blocks
01FFFFh
01FFFFh
64 KWords
64 KWords
010000h
00FFFFh
010000h
00FFFFh
64 KWords
64 KWords
000000h
000000h
AI10661
Note: 1. Also see APPENDIX A., Tables 21 and 20 for a full listing of the Block Addresses.
Figure 6. Protection Register Memory Map
PROTECTION REGISTER
8Ch
User Programmable OTP
85h
84h
Unique device number
81h
80h
Protection Register Lock
1
0
AI05520b
8/49
M28W320FSU, M28W640FSU
SIGNAL DESCRIPTIONS
See Figures 2 and 3, Logic Diagrams and Table
1., Signal Names, for a brief overview of the signals connected to this device.
Address Inputs. The Address Inputs select the
cells in the memory array to access during Bus
Read operations. Address Inputs range from A0 to
A20 for the M28W320FSU. The M28W640FSU
has an additional A21 address line. During Bus
Write operations they control the commands sent
to the Command Interface of the internal state machine.
Data Input/Output (DQ0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or the data to be programmed during a Write Bus
operation.
Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is
deselected, the outputs are high impedance and
the power consumption is reduced to the stand-by
level.
Output Enable (G). The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W). The Write Enable controls the
Bus Write operation of the memory’s Command
Interface. The data and address inputs are latched
on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first.
Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is minimized. After Reset all blocks are in the Locked
state. When Reset is at VIH, the device is in normal
operation. Exiting reset mode the device enters
read array mode, but a negative transition of Chip
Enable or a change of the address is required to
ensure valid data outputs.
VDD Supply Voltage. VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
VDDQ Supply Voltage. VDDQ provides the power
supply to the I/O pins and enables all Outputs to
be powered independently from VDD. VDDQ can be
tied to VDD or can use a separate supply.
VPP Program Supply Voltage. VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the
Program Supply Voltage VPP can be applied in
any order.
If VPP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection
against program or erase, while VPP > VPP1 enables these functions (see Table 12., DC Characteristics, for the relevant values). VPP is only
sampled at the beginning of a program or erase; a
change in its value after the operation has started
does not have any effect on Program or Erase.
If VPP is set to VPPH, it acts as a power supply pin.
In this condition VPP must be stable until the Program/Erase algorithm is completed (see Table 14.
and Table 15.). A Quadruple Word Program command will be ignored if VPP is not set to VPPH while
a Double Word Program can be performed even if
VPP is set to VDD.
VSS Ground. VSS is the reference for all voltage
measurements.
Note: Each device in a system should have
VDD, VDDQ and VPP decoupled with a 0.1µF capacitor close to the pin. See Figure 8., AC Measurement Load Circuit. The PCB track widths
should be sufficient to carry the required VPP
program and erase currents.
9/49
M28W320FSU, M28W640FSU
BUS OPERATIONS
There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2., Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read depends on the previous command written to the
memory (see Command Interface section). See
Figure 9., Read AC Waveforms, and Table
13., Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at VIL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
See Figure 10. and Figure 11., Write AC Waveforms, and Table 14. and Table 15., Write AC
Characteristics, for details of the timing requirements.
Output Disable. The data outputs are high impedance when the Output Enable is at VIH.
Standby. Standby disables most of the internal
circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the device enters Standby mode when finished.
Automatic Standby. Automatic Standby provides a low power consumption state during Read
mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is
in progress.
Reset. During Reset mode when Output Enable
is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset
mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the
memory content is no longer valid.
Table 2. Bus Operations
E
G
W
RP
VPP
DQ0-DQ15
Bus Read
VIL
VIL
VIH
VIH
Don't Care
Data Output
Bus Write
VIL
VIH
VIL
VIH
VDD or VPPH
Data Input
Output Disable
VIL
VIH
VIH
VIH
Don't Care
Hi-Z
Standby
VIH
X
X
VIH
Don't Care
Hi-Z
X
X
X
VIL
Don't Care
Hi-Z
Operation
Reset
Note: X = VIL or VIH, VPPH = 12V ± 5%.
10/49
M28W320FSU, M28W640FSU
HARDWARE PROTECTION
All devices feature hardware protection. Refer to
SIGNAL DESCRIPTIONS section for a detailed
description of these signals.
VPP ≤ VPPLK. The VPP pin protects all the memory blocks from program and erase operations. Refer to SIGNAL DESCRIPTIONS section for a
detailed description of these signals.
SECURITY FEATURES
The M28W320FSU and M28W640FSU are
equipped with KRYPTO Security features performing software protection. They allow any block
to be protected from program/erase or read operations:
■
Modify Protection including Volatile Block
Lock/Unlock, Non-Volatile Block Modify
Protection, Non-Volatile Password Modify
Protection and Irreversible Protection.
■
Read Protection.
The KRYPTO features (Modify Protection mode,
Read Protection mode and Device Authentication
mechanism) are not described in this Datasheet.
For further details concerning these additional protection modes please contact ST Sales Offices.
The devices also feature a 64 bit Unique Device
Identifier and a 128 bit user-programmable OTP
segment (see Figure 6., Protection Register Memory Map and Protection Register Program Command).
11/49
M28W320FSU, M28W640FSU
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands
consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution
of the Program and Erase commands. The Program/Erase Controller provides a Status Register
whose output may be read at any time, to monitor
the progress of the operation, or the Program/
Erase states. See Table 3., Command Codes, for
a summary of the commands and see APPENDIX
D., Table 28., Write State Machine Current/Next,
sheet 1 of 2., for a summary of the Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any
invalid combination of commands will reset the device to Read mode. Refer to Table 4., Commands,
in conjunction with the text descriptions below.
Read Memory Array Command
The Read command returns the memory to its
Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return
the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operation itself. Issue a Read Status
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register at any address, until another
command is issued. See Table 8., Status Register
Bits, for details on the definitions of the bits.
The Read Status Register command may be issued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the content of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads
the Manufacturer and Device Codes, and the Protection Register.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer Code, the Device Code and the
Protection Register. See Tables 5, and 6 for the
valid address.
12/49
Table 3. Command Codes
Hex Code
Command
01h
Block Lock confirm
10h
Program
20h
Erase
30h
Double Word Program
40h
Program
50h
Clear Status Register
56h
Quadruple Word Program
70h
Read Status Register
90h
Read Electronic Signature
98h
Read CFI Query
B0h
Program/Erase Suspend
C0h
Protection Register Program
D0h
Program/Erase Resume
FFh
Read Memory Array
Read CFI Query Command
The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or applications to automatically match their interface to
the characteristics of the device. One Bus Write
cycle is required to issue the Read Query Command. Once the command is issued subsequent
Bus Read operations read from the Common
Flash Interface Memory Area. See APPENDIX
B., COMMON FLASH INTERFACE (CFI), Tables
22, 23, 24, 25, 26 and 27 for details on the information contained in the Common Flash Interface
memory area.
Block Erase Command
The Block Erase command can be used to erase
a block. It sets all the bits within the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the data in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command.
■
The first bus cycle sets up the Erase
command.
■
The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
M28W320FSU, M28W640FSU
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will accept
the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are
given in Table 7., Program, Erase Times and Program/Erase Endurance Cycles.
See APPENDIX C., Figure 18., Erase Flowchart
and Pseudo Code, for a suggested flowchart for
using the Erase command.
Program Command
The memory array can be programmed word-byword. Two bus write cycles are required to issue
the Program Command.
■
The first bus cycle sets up the Program
command.
■
The second latches the Address and the Data
to be written and starts the Program/Erase
Controller.
During Program operations the memory will accept the Read Status Register command and the
Program/Erase Suspend command. Typical Program times are given in Table 7., Program, Erase
Times and Program/Erase Endurance Cycles.
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and reprogrammed.
See APPENDIX C., Figure 14., Program Flowchart and Pseudo Code, for the flowchart for using
the Program command.
Double Word Program Command
This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0.
The Double Word Program command can be issued either with VPP set to VPPH or to VDD.
Three bus write cycles are necessary to issue the
Double Word Program command.
■
The first bus cycle sets up the Double Word
Program Command.
■
The second bus cycle latches the Address and
the Data of the first word to be written.
■
The third bus cycle latches the Address and
the Data of the second word to be written and
starts the Program/Erase Controller.
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See APPENDIX C., Figure 15., Double Word Program Flowchart and Pseudo Code for the flowchart for using the Double Word Program
command.
Quadruple Word Program Command
This feature is offered to improve the programming
throughput, writing a page of four adjacent words
in parallel.The four words must differ only for the
addresses A0 and A1.
A Quadruple word Program command will be ignored if VPP is not set to VPPH.
Five bus write cycles are necessary to issue the
Quadruple Word Program command.
■
The first bus cycle sets up the Quadruple
Word Program Command.
■
The second bus cycle latches the Address and
the Data of the first word to be written.
■
The third bus cycle latches the Address and
the Data of the second word to be written.
■
The fourth bus cycle latches the Address and
the Data of the third word to be written.
■
The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See APPENDIX C., Figure 16., Quadruple Word
Program Flowchart and Pseudo Code, for the
flowchart for using the Quadruple Word Program
command.
Clear Status Register Command
The Clear Status Register command can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command
The Program/Erase Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue the Program/Erase
13/49
M28W320FSU, M28W640FSU
command and pause the Program/Erase controller.
During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then
the Program, Double Word Program, Quadruple
Word Program, Block Lock, or Protection Program
commands will also be accepted. The block being
erased may be protected by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/Erase Resume
command is issued the operation will complete.
Only the blocks not being erased may be read or
programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to VIH. Program/Erase is aborted if
Reset turns to VIL.
See APPENDIX C., Figure 17., Program Suspend
& Resume Flowchart and Pseudo Code, and Figure 19., Erase Suspend & Resume Flowchart and
Pseudo Code, for flowcharts for using the Program/Erase Suspend command.
Program/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subse-
14/49
quent Bus Read operations read the Status Register.
See APPENDIX C., Figure 17., Program Suspend
& Resume Flowchart and Pseudo Code, and Figure 19., Erase Suspend & Resume Flowchart and
Pseudo Code, for flowcharts for using the Program/Erase Resume command.
Protection Register Program Command
The Protection Register Program command is
used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a
time. When shipped all bits in the segment are set
to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protection Register Program command.
■
The first bus cycle sets up the Protection
Register Program command.
■
The second latches the Address and the Data
to be written to the Protection Register and
starts the Program/Erase Controller.
Read operations output the Status Register content after the programming has started.
The segment can be protected by programming bit
1 of the Protection Lock Register (see Figure
6., Protection Register Memory Map). Attempting
to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register is not reversible.
The Protection Register Program cannot be suspended.
M28W320FSU, M28W640FSU
Cycles
Table 4. Commands
Commands
Bus Write Operations
1st Cycle
2nd Cycle
Op. Add Data
Op. Add Data
3rd Cycle
4th Cycle
Op. Add Data Op.
Read Memory
Array
1+ Write
X
FFh
Read
RA
RD
Read Status
Register
1+ Write
X
70h
Read
X
SRD
Read Electronic
Signature
1+ Write
X
90h
Read SA(2)
IDh
Read CFI Query
1+ Write
X
98h
Read
QA
QD
Erase
2
Write
X
20h
Write
BA
D0h
Program
2
Write
X
40h or
Write
10h
PA
PD
Double Word
Program(3)
3
Write
X
30h
Write PA1
PD1
Write
PA2
PD2
Quadruple Word
Program(4)
5
Write
X
56h
Write PA1
PD1
Write
PA2
PD2 Write
Clear Status
Register
1
Write
X
50h
Program/Erase
Suspend
1
Write
X
B0h
Program/Erase
Resume
1
Write
X
D0h
Protection
Register Program
2
Write
X
C0h
Write PRA
PRD
5th Cycle
Add Data
PA3
Op. Add Data
PD3 Write
PA4
PD4
Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),
QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data.
2. The signature addresses are listed in Tables 5 and 6.
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
Table 5. Read Electronic Signature
Code
E
G
W
A0
A1
A2-A7
A8-A20
A8-A21(2)
DQ0-DQ7
DQ8-DQ15
VIL
VIL
VIH
VIL
VIL
0
Don't Care
20h
00h
M28W320FSU
VIL
VIL
VIH
VIH
VIL
0
Don't Care
0Ch
88h
M28W640FSU
VIL
VIL
VIH
VIH
VIL
0
Don't Care
57h
88h
Device
Manufacture
Code
Device Code
Note: 1. RP = VIH.
2. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU.
15/49
M28W320FSU, M28W640FSU
Table 6. Read Protection Register and Protection Register Lock
E
G
W
A0-A7
A8-A21(1)
DQ0
DQ1
DQ2
Lock
VIL
VIL
VIH
80h
Don't Care
0
OTP Prot.
data
0
00h
00h
Unique ID 0
VIL
VIL
VIH
81h
Don't Care
ID data
ID data
ID data
ID data
ID data
Unique ID 1
VIL
VIL
VIH
82h
Don't Care
ID data
ID data
ID data
ID data
ID data
Unique ID 2
VIL
VIL
VIH
83h
Don't Care
ID data
ID data
ID data
ID data
ID data
Unique ID 3
VIL
VIL
VIH
84h
Don't Care
ID data
ID data
ID data
ID data
ID data
OTP 0
VIL
VIL
VIH
85h
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 1
VIL
VIL
VIH
86h
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 2
VIL
VIL
VIH
87h
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 3
VIL
VIL
VIH
88h
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 4
VIL
VIL
VIH
89h
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 5
VIL
VIL
VIH
8Ah
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 6
VIL
VIL
VIH
8Bh
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 7
VIL
VIL
VIH
8Ch
Don't Care
OTP data
OTP data
OTP data
OTP data
OTP data
Word
Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU.
16/49
DQ3-DQ7 DQ8-DQ15
M28W320FSU, M28W640FSU
Table 7. Program, Erase Times and Program/Erase Endurance Cycles
M28W320FSU, M28W640FSU
Parameter
Test Conditions
Unit
Min
Typ
Max
VPP = VDD
10
200
µs
VPP = VPPH or
VPP = VDD
10
200
µs
VPP = VPPH
10
200
µs
Using Word
Program command
VPP = VDD
0.64
Using Double Word
Program command
VPP = VPPH or
VPP = VDD
0.32
VPP = VPPH
0.16
VPP =VPPH or
VPP = VDD
1
Word Program
Double Word Program
Quadruple Word Program
Block Program
Using Quadruple
Word Program
command
Block Erase
Program/Erase Cycles (per Block)
Data Retention
s
5
s
s
10
s
100,000
cycles
20
years
17/49
M28W320FSU, M28W640FSU
STATUS REGISTER
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, refer to Read Status Register Command section. To
output the contents, the Status Register is latched
on the falling edge of the Chip Enable or Output
Enable signals, and can be read until Chip Enable
or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update
the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 8., Status Register Bits. Refer to Table 8. in
conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The
Program/Erase Controller Status bit indicates
whether the Program/Erase Controller is active or
inactive. When the Program/Erase Controller Status bit is Low (set to ‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the
Program/Erase Controller is inactive, and the device is ready to process a new command.
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller pauses the bit is High.
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Register should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPP
Status and Block Lock Status bits should be tested
for errors.
Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation
has been suspended or is going to be suspended.
When the Erase Suspend Status bit is High (set to
‘1’), a Program/Erase Suspend command has
been issued and the memory is waiting for a Program/Erase Resume command.
The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than
entering the Suspend mode.
18/49
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum number of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum
number of pulses to the byte and still failed to verify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset before a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3). The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation.
When the VPP Status bit is Low (set to ‘0’), the voltage on the VPP pin was sampled at a valid voltage;
when the VPP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the VPP Lockout
Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed.
Once set High, the VPP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program
Suspend Status bit indicates that a Program operation has been suspended. When the Program
Suspend Status bit is High (set to ‘1’), a Program/
Erase Suspend command has been issued and
the memory is waiting for a Program/Erase Resume command. The Program Suspend Status
should only be considered valid when the Pro-
M28W320FSU, M28W640FSU
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set within 5µs of
the Program/Erase Suspend command being issued therefore the memory may still complete the
operation rather than entering the Suspend mode.
When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the
contents of a locked block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been attempted on a locked block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to APPENDIX C., FLOWCHARTS
AND PSEUDO CODES, for using the Status
Register.
Table 8. Status Register Bits
Bit
7
6
5
4
3
2
1
0
Name
Logic Level
Definition
'1'
Ready
'0'
Busy
'1'
Suspended
'0'
In progress or Completed
'1'
Erase Error
'0'
Erase Success
'1'
Program Error
'0'
Program Success
'1'
VPP Invalid, Abort
'0'
VPP OK
'1'
Suspended
'0'
In Progress or Completed
'1'
Program/Erase on protected Block, Abort
'0'
No operation to protected blocks
P/E.C. Status
Erase Suspend Status
Erase Status
Program Status
VPP Status
Program Suspend Status
Block Protection Status
Reserved
Note: Logic level '1' is High, '0' is Low.
19/49
M28W320FSU, M28W640FSU
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 9. Absolute Maximum Ratings
Value
Symbol
Parameter
Unit
Min
Max
Ambient Operating Temperature (1)
– 40
85
°C
TBIAS
Temperature Under Bias
– 40
125
°C
TSTG
Storage Temperature
– 55
155
°C
TLEAD
Lead Temperature during Soldering
(2)
°C
TA
VIO
VDD, VDDQ
VPP
Input or Output Voltage
– 0.6
VDDQ+0.6
V
Supply Voltage
– 0.6
4.1
V
Program Voltage
– 0.6
13
V
Note: 1. Depends on range.
2. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification,
and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.
20/49
M28W320FSU, M28W640FSU
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measure-
ment
Conditions
summarized
in
Table
10., Operating and AC Measurement Conditions.
Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 10. Operating and AC Measurement Conditions
M28W320FSU, M28W640FSU
Parameter
70
Units
Min
Max
VDD Supply Voltage
2.7
3.6
V
VDDQ Supply Voltage
2.7
3.6
V
Ambient Operating Temperature
–40
85
°C
Load Capacitance (CL)
50
Input Rise and Fall Times
pF
5
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Figure 7. AC Measurement I/O Waveform
ns
0 to VDDQ
V
VDDQ/2
V
Figure 8. AC Measurement Load Circuit
VDDQ
VDDQ
VDDQ/2
VDDQ
VDD
0V
25kΩ
AI00610
DEVICE
UNDER
TEST
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI00609C
Table 11. Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Test Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
Note: Sampled only, not 100% tested.
21/49
M28W320FSU, M28W640FSU
Table 12. DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
ILI
Input Leakage Current
0V≤ VIN ≤ VDDQ
±1
µA
ILO
Output Leakage Current
0V≤ VOUT ≤VDDQ
±10
µA
IDD
Supply Current (Read)
IDD1
Supply Current (Stand-by or
Automatic Stand-by)
IDD2
Supply Current
(Reset)
IDD3
IDD4
Supply Current (Program)
Supply Current (Erase)
E = VSS, G = VIH, f = 5MHz
9
18
mA
E = VDDQ ± 0.2V,
RP = VDDQ ± 0.2V
15
50
µA
RP = VSS ± 0.2V
15
50
µA
Program in progress
VPP = 12V ± 5%
5
10
mA
Program in progress
VPP = VDD
10
20
mA
Erase in progress
VPP = 12V ± 5%
5
20
mA
Erase in progress
VPP = VDD
10
20
mA
E = VDDQ ± 0.2V,
Erase suspended
15
50
µA
400
µA
IDD5
Supply Current
(Program/Erase Suspend)
IPP
Program Current
(Read or Stand-by)
VPP > VDD
IPP1
Program Current
(Read or Stand-by)
VPP ≤ VDD
1
5
µA
IPP2
Program Current (Reset)
RP = VSS ± 0.2V
1
5
µA
Program in progress
VPP = 12V ± 5%
1
10
mA
Program in progress
VPP = VDD
1
5
µA
Erase in progress
VPP = 12V ± 5%
3
10
mA
Erase in progress
VPP = VDD
1
5
µA
IPP3
IPP4
Program Current (Program)
Program Current (Erase)
VIL
Input Low Voltage
–0.5
0.8
V
VIH
Input High Voltage
0.7 VDDQ
VDDQ +0.4
V
VOL
Output Low Voltage
IOL = 100µA, VDD = VDD min,
VDDQ = VDDQ min
0.1
V
VOH
Output High Voltage
IOH = –100µA, VDD = VDD min,
VDDQ = VDDQ min
VPP1
Program Voltage (Program or
Erase operations)
2.7
3.6
V
VPPH
Program Voltage
(Program or Erase
operations)
11.4
12.6
V
VPPLK
Program Voltage
(Program and Erase lock-out)
1
V
VLKO
VDD Supply Voltage (Program
and Erase lock-out)
2
V
22/49
VDDQ –0.1
V
M28W320FSU, M28W640FSU
Figure 9. Read AC Waveforms
tAVAV
A0-A20/A21(1)
VALID
tAVQV
tAXQX
E
tELQV
tELQX
tEHQX
tEHQZ
G
tGLQV
tGHQX
tGLQX
tGHQZ
VALID
DQ0-DQ15
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED
DATA VALID
STANDBY
AI09928
Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU.
Table 13. Read AC Characteristics
Symbol
Alt
M28W320FSU
M28W640FSU
70
70
Min
70
70
ns
Parameter
Unit
tAVAV
tRC
tAVQV
tACC Address Valid to Output Valid
Max
70
70
ns
tAXQX (1)
tOH
Address Transition to Output Transition
Min
0
0
ns
tEHQX (1)
tOH
Chip Enable High to Output Transition
Min
0
0
ns
tEHQZ (1)
tHZ
Chip Enable High to Output Hi-Z
Max
20
20
ns
tELQV (2)
tCE
Chip Enable Low to Output Valid
Max
70
70
ns
tELQX (1)
tLZ
Chip Enable Low to Output Transition
Min
0
0
ns
tGHQX (1)
tOH
Output Enable High to Output Transition
Min
0
0
ns
tGHQZ (1)
tDF
Output Enable High to Output Hi-Z
Max
20
20
ns
tGLQV (2)
tOE
Output Enable Low to Output Valid
Max
20
20
ns
tGLQX (1)
tOLZ Output Enable Low to Output Transition
Min
0
0
ns
Address Valid to Next Address Valid
Note: 1. Sampled only, not 100% tested.
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
23/49
24/49
VPP
DQ0-DQ15
W
G
E
A0-A20/A21(1)
tWLWH
COMMAND
SET-UP COMMAND
tDVWH
tELWL
tWHDX
tWHWL
tWHEH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHWH
tAVWH
VALID
tAVAV
tWHEL
tWHGL
tWHAX
PROGRAM OR ERASE
AI09929
tQVVPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W320FSU, M28W640FSU
Figure 10. Write AC Waveforms, Write Enable Controlled
Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU.
M28W320FSU, M28W640FSU
Table 14. Write AC Characteristics, Write Enable Controlled
Symbol
Alt
M28W320FSU
M28W640FSU
70
70
Parameter
Unit
tAVAV
tWC
Write Cycle Time
Min
70
70
ns
tAVWH
tAS
Address Valid to Write Enable High
Min
45
45
ns
tDVWH
tDS
Data Valid to Write Enable High
Min
45
45
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
0
ns
tELQV
Chip Enable Low to Output Valid
Min
70
70
ns
tQVVPL
Output Valid to VPP Low
Min
0
0
ns
tVPS
VPP High to Write Enable High
Min
200
200
ns
tWHAX
tAH
Write Enable High to Address Transition
Min
0
0
ns
tWHDX
tDH
Write Enable High to Data Transition
Min
0
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
0
ns
tWHEL
Write Enable High to Chip Enable Low
Min
25
25
ns
tWHGL
Write Enable High to Output Enable Low
Min
20
20
ns
(1,2)
tVPHWH
(1)
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
25
25
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
45
45
ns
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
25/49
26/49
VPP
DQ0-DQ15
E
G
W
A0-A20/A21
tELEH
COMMAND
POWER-UP AND
SET-UP COMMAND
tDVEH
tWLEL
tEHDX
tEHEL
tEHWH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHEH
tAVEH
VALID
tAVAV
tEHGL
tEHAX
PROGRAM OR ERASE
tQVVPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
AI09930
M28W320FSU, M28W640FSU
Figure 11. Write AC Waveforms, Chip Enable Controlled
Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU.
M28W320FSU, M28W640FSU
Table 15. Write AC Characteristics, Chip Enable Controlled
Symbol
Alt
M28W320FSU
M28W640FSU
70
70
Parameter
Unit
tAVAV
tWC
Write Cycle Time
Min
70
70
ns
tAVEH
tAS
Address Valid to Chip Enable High
Min
45
45
ns
tDVEH
tDS
Data Valid to Chip Enable High
Min
45
45
ns
tEHAX
tAH
Chip Enable High to Address Transition
Min
0
0
ns
tEHDX
tDH
Chip Enable High to Data Transition
Min
0
0
ns
tEHEL
tCPH Chip Enable High to Chip Enable Low
Min
25
25
ns
Chip Enable High to Output Enable Low
Min
25
25
ns
tEHGL
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
45
ns
tELQV
Chip Enable Low to Output Valid
Min
70
70
ns
tQVVPL
Output Valid to VPP Low
Min
0
0
ns
tVPS VPP High to Chip Enable High
Min
200
200
ns
tCS
Min
0
0
ns
(1,2)
tVPHEH
(1)
tWLEL
Write Enable Low to Chip Enable Low
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
27/49
M28W320FSU, M28W640FSU
Figure 12. Power-Up and Reset AC Waveforms
W, E, G
tPHWL
tPHEL
tPHGL
tPHWL
tPHEL
tPHGL
RP
tVDHPH
tPLPH
VDD, VDDQ
Power-Up
Reset
AI03537b
Table 16. Power-Up and Reset AC Characteristics
Symbol
Parameter
Test Condition
M28W320FSU,
M28W640FSU
Unit
70
tPHWL
tPHEL
tPHGL
Reset High to Write Enable Low, Chip Enable Low,
Output Enable Low
During Program
and Erase
Min
50
µs
others
Min
30
ns
tPLPH(1,2)
Reset Low to Reset High
Min
100
ns
tVDHPH(3)
Supply Voltages High to Reset High
Min
50
µs
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.
2. Sampled only, not 100% tested.
3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
28/49
M28W320FSU, M28W640FSU
PACKAGE MECHANICAL
Figure 13. TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline
D
D1
FD
FE
E
SD
SE
E1
ddd
BALL "A1"
A
e
b
A2
A1
BGA-Z23
Note: Drawing is not to scale.
Table 17. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.300
A2
0.800
b
0.200
0.350
Max
0.0472
0.0118
0.0079
0.0138
0.0138
0.0197
0.0315
0.350
0.500
D
10.000
9.900
10.100
0.3937
0.3898
0.3976
D1
7.000
–
–
0.2756
–
–
ddd
0.100
0.0039
e
1.000
–
–
0.0394
–
–
E
13.000
12.900
13.100
0.5118
0.5079
0.5157
E1
7.000
–
–
0.2756
–
–
FD
1.500
–
–
0.0591
–
–
FE
3.000
–
–
0.1181
–
–
SD
0.500
–
–
0.0197
–
–
SE
0.500
–
–
0.0197
–
–
29/49
M28W320FSU, M28W640FSU
PART NUMBERING
Table 18. Ordering Information Scheme
Example:
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; VDDQ = 2.7V to 3.6V
Device Function
320FSU = 32 Mbit (2 Mb x16), Uniform Block, Secure, 0.13µm
640FSU = 64 Mbit (4 Mb x16), Uniform Block, Secure, 0.13µm
Speed
70 = 70ns
Package
ZA = TBGA64:10 x 13mm, 1mm pitch
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
Option
Blank = Standard Packing
T = Tape & Reel Packing
E = Lead-Free and RoHS Package, Standard Packing
F = Lead-Free and RoHS Package, Tape & Reel Packing
30/49
M28W320FSU 70 ZA 6
T
M28W320FSU, M28W640FSU
Table 19. Daisy Chain Ordering Scheme
Example:
M28W640FSU
-ZA
T
Device Type
M28W320FSU
M28W640FSU
Daisy Chain
-ZA = TBGA64: 10 x 13, 1mm pitch
Option
Blank = Standard Packing
T = Tape & Reel Packing
E = Lead-Free and RoHS Package, Standard Packing
F = Lead-Free and RoHS Package, Tape & Reel Packing
Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available
options (Speed, Package, etc.) or for further information on any aspect of this device, please contact
the ST Sales Office nearest to you.
31/49
M28W320FSU, M28W640FSU
APPENDIX A. BLOCK ADDRESS TABLES
Table 20. Block Addresses, M28W320FSU
Block
Number
Address Range
31
1F0000h-1FFFFFh
30
1E0000h-1EFFFFh
29
1D0000h-1DFFFFh
28
1C0000h-1CFFFFh
27
1B0000h-1BFFFFh
26
1A0000h-1AFFFFh
25
190000h-19FFFFh
24
180000h-18FFFFh
23
170000h-17FFFFh
22
160000h-16FFFFh
21
150000h-15FFFFh
20
140000h-14FFFFh
19
130000h-13FFFFh
18
120000h-12FFFFh
17
110000h-11FFFFh
16
100000h-10FFFFh
32/49
Block
Number
Address Range
15
0F0000h-0FFFFFh
14
0E0000h-0EFFFFh
13
0D0000h-0DFFFFh
12
0C0000h-0CFFFFh
11
0B0000h-0BFFFFh
10
0A0000h-0AFFFFh
9
090000h-09FFFFh
8
080000h-08FFFFh
7
070000h-07FFFFh
6
060000h-06FFFFh
5
050000h-05FFFFh
4
040000h-04FFFFh
3
030000h-03FFFFh
2
020000h-02FFFFh
1
010000h-01FFFFh
0
000000h-00FFFFh
M28W320FSU, M28W640FSU
Table 21. Block Addresses, M28W640FSU
Block
Number
Address Range
63
3F0000h-3FFFFFh
62
3E0000h-3EFFFFh
61
3D0000h-3DFFFFh
60
3C0000h-3CFFFFh
59
3B0000h-3BFFFFh
58
3A0000h-3AFFFFh
57
390000h-39FFFFh
56
380000h-38FFFFh
55
370000h-37FFFFh
54
360000h-36FFFFh
53
350000h-35FFFFh
52
340000h-34FFFFh
51
330000h-33FFFFh
50
320000h-32FFFFh
49
310000h-31FFFFh
48
300000h-30FFFFh
47
2F0000h-2FFFFFh
46
2E0000h-2EFFFFh
45
2D0000h-2DFFFFh
44
2C0000h-2CFFFFh
43
2B0000h-2BFFFFh
42
2A0000h-2AFFFFh
41
290000h-29FFFFh
40
280000h-28FFFFh
39
270000h-27FFFFh
38
260000h-26FFFFh
37
250000h-25FFFFh
36
240000h-24FFFFh
35
230000h-23FFFFh
34
220000h-22FFFFh
33
210000h-21FFFFh
32
200000h-20FFFFh
Block
Number
Address Range
31
1F0000h-1FFFFFh
30
1E0000h-1EFFFFh
29
1D0000h-1DFFFFh
28
1C0000h-1CFFFFh
27
1B0000h-1BFFFFh
26
1A0000h-1AFFFFh
25
190000h-19FFFFh
24
180000h-18FFFFh
23
170000h-17FFFFh
22
160000h-16FFFFh
21
150000h-15FFFFh
20
140000h-14FFFFh
19
130000h-13FFFFh
18
120000h-12FFFFh
17
110000h-11FFFFh
16
100000h-10FFFFh
15
0F0000h-0FFFFFh
14
0E0000h-0EFFFFh
13
0D0000h-0DFFFFh
12
0C0000h-0CFFFFh
11
0B0000h-0BFFFFh
10
0A0000h-0AFFFFh
9
090000h-09FFFFh
8
080000h-08FFFFh
7
070000h-07FFFFh
6
060000h-06FFFFh
5
050000h-05FFFFh
4
040000h-04FFFFh
3
030000h-03FFFFh
2
020000h-02FFFFh
1
010000h-01FFFFh
0
000000h-00FFFFh
33/49
M28W320FSU, M28W640FSU
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a
system software to query the device to determine
various electrical and timing parameters, density
information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the memory. Tables 22, 23,
24, 25, 26 and 27 show the addresses used to retrieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is written (see Table 27., Security Code Area). This area
can be accessed only in Read mode by the final
user. It is impossible to change the security number after it has been written by ST. Issue a Read
command to return to Read mode.
Table 22. Query Structure Overview
Offset
Sub-section Name
Description
00h
Reserved
Reserved for algorithm-specific information
10h
CFI Query Identification String
Command set ID and algorithm data offset
1Bh
System Interface Information
Device timing & voltage information
27h
Device Geometry Definition
Flash device layout
P
Primary Algorithm-specific Extended Query table
Additional information specific to the Primary
Algorithm (optional)
A
Alternate Algorithm-specific Extended Query table
Additional information specific to the Alternate
Algorithm (optional)
Note: Query data are always presented on the lowest order data outputs.
Table 23. CFI Query Identification String
Offset
Data
00h
0020h
Manufacturer Code
01h
880Ch
8857h
M28W320FSU Device Code
M28W640FSU Device Code
02h-0Fh
Description
ST
Uniform
reserved Reserved
10h
0051h
11h
0052h
12h
0059h
13h
0003h
14h
0000h
15h
0035h
16h
0000h
17h
0000h
18h
0000h
19h
0000h
1Ah
0000h
"Q"
Query Unique ASCII String "QRY"
"R"
"Y"
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code
defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 26.)
Intel
compatible
P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists)
NA
Address for Alternate Algorithm extended Query table
(0000h means none exists)
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
34/49
Value
M28W320FSU, M28W640FSU
Table 24. CFI Query System Interface Information
Offset
Data
Description
Value
1Bh
0027h
VDD Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100mV
2.7V
1Ch
0036h
VDD Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100mV
3.6V
1Dh
00B4h
VPP [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100mV
11.4V
1Eh
00C6h
VPP [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100mV
12.6V
1Fh
0004h
Typical time-out per single word program = 2n µs
16µs
20h
0004h
Typical time-out for Double/Quadruple Word Program = 2n µs
16µs
21h
000Ah
Typical time-out per individual block erase = 2n ms
1s
22h
0000h
Typical time-out for full chip erase = 2n ms
NA
23h
0005h
Maximum time-out for Word program = 2n times typical
512µs
24h
0005h
Maximum time-out for Double/Quadruple Word Program = 2n times typical
512µs
25h
0003h
Maximum time-out per individual block erase = 2n times typical
8s
26h
0000h
Maximum time-out for chip erase = 2n times typical
NA
35/49
M28W320FSU, M28W640FSU
Table 25. Device Geometry Definition
M28W640FSU M28W320FSU
M28W640FSU M28W320FSU
Offset Word
Mode
Description
Value
4 MBytes
0016h
Device Size = 2n in number of bytes
27h
0017h
8 MBytes
28h
29h
0001h
0000h
Flash Device Interface Code description
2Ah
2Bh
0003h
0000h
Maximum number of bytes in multi-byte program or page = 2n
8
2Ch
0001h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size.
1
2Dh
2Eh
001Fh
0000h
Region 1 Information
Number of identical-size erase blocks = 001Fh+1
32
2Fh
30h
0000h
0002h
2Dh
2Eh
003Fh
0000h
2Fh
30h
0000h
0002h
31h to 34h
36/49
Data
Region 1 Information
Block size in Region 1 = 0200h * 256 byte
Region 1 Information
Number of identical-size erase blocks = 003Fh+1
Region 1 Information
Block size in Region 1 = 0200h * 256 byte
Reserved
x16
Async.
128
KBytes
64
128
KBytes
M28W320FSU, M28W640FSU
Table 26. Primary Algorithm-Specific Extended Query Table
Offset
P = 35h (1)
Data
(P+0)h = 35h
0050h
(P+1)h = 36h
0052h
(P+2)h = 37h
0049h
(P+3)h = 38h
0031h
Major version number, ASCII
"1"
(P+4)h = 39h
0030h
Minor version number, ASCII
"0"
(P+5)h = 3Ah
0066h
(P+6)h = 3Bh
0000h
(P+7)h = 3Ch
0000h
(P+8)h = 3Dh
0000h
Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
bit 0Chip Erase supported(1 = Yes, 0 = No)
bit 1Suspend Erase supported(1 = Yes, 0 = No)
bit 2Suspend Program supported(1 = Yes, 0 = No)
bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No)
bit 4Queued Erase supported(1 = Yes, 0 = No)
bit 5Instant individual block locking supported(1 = Yes, 0 = No)
bit 6Protection bits supported(1 = Yes, 0 = No)
bit 7Page mode read supported(1 = Yes, 0 = No)
bit 8Synchronous read supported(1 = Yes, 0 = No)
bit 31 to 9 Reserved; undefined bits are ‘0’
(P+9)h = 3Eh
0001h
(P+A)h = 3Fh
0003h
(P+B)h = 40h
0000h
Description
Value
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
"R"
"I"
Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1Reserved; undefined bits are ‘0’
Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)
bit 15 to 1Reserved for future use; undefined bits are ‘0’
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes
(P+C)h = 41h
0030h
VDD Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100mV
3V
(P+D)h = 42h
00C0h
VPP Supply Optimum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100mV
12V
(P+E)h = 43h
0001h
Number of Protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available
01
(P+F)h = 44h
0080h
80h
(P+10)h = 45h
0000h
(P+11)h = 46h
0003h
(P+12)h = 47h
0004h
Protection Field 1: Protection Description
This field describes user-available One Time Programmable (OTP)
Protection Register bytes. Some are pre-programmed with device unique
serial numbers. Others are user programmable. Bits 0–15 point to the
Protection Register Lock byte, the section’s first byte.
The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7 Lock/bytes JEDEC-plane physical low address
bit 8 to 15Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
bit 24 to 31 "n" such that 2n = user programmable bytes
(P+13)h = 48h
00h
8 Bytes
16 Bytes
Reserved
Note: 1. See Table 23., offset 15 for P pointer definition.
37/49
M28W320FSU, M28W640FSU
Table 27. Security Code Area
Offset
Data
80h
00XX
81h
XXXX
82h
XXXX
83h
XXXX
84h
XXXX
85h
XXXX
86h
XXXX
87h
XXXX
88h
XXXX
89h
XXXX
8Ah
XXXX
8Bh
XXXX
8Ch
XXXX
38/49
Description
Protection Register Lock
64 bits: unique device number
128 bits: User Programmable OTP
M28W320FSU, M28W640FSU
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 14. Program Flowchart and Pseudo Code
Start
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
Write 40h or 10h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
39/49
M28W320FSU, M28W640FSU
Figure 15. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03539b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
40/49
M28W320FSU, M28W640FSU
Figure 16. Quadruple Word Program Flowchart and Pseudo Code
Start
quadruple_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2,
addressToProgram3, dataToProgram3,
addressToProgram4, dataToProgram4)
{
writeToFlash (any_address, 0x56) ;
Write 56h
Write Address 1
& Data 1 (3)
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
Write Address 2
& Data 2 (3)
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ;
/*see note (3) */
Write Address 3
& Data 3 (3)
writeToFlash (addressToProgram4, dataToProgram4) ;
/*see note (3) */
Write Address 4
& Data 4 (3)
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI06233
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.
41/49
M28W320FSU, M28W640FSU
Figure 17. Program Suspend & Resume Flowchart and Pseudo Code
Start
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b2 = 1
NO
Program Complete
YES
Write FFh
}
Read data from
another address
Write D0h
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
Write FFh
}
Program Continues
Read Data
AI03540b
42/49
M28W320FSU, M28W640FSU
Figure 18. Erase Flowchart and Pseudo Code
Start
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
Write 20h
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Write Block
Address & D0h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1)
YES
Command
Sequence Error (1)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
b4, b5 = 1
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
NO
b5 = 0
NO
Erase Error (1)
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
YES
b1 = 0
NO
Erase to Protected
Block Error (1)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03541b
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
43/49
M28W320FSU, M28W640FSU
Figure 19. Erase Suspend & Resume Flowchart and Pseudo Code
Start
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b6 = 1
NO
Erase Complete
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
YES
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
Write FFh
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
}
else
Write D0h
Write FFh
Erase Continues
Read Data
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
AI03542b
44/49
M28W320FSU, M28W640FSU
Figure 20. Protection Register Program Flowchart and Pseudo Code
Start
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
Write C0h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI04381
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
45/49
M28W320FSU, M28W640FSU
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER
STATE
Table 28. Write State Machine Current/Next, sheet 1 of 2.
Current
State
SR
bit 7
Data
When
Read
Read Array
“1”
Array
Command Input (and Next State)
Read
Array
(FFh)
Program
Setup
(10/40h)
Read Array Prog.Setup
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Ers. Setup
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read
Status
(70h)
Clear
Status
(50h)
Read Array
Read Sts.
Read Array
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Electronic
Read Array
Signature
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Read
Status
Read Array
Read
Status
“1”
Read
Elect.Sg.
“1”
Read CFI
Query
“1”
CFI
Prot. Prog.
Setup
“1”
Status
Protection Register Program
Prot. Prog.
(continue)
“0”
Status
Protection Register Program continue
Prot. Prog.
(complete)
“1”
Status
Prog. Setup
“1”
Status
Program
(continue)
“0”
Status
Prog. Sus
Status
“1”
Status
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
“1”
Array
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read
Elect.Sg.
“1”
Electronic Prog. Sus
Signature Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read CFI
“1”
CFI
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Program
(complete)
“1”
Status
Read Array
Read
Status
Read Array
Erase
Setup
“1”
Status
Erase
Cmd.Error
“1”
Status
Erase
(continue)
“0”
Status
Erase Sus
Read Sts
“1”
Status
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read Array
“1”
Array
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read
Elect.Sg.
“1”
Electronic Erase Sus
Signature Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read CFI
“1”
CFI
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase
(complete)
“1”
Status
Read Array
Program
Setup
Erase
Setup
Status
Read Array
Read Array
Program
Setup
Erase
Setup
Read Array
Program
Prog. Sus
Read Sts
Program (continue)
Program
Setup
Erase
Setup
Erase Command Error
Read Array
Program
Setup
Program (continue)
Read Array
Erase
(continue)
Erase
Setup
Erase (continue)
Erase
CmdError
Erase
(continue)
Erase Command Error
Read Array
Read
Status
Erase Sus
Read Sts
Erase (continue)
Read Array
Read
Status
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
46/49
Read Array
Read Array
M28W320FSU, M28W640FSU
Table 29. Write State Machine Current/Next, sheet 2 of 2.
Command Input (and Next State)
Current State
Read Elect.Sg.
(90h)
Read CFI Query
(98h)
Prot. Prog. Setup (C0h)
Read Array
Read Elect.Sg.
Read CFI Query
Prot. Prog. Setup
Read Status
Read Elect.Sg.
Read CFI Query
Prot. Prog. Setup
Read Elect.Sg.
Read Elect.Sg.
Read CFI Query
Prot. Prog. Setup
Read CFI Query
Read Elect.Sg.
Read CFI Query
Prot. Prog. Setup
Prot. Prog. Setup
Protection Register Program
Prot. Prog. (continue)
Protection Register Program (continue)
Prot. Prog. (complete)
Read Elect.Sg.
Read CFI Query
Prog. Setup
Program
Program (continue)
Program (continue)
Prot. Prog. Setup
Prog. Suspend
Read Status
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read CFI Query
Program Suspend Read Array
Prog. Suspend
Read Array
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read CFI Query
Program Suspend Read Array
Prog. Suspend
Read Elect.Sg.
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read CFI Query
Program Suspend Read Array
Prog. Suspend
Read CFI
Prog. Suspend Read Elect.Sg.
Prog. Suspend Read CFI Query
Program Suspend Read Array
Program (complete)
Read Elect.Sg.
Read CFIQuery
Prot. Prog. Setup
Erase Setup
Erase Cmd.Error
Erase Command Error
Read Elect.Sg.
Erase (continue)
Read CFI Query
Prot. Prog. Setup
Erase (continue)
Erase Suspend
Read Ststus
Erase Suspend Read Elect.Sg.
Erase Suspend
Read CFI Query
Erase Suspend Read Array
Erase Suspend Read Array
Erase Suspend Read Elect.Sg.
Erase Suspend Read CFI Query
Erase Suspend Read Array
Erase Suspend Read Elect.Sg.
Erase Suspend Read Elect.Sg.
Erase Suspend Read CFI Query
Erase Suspend Read Array
Erase Suspend Read CFI Query
Erase Suspend Read Elect.Sg.
Erase Suspend Read CFI Query
Erase Suspend Read Array
Erase (complete)
Read Elect.Sg.
Read CFI Query
Prot. Prog. Setup
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
47/49
M28W320FSU, M28W640FSU
REVISION HISTORY
Table 30. Document Revision History
Date
Version
07-Dec-2004
0.1
First Issue.
07-Feb-2005
0.2
Locations 31h to 34h set to reserved in Table 25., Device Geometry Definition.
16-May-2005
1.0
Datasheet status updated to “Full Datasheet”.
Table 25., Device Geometry Definition updated.
48/49
Revision Details
M28W320FSU, M28W640FSU
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
ECOPACK is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
49/49