STMICROELECTRONICS M74HC390M1R

M54HC390
M74HC390
DUAL DECADE COUNTER
.
.
.
.
.
.
.
.
HIGH SPEED
fMAX = 84 MHz (TYP.) AT VCC = 5 V
LOW POWER DISSIPATION
ICC = 4 µA (MAX.) AT TA = 25 °C
HIGH NOISE IMMUNITY
VNIH = VNIL = 28 % VCC (MIN.)
OUTPUT DRIVE CAPABILITY
10 LSTTL LOADS
SYMMETRICAL OUTPUT IMPEDANCE
|IOH| = IOL = 4 mA (MIN.)
BALANCED PROPAGATION DELAYS
tPLH = tPHL
WIDE OPERATING VOLTAGE RANGE
VCC (OPR) = 2 V TO 6 V
PIN AND FUNCTION COMPATIBLE WITH
54/74LS390
B1R
(Plastic Package)
F1R
(Ceramic Package)
M1R
(Micro Package)
C1R
(Chip Carrier)
ORDER CODES :
M54HC390F1R
M74HC390M1R
M74HC390B1R
M74HC390C1R
PIN CONNECTIONS (top view)
DESCRIPTION
The M54/74HC390 is a high speed CMOS DUAL
DECADE COUNTER fabricated in silicon gate
C2MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low
power consumption.
This dual decade counter contains two independent
ripple carry counters. Each counter is composed of
a divide-by-two and divide-by-five counter. The
divide-by-two and divide-by-five counters can be
cascaded to form dual decade, dual biquinary, or
various combinations up to a single divide-by-100
counter.
Each 4-bit counter is incremented on the high to low
transition (negative edge) of the clock input, and
each has an independent clear input. When clear is
set low all four bits of each counter are set to low.
This enables count truncation and allows the implementation of divide-by-N counter configurations.
All inputs are equipped with protection circuits
against static discharge and transient excess voltage.
February 1993
NC =
No Internal Con-
1/13
M54/M74HC390
INPUT AND OUTPUT EQUIVALENT CIRCUIT
TRUTH TABLE
OUTPUTS
COUNT
0
BCD COUNT *
QD
L
QC
L
BI-QUINARY **
QB
L
QA
L
QA
L
QC
L
QB
L
1
L
L
L
H
L
L
L
H
2
3
L
L
L
L
H
H
L
H
L
L
L
L
H
H
L
H
4
L
H
L
L
L
H
L
L
5
6
L
L
H
H
L
H
H
L
H
H
L
L
L
L
L
H
7
L
H
H
H
H
L
H
L
8
H
L
L
L
H
L
H
H
9
H
L
L
H
H
H
L
L
QA
L
QB
L
INPUTS
CLOCK A
X
X
OUTPUTS
CLOCK B
X
CLEAR
H
X
L
BINARY COUNT UP
L
QUINARY COUNT UP
Note: * Output QA is connected to input CLOCK B for BCD count.
** Output QD is connected to input CLOCK A for bi-quinary count.
2/13
QD
L
QC
L
QD
L
M54/M74HC390
BLOCK DIAGRAM
LOGIC DIAGRAM
3/13
M54/M74HC390
TIMING CHART
(1) BCD COUNT SEQUENCE *
(2) BI-QUINARY COUNT SEQUENCE **
*OUTPUT QA IS CONNECTED TO INPUT CLOCK B
4/13
M54/M74HC390
PIN DESCRIPTION
IEC LOGIC SYMBOL
PIN No
SYMBOL
1, 15
1 CLOCK A
2 CLOCK B
Clock Input Divide by 2
Section (HIGH to LOW
Edge-triggered)
2, 14
1 CLEAR
2 CLEAR
1QA to 1QD
Asynchronous Master
Reset Inputs
Flip Flop Outputs
1 CLOCK B
2 CLOCK B
Clock Input Divide by 5
Section (HIGH to LOW
Edge-triggered)
3, 5, 6, 7
4, 12
13, 11, 10, 9 2QA to 2QD
8
16
GND
VCC
NAME AND FUNCTION
Flip Flop Outputs
Ground (0V)
Positive Supply Voltage
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
VCC
VI
Supply Voltage
DC Input Voltage
-0.5 to +7
-0.5 to VCC + 0.5
V
V
VO
DC Output Voltage
-0.5 to VCC + 0.5
V
IIK
DC Input Diode Current
± 20
mA
IOK
DC Output Diode Current
± 20
mA
DC Output Source Sink Current Per Output Pin
DC VCC or Ground Current
± 25
± 50
mA
mA
500 (*)
mW
IO
ICC or IGND
Parameter
PD
Power Dissipation
Tstg
TL
Storage Temperature
Lead Temperature (10 sec)
-65 to +150
300
o
o
C
C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition isnotimplied.
(*) 500 mW: ≅ 65 oC derate to 300 mW by 10mW/oC: 65 oC to 85 oC
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Parameter
Supply Voltage
Value
2 to 6
Unit
V
V
VI
Input Voltage
0 to VCC
VO
Output Voltage
0 to VCC
Top
Operating Temperature: M54HC Series
M74HC Series
tr, tf
Input Rise and Fall Time
-55 to +125
-40 to +85
VCC = 2 V
0 to 1000
VCC = 4.5 V
VCC = 6 V
0 to 500
0 to 400
V
o
o
C
C
ns
5/13
M54/M74HC390
DC SPECIFICATIONS
Test Conditions
Symbol
VIH
V IL
Parameter
High Level Input
Voltage
Low Level Input
Voltage
Value
VCC
(V)
TA = 25 oC
54HC and 74HC
Min. Typ. Max.
2.0
1.5
1.5
1.5
4.5
6.0
3.15
4.2
3.15
4.2
3.15
4.2
High Level
Output Voltage
0.5
0.5
0.5
4.5
1.35
1.35
1.35
2.0
4.5
6.0
4.5
VOL
Low Level Output
Voltage
6.0
2.0
4.5
6.0
4.5
6.0
II
ICC
6/13
Input Leakage
Current
Quiescent Supply
Current
6.0
6.0
1.8
1.8
Unit
V
2.0
6.0
V OH
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min. Max. Min. Max.
V
1.8
1.9
2.0
1.9
1.9
VI =
IO=-20 µA
VIH
or
V IL IO=-4.0 mA
4.4
5.9
4.5
6.0
4.4
5.9
4.4
5.9
4.18
4.31
4.13
4.10
IO=-5.2 mA
5.68
5.8
0.0
5.63
5.60
V
VI =
IO= 20 µA
VIH
or
V IL IO= 4.0 mA
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.0
0.17
0.1
0.26
0.1
0.33
0.1
0.40
IO= 5.2 mA
0.18
V
0.26
0.33
0.40
VI = VCC or GND
±0.1
±1
±1
µA
VI = VCC or GND
4
40
80
µA
M54/M74HC390
AC ELECTRICAL CHARACTERISTICS (C L = 50 pF, Input t r = tf = 6 ns)
Test Conditions
Value
Symbol
Parameter
VCC
(V)
TA = 25 oC
54HC and 74HC
Min. Typ. Max.
tTLH
tTHL
Output Transition
Time
2.0
30
75
95
110
4.5
6.0
8
7
15
13
19
16
22
19
tPLH
tPHL
Propagation
Delay Time
(CLOCK A - QA)
2.0
42
120
150
180
4.5
14
24
30
36
6.0
12
20
26
31
tPLH
tPHL
Propagation
Delay Time
(CLOCK A - QB, QD)
2.0
45
120
150
180
4.5
6.0
15
13
24
20
30
26
36
31
tPLH
tPHL
Propagation
Delay Time
(CLOCK A - QC)
108
280
350
420
36
31
56
48
70
60
84
71
tPLH
tPHL
Propagation
Delay Time
(CLOCK B - QC)
tPHL
Propagation
Delay Time
(CLEAR - Qn
fMAX
fMAX
tW(H)
tW(L)
t(W)H
tREM
Maximum Clock
Frequency
(CLOCK A - QA)
2.0
4.5
6.0
QA Connected
to CKB
2.0
72
185
230
280
4.5
6.0
24
20
37
31
46
39
56
48
2.0
45
125
155
190
4.5
6.0
15
13
25
21
31
26
38
32
2.0
8.4
17
6.8
5.6
4.5
6.0
42
50
65
79
34
40
28
33
Maximum Clock
Frequency
(CLOCK B - QB)
2.0
4.5
8.4
42
17
67
6.8
34
5.6
28
6.0
50
79
40
33
Minimum Pulse
Wisth
(CLOCK)
2.0
4.5
24
6
75
15
95
19
110
22
6.0
5
13
16
19
Minimum Pulse
Wisth
(CLEAR)
2.0
4.5
24
6
75
15
95
19
110
22
6.0
5
13
16
19
Propagation
Delay Time
2.0
4.5
25
5
30
6
35
7
6.0
CIN
CPD (*)
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min. Max. Min. Max.
Input Capacitance
Power Dissipation
Capacitance
5
84
Unit
ns
ns
ns
ns
ns
ns
ns
ns
5
5
6
10
10
10
ns
ns
ns
pF
pF
(*) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load.
(Refer to Test Circuit). Average operting current can be obtained by the following equation. ICC(opr) = CPD •VCC •fIN + ICC
7/13
M54/M74HC390
TEST CIRCUIT ICC (Opr.)
WHEN THE OUTPUTS DRIVE CAPACITIVE LOAD, TOTAL CURRENT CONSUMPTION IS TO BE A SUM OF THE VALUE CALCULATED
FROM CPD AND ∆ICC OBTAINED FROM THE FOLLOWING FORMULA.
Ca fCK
 2Cb Cc Cd 
∆ICC = fCK . VCC . 2 + 2 . VCC .  5 + 5 + 5 


Ca – Cd ARE THE CAPACITANCE AT QA ∼ QD OUTPUT.
SWITCHING CHARACTERISTICS TEST WAVEFORM
8/13
M54/M74HC390
Plastic DIP16 (0.25) MECHANICAL DATA
mm
DIM.
MIN.
a1
0.51
B
0.77
TYP.
inch
MAX.
MIN.
TYP.
MAX.
0.020
1.65
0.030
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
17.78
0.700
F
7.1
0.280
I
5.1
0.201
L
Z
3.3
0.130
1.27
0.050
P001C
9/13
M54/M74HC390
Ceramic DIP16/1 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
20
0.787
B
7
0.276
D
E
3.3
0.130
0.38
e3
0.015
17.78
0.700
F
2.29
2.79
0.090
0.110
G
0.4
0.55
0.016
0.022
H
1.17
1.52
0.046
0.060
L
0.22
0.31
0.009
0.012
M
0.51
1.27
0.020
0.050
N
P
Q
10.3
7.8
8.05
5.08
0.406
0.307
0.317
0.200
P053D
10/13
M54/M74HC390
SO16 (Narrow) MECHANICAL DATA
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.004
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45° (typ.)
D
9.8
E
5.8
10
0.385
6.2
0.228
0.393
0.244
e
1.27
0.050
e3
8.89
0.350
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.62
0.024
8° (max.)
P013H
11/13
M54/M74HC390
PLCC20 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
9.78
10.03
0.385
0.395
B
8.89
9.04
0.350
0.356
D
4.2
4.57
0.165
0.180
d1
2.54
0.100
d2
0.56
0.022
E
7.37
8.38
0.290
0.330
e
1.27
0.050
e3
5.08
0.200
F
0.38
0.015
G
0.101
0.004
M
1.27
0.050
M1
1.14
0.045
P027A
12/13
M54/M74HC390
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
13/13