STMICROELECTRONICS STA001

STA001
RF FRONT-END FOR DIGITAL RADIO
PRODUCT PREVIEW
■
■
■
■
■
■
■
■
■
■
■
■
SINGLE CHIP RECEIVER FOR SATELLITE
DIGITAL TRANSMISSION
SUPERHETERODYNE RECEIVER WITH IF
OUTPUT
HIGH INPUT INTERCEPT POINT, LOW
MIXER NOISE
54dB IF VGA GAIN RANGE
ADJUSTABLE RF GAIN
ADJUSTABLE IF GAIN
INTEGRATED RF VCO
INTEGRATED IF VCO
INTEGRATED SYNTHESIZER
TQFP44
ORDERING NUMBER: STA001
I2CBUS COMPATIBLE PROGRAMMING
INTERFACE
UNREGULATED 2.7 V TO 3.3V VOLTAGE
SUPPLY
LOW COST EXTERNAL COMPONENTS
HSB2 High Speed Bipolar Technology for one chip solution for the Starman digital satellite radio receiver.
The STA001 is assembled in a TQFP44 package.
The frontend architecture is a double conversion receiver (see block diagram) .
The chip includes all the RF functions up to low IF
and manages the signals to and from the baseband.
DESCRIPTION
The STA001 is an RF IC using STMicroelectronics
BLOCK DIAGRAM
AGC1, AGC2
CE
PADJ1, PADJ2
SIP, SIN
SOP, SON
GADJ1, GADJ2
VDD1
SUPPLY1 :RF
SUPPLY4 :IF1,
IF2 &PLL2
RF MIXER
VSS1
IF1 to IF2 MIXER
LNI, NLNI
VDD4
VSS4
IF2 BUFFER
RXI, NRXI
LNA
1.8366 Mhz
FLT2
IF1 BUFFER
VGA
1338.14 - 1375.4 MHz
TK2, NTK2
117.0806 MHz
FLT1
113.23KHz
TK1,
NTK1
PHASE
DETECTOR
1st PLL
CHARGE
PUMP
VCO
DIFFERENTIAL
SINGLE ENDED
3.68MHz
VCO
CHARGE
PUMP
: 1034
PHASE
DETECTOR
ENRFOSC
:130
LOCK
DETECTOR
TLCK
2nd PLL
:4
14.72MHz
:363.625- 373.75
BUFFER
VDD2
SUPPLY2 :PLL1 +
Crystal osc .
VSS2
M_CLK
VDD3
MUX
OSC
I2CBUS INTERFACE
SUPPLY3 :DIG.
VSS3
CHANNEL SELECTION
XTAL1, XTAL2
SDA
SCL
XOSEL
REF
November 2002
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/20
STA001
VSS4
SOP
SON
VSS4
AGC1
AGC2
VDD4
NTK2
TK2
VDD4
FLT2
PIN CONNECTION (Top view)
44
43
42
41
40
39
38
37
36
35
34
5
29
CE
NLNI
6
28
VDD3
VSS1
7
27
SCL
N.C.
8
26
SDA
PADJ1
9
25
VSS3
PADJ2
10
24
M_CLK1
ENRFOSC
11
23
M_CLK2
12
13
14
15
16
17
18
19
20
21
22
TLCK
GADJ2
LNI
XOSEL
30
REF
4
XTAL2
GADJ1
VSS1
XTAL1
31
VSS2
3
FLT1
NRXI
SIN
VDD2
32
NTK1
RXI
2
TK1
33
SIP
VDD2
VDD1
1
PIN FUNCTION
N°
Pin
1
VDD1
2
SIP
SAW filter input connection
3
SIN
SAW filter input connection
4
VSS1
5
LNI
RF input
6
NLNI
RF input
7
VSS1
Negative supply 1
8
NC
9
PADJ1
RF gain adjust connection 1
10
PADJ2
RF gain adjust connection 2
11
12
Function
Positive supply 1
Negative supply 1
Not connected
ENRFOSC RF Oscillator enable
VDD2
Positive supply 2
13
TK1
1st PLL tank connection 1
14
NTK1
1st PLL tank connection 2
15
VDD2
Positive supply 2
16
FLT1
1st PLL loop filter connection
17
VSS2
Negative supply 2
18
XTAL1
Quartz oscillator connection 1
19
XTAL2
Quartz oscillator connection 2
20
REF
External optional TCXO input
21
XOSEL
22
TLCK
2/20
Internal/external XO selection
Lock detector output
D97AU602
STA001
PIN FUNCTION (continued)
N°
Pin
Function
23
M_CLK2
Master clock differential output 1
24
M_CLK1
Master clock differential output 2
25
VSS3
Negative supply 3
26
SDA
Data serial input
27
SCL
Clock input
28
VDD3
Positive supply 3
29
CE
30
GADJ2
Chip Enable
IF gain adjust connection 2
31
GADJ1
IF gain adjust connection 1
32
NRXI
Low IF Signal output 2
33
RXI
Low IF Signal output 1
34
FLT2
2nd PLL loop filter connection
35
VDD4
Positive supply 4
36
TK2
2nd PLL tank connection
37
NTK2
2nd PLL tank connection
38
VDD4
Positive supply 4
39
AGC2
VGA control pin 2
40
AGC1
VGA control pin 1
41
VSS4
Negative supply 4
42
SON
SAW filter output connection
43
SOP
SAW filter output connection
44
VSS4
Negative supply 4
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
Tstg
Storage temperature
-40 , +125
°C
Toper
Operative ambient temperature
-20 , +85
°C
Vmax
Maximum voltage on any pin (with the exception of CE, SDA, SDL)
VDD+0.3
V
Vmin
Minimum voltage on any pin
GND-0.3
V
Vmaxi
Maximum voltage on pins CE, SDA, SDL
VDD+0.6
V
-0.3/5.5
V
2
KV
Value
Unit
VDDmax
Vesd
Minimum/Maximum power supply between VDD1,2,3,4 and
VSS1,2,3,4
Electrostatic Discharge Voltage (ESD)
OPERATING CONDITIONS
Symbol
Parameter
VDD
Operating voltage
2.7, 3.3
V
Tjun
Junction temperature
-30, +95
°C
3/20
STA001
THERMAL DATA
Symbol
Parameter
RTh j-amb Thermal Resistance Junction to Ambient (1)
Value
Unit
45
°C/W
(1) According to JEDEC specification on a 4 layers board
ELECTRICAL CHARACTERISTCS
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
SUPPLY CURRENTS (Tamb = 25°, VDD = 3V)
ICC1
Current supplied by
VDD1
Powered circuits: LNA, RF mixer, IF buffer
9.5
14
17
mA
ICC2
Current supplied by
VDD2
Powered circuits: RF pll, Crystal Oscillator.
ENRFOSC=high (IC RF Osc. Enabled),
XOSEL=high (IC XO Enabled)
8.5
10
12
mA
ENRFOSC=low (IC RF Osc. Disabled),
XOSEL=high (IC XO Enabled)
3
5
6
mA
ENRFOSC=high (IC RF Osc. Enabled),
XOSEL=low (IC XO Disabled)
7.5
9
11
mA
ENRFOSC=low (IC RF Osc. Disabled),
XOSEL=low (IC XO Disabled)
2
4
5
mA
12
15
18
mA
7
11
14
mA
ICC3
Current supplied by
VDD3
Powered circuits: Digital cells
ICC4
Current supplied by
VDD4
Powered circuits: VGA, IF mixer, output
buffer, IF pll.
V(AGC1)=V(AGC2)=1.2 (IFgain=75dB)
ITOT
ICC1+ ICC2+ ICC3+ ICC4
ENRFOSC=high (IC RF Osc. Enabled),
XOSEL=high (IC XO Enabled)
40
50
61
mA
ENRFOSC=low (IC RF Osc. Disabled),
XOSEL=high (IC XO Enabled)
34
45
55
mA
ENRFOSC=high (IC RF Osc. Enabled),
XOSEL=low (IC XO Disabled)
39
49
60
mA
ENRFOSC=low (IC RF Osc. Disabled),
XOSEL=low (IC XO Disabled)
34
44
54
mA
100
µA
1452
1492
MHz
114
116.5
MHz
33
dB
ITOTSB
Standby ICC1+ ICC2+
ICC3+ ICC4
CE=GND
LNA, RF MIXER AND IF1 BUFFER (T = 25°, VDD-VSS = 3V)
BWi
Input signal BW
BWo
Output signal BW
GV
4/20
Voltage Gain
Input LNI, NLNI pins; output SIP, NIP pins.
RL = 200Ω, PADJ1, PADJ2 floating
28
30
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
22
25
28
dB
GVtrim
Minimum Voltage Gain
Input LNI, NLNI pins; output SIP, NIP pins.
RL = 200Ω, Rext=0
Zi
Input impedance R || C
Balanced, LNI, NLNI pins
75
0.2
Ω
pF
Zo
Output impedance
Balanced, SIP, SIN pins
50
Ω
Rl
Input Return Loss
LNI, NLNI pins
14
dB
Input IP3
Input LNI, NLNI pins; output SIP, NIP pins,
Rl=200Ω, PADJ1, PADJ2 floating
-20
-15
dBm
IIP3trim
Input IP3 minimum gain
Input LNI, NLNI pins; output SIP, NIP pins,
Rl=200Ω, Rext=0 on PADJ1, PADJ2
-19.5
-11.5
dBm
1dBcp
Input 1 dB compression
point
Input LNI, NLNI pins; output SIP, NIP pins,
Rl=200Ω, PADJ1, PADJ2 floating
-26
dBm
1dBcptri
Input 1 dB compression
point
Input LNI, NLNI pins; output SIP, NIP pins,
Rl=200Ω, PADJ1, PADJ2 Rext=0 on PADJ1,
PADJ2
-24
dBm
m
NF
Noise figure contribution
Measurement conditions: Input LNI, NLNI
pins; output SIP, NIP pins. Rs=50Ω,
Rl=200Ω, DSB, PADJ1, PADJ2 floating
5
dB
NFtrim
Noise figure contribution
minimum gain
Measurement conditions: Input LNI, NLNI
pins; output SIP, NIP pins. Rs=50Ω,
Rl=200Ω, DSB, Rext=0 on PADJ1, PADJ2
6.5
dB
IF1leak
LO1 to IF1 leakage
-100
-25
dBm
RFleak
LO1 to RF leakage
-100
-30
dBm
VDC
LNI, NLNI common mode AC coupled to the Balun
DC voltage
VDD1.2
VDD-1
VDD0.8
V
VDC
SIP, SIN common mode
DC voltage
VDD1.3
VDD1.1
VDD0.9
V
IIP3
AC coupled to the SAW filter
IF VGA AMPLIFIER, IF MIXER AND OUTPUT BUFFER (T = 25°, VDD-VSS = 3V)
BWi
Input signal BW
114
116.5
MHz
BWo
Output signal BW
0.6
3.1
MHz
Gmin
Minimum gain
Input LNI, NLNI pins; output SIP, NIP pins.
Rl=high impedance V(AGC1,2)=0V
37
dB
Gmax
Maximum gain
Input LNI, NLNI pins; output SIP, NIP pins.
Rl=high impedance V(AGC1,2)=3V
IAGC
ZAGC
32
71
86
dB
Input current in AGC
control pin
10
µA
AGC pin input
impedance
600
KΩ
5/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol
Parameter
Test Condition
Min.
NF
Noise figure contribution
Measurement conditions: Input SIP, NIP
pins; output SOP, NOP pins. Rs=50Ω,
Rl=200Ω, DSB, Gain = 65dB
1dBcp
Input 1 dB compression
point
1dBcpfg
Typ.
Max.
Unit
9
dB
Gain = 65dB
-50
dBm
Input 1 dB compression
point full gain
Gain = 81dB
-66
dBm
Input IP3
Gain = 65dB
-41
dBm
IIP3fg
Input IP3 full gain
Gain = 81dB
-57
dBm
Zin
Input impedance
Balanced, SOP, SON pins
50
Ω
Zout
Output impedance
Balanced, RXI, NRXI pins (see fig. 9)
200
Ω
VDC
SOP, SON common
mode DC voltage
AC coupled to the SAW filter
VDC
RXI, NRXI common
mode DC voltage
VDD2.1
VDC
GADJ1, GADJ2 common
mode DC voltage
VDD0.15
Zadj
Gain adjustment pins
impedance
Balanced, GADJ1, GADJ2 pins
800
Ω
BBleak
LO2 to BB leakage
Obtained using low pass filter at the output
-45
dBm
IF2leak
LO2 to IF2 leakage
Obtained with SAW filter connected to IF
port
Third order IM product
Vout=1VDDp
IIP3
IM3
VDD1.2
VDD-1
VDD0.12
-100
VDD0.8
V
VDD1.36
V
VDD
V
-30
dBm
-30
dBc
IF TOTAL VOLTAGE GAIN (dB)
IF TOTAL VOLTAGE GAIN (dB)
input SOP,NOP output RXI,NRXI
input SOP,NOP output RXI,NRXI
60
90
55
85
IF TOTAL VOLTAGE GAIN (dB)
IF TOTAL VOLTAGE GAIN (dB)
Figure 1. Typical IF Overall Gain vs Control Voltage
IF gain (dB)
50
45
40
80
IF gain (dB)
75
70
65
35
60
30
1
0.7
0.75
0.77
0.79
0.8
0.82
0.84
V(AGC1, AGC2) (Volt)
6/20
0.86
0.88
0.9
1.2
1.1
1.4
1.3
1.6
1.5
1.8
1.7
2
1.9
2.2
2.1
V(AGC1, AGC2) (Volt)
2.4
2.3
2.6
2.5
2.7
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
VDD0.68
V
CRYSTAL OSCILLATOR (T = 25°, VDD-VSS = 3V)
VDC
XTAL1, XTAL2 common
mode DC voltage
XOSEL high
VDD1.1
PLLs, SYNTHESIZERS (T = 25°, VDD-VSS = 3V)
ts
RF pll loop settling time
within 1 KHz final freq. Offset, by using the
loop filter of Application board
Pn
Total phase noise
contribution
100Hz < ∆f < 1.84Mhz,
Qrf_tank≥20, Qif_tank≥20
1
ms
1.6
degrms
fREF1
RF pll comparation
frequency
3.68
MHz
fREF2
IF pll comparation
frequency
113.23
KHz
PSP
Spurious power level***
RF pll, ∆fc=n*460KHz n=1,2..
IF pll, ∆fc=113.23KHz
-50
-100
-45
Nprog1
RF PLL selectable
division ratios
from REF1 to LO1, range covered by a 0.5
step, using a 14.72MHz quartz
1443
(first
used
1454.5)
1506.5
(last
used
1495)
Nprog2
RF PLL selectable
division ratios
from REF1 to LO1, range covered by a 0.5
step, using a 14.725MHz quartz
1443
(first
used
1454)
1506.5
(last
used
1494.5)
Nfix
IF PLL fixed division ratios from REF2 to LO2, 1 fixed +2 testing values
987
1034
NREF1
REF1 division ratio
from Crystal oscillator to REF1
4
NREF2
REF2 division ratio
from Crystal oscillator to REF2
130
dBc
dBc
1081
*** Using loop filter as suggested in application board schematics
RF VCO (T = 25°, VDD-VSS = 3V)
fLO1_1
LO Freq. range
Using 14.72Mhz quartz
1338.14
1375.4
MHz
fLO1_2
LO Freq. range
Using 14.725Mhz quartz
1338.134375 to 1375.407031
MHz
VFLT1
Freq. control voltage
range
Pin FLT1
VSS +
0.2
VDC
TK1, NTK1 DC voltage
ENRFOSC high
VDD1.3
Zi
Input impedance R || C
Balanced, TK1, NTK1 pins
VDD1.1
300
0.2
VDD 0.2
V
VDD0.65
V
Ω
pF
7/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
IF VCO (T = 25°, VDD-VSS = 3V)
fLO2_1
LO Freq.
Using a 14.72MHz quartz, Min. and Max.
Values are optional fixed frequency usable
for testing purposes.
111.76
117.08
122.4
MHz
fLO2_2
LO Freq.
Using a 14.725MHz quartz, Min. and Max.
Values are optional fixed frequency usable
for testing purposes.
111.8
117.12
122.44
MHz
VFLT2
Freq. control voltage
range
FLT2 pin
VSS +
0.2
VDD 0.2
V
DIGITAL INTERFACE TO MP (SCL, SDA, TLCK) AND XOSEL INTERFACE (T = 25°, VDD-VSS = 3V)
INPUT PARAMETERS (SCL, SDA)
VIH
digital input signals
VIL
high
VDD-1
VDD
V
low
VSS
VSS+0.
7
V
IIH
Input current High
10
µA
IIL
Input current Low
-40
µA
Tt
Input edge transition
0.1
µs/V
Rin
Input resistance
190K
Ω
OUTPUT PARAMETERS (TLCK)
VOH
digital output signals
VOL
high
VDD0.5
VDD
V
low
VSS
VSS+0.
5
V
tr
Rise time
Cl=5pF
0.4
µs/V
tf
Fall time
Cl=5pF
0.4
µs/V
high
0.2
V
low
-0.2
V
DIFFERENTIAL DIGITAL INTERFACE (M_CLK1, M_CLK2) (T = 25°, VDD-VSS = 3V)
VOH
VOL
VDC
M_CLK1, M_CLK2
common mode DC voltage
VDD1.12
VDD0.7
V
tr
Rise time
Cl=5pF each pin
10
ns
tf
Fall time
Cl=5pF each pin
10
ns
Output impedance
balanced
500
Ω
Zout
8/20
digital output signals,
V(M_CLK1) V(M_CLK2)
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
fM_CLK1
M_CLK frequency
Using a 14.72MHz quartz
14.72
MHz
fM_CLK2
M_CLK frequency
Using a 14.725MHz quartz
14.725
MHz
ADDITIONAL DIGITAL INTERFACE (CE) (T = 25°, VDD-VSS = 3V)
(LOW=GND, HIGH=VDD)
digital input signals
VIH
high
VSS+1.
8
V
low
VIL
VSS+1.
3
V
tr
CE power up time
2
µs
tf
CE power down time
6
µs
XOSEL, CE, TLCK, ENRFOSC TRUTH TABLE (LOW = GND, HIGH = VDD)
Pin
CE
XOSEL
ENRFOSC
TLCK
Type
input
input
input
output
Level
Result
high
Chip enabled
low
Chip disabled
high
Internal Crystal oscillator selected
low
External TCXO connected on REF selected
high
Internal RF oscillator selected
low
External RF oscillator connected on TK1, NTK1 pins
high
Synth. locked
low
Synth. unlocked
ADDITIONAL OPTIONAL INTERFACE INFORMATION (REF)
Symbol
Parameter
Test Condition
VDC
REF DC voltage
XOSEL low
Rin
Input resistance
XOSEL low
Min.
Typ.
Max.
Unit
VDD1.1
VDD0.9
VDD0.7
V
70K
Ω
9/20
STA001
FUNCTIONAL DESCRIPTION
Receiver chain
The receiver chain transforms the RF frequency signals to an IF signal at 1.84 MHz Carrier directly usable by
the Channel decoder.
In front of the STA001 IC it can be placed an external LNA and a bandpass filter; the bandpass filter limitates
the input bandwidth and guarantees a suitable rejection to the image frequency.
The STA001 input stage is a LNA working in the 1452-1492 MHz band. The RF signal is downconverted, using
an active mixer, to a first IF of 115.244 MHz. The first LO is tunable with a frequency step of 460 KHz.
The RF can be reduced 5dB by an external trimmer/resistor connected between PADJ1 and PADJ2 pins.
An IF variable gain amplifier guarantees 54 dB typical of gain range.
Using pins GADJ1, GADJ2, the output RX signal level can be decreased to the desired value by an external
trimmer/resistor.
Moreover, the IF chain can be configured to have a fixed gain by fixing statically control voltages on AGC1 and
AGC2 pins (i.e. V(AGC1)=VCC and V(AGC2)=GND), and by trimming the gain through connecting an external
resistor between GADJ1 and GADJ2.
By using an 800 Ohm resistor connected between GADJ1 and GADJ2, for example, a typical 56 dBs IF static
gain is obtained.
The first IF signal, having a bandwidth of 2.5 MHz, shaped by an external SAW filter, is downconverted to a
second IF of 1.84 MHz.
A differential clock output at 14.72 MHz is available to be used from the baseband.
Synthesizers, PLL, charge pump and VCOs
The first Voltage controlled Oscillator is controlled by an integrated PLL and it's able to cover a frequency range
of 37MHz with a step size of 460 KHz.
The second Voltage controlled oscillator produces a fixed 117.08MHz frequency controlled by a second integrated PLL. Moreover, the 2nd PLL is able to select 2 other fixed frequencies, i.e. 111.76MHz and 122.4MHz,
suitable for application test.
The other components of the first PLL synthesizer are a low frequency programmable divider and a dual modulus prescaler; a fixed dividers is instead used to synthesize the second VCO frequency. Other fixed internal
dividers are used to get the comparation frequencies of both loops.
Channel selection is made through the I2CBUS interface , directly from the µP.
POWER SUPPLIES
The chip operates from an unregulated power supply of 2.7 to 3.3 Volts. All interface circuits to the baseband
chips are operating between these supplies unless otherwise specified.
INTERFACE SPECIFICATION
All the interface voltage levels to the micro controller are referenced to the supply voltage of the interface power
supply (GND) . The interface voltage levels are therefore fully compatible with the base band circuits.
The digital levels are all CMOS threshold compatible with the exception of M_CLK1, M_CLK2 pins (ECL type).
For completeness all other interface signals are also included.
I2C BUS INTERFACE
Data transmission from microprocessor to the STA001 takes place through the 2 wires I2C BUS interface, consisting
of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected to SDA and SCL).
10/20
STA001
Data Validity
The data on the SDA line must be stable during the high period of the clock. The HIGH to LOW state of the data
line can only change when the clock signal on the SCL line is LOW.
Start and Stop conditions
A start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW
to HIGH transition of the SDA line while SCL is HIGH.
Byte format
Every byte transferred on the SDA line must contains bits. Each byte must be followed by an acknowledge bit.
The MSB is transferred first.
Acknowledge
The master (µP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse. The peripheral
(STA001) that acknowledges has to pull-down (LOW) the SDA line during the clock pulse.
The STA001 which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at at the HIGH level during the ninth clock pulse time. In this case the µP can generate the STOP information in order to abort the transfer.
Transmission without acknwoledge
Avoiding to detect the acknowlegde of the STA001, the µP can use a simpler transmission: simply it waits one
clock period without checking the STA001 acknowledging, and sends the new data.
This approach of course is less protected from misworking.
Figure 2. Validity on the I2CBUS
SDA
SCL
DATA LINE
STABLE, DATA
VALID
CHANGE
DATA
ALLOWED
D99AU1031
Figure 3. Timing Diagram of the I2CBUS
SCL
I2CBUS
SDA
START
D99AU1032
STOP
11/20
STA001
Figure 4. Acknowledge on the I2CBUS
SCL
1
2
3
7
8
9
SDA
MSB
START
ACKNOWLEDGMENT
FROM RECEIVER
D99AU1033
TIMING SPECIFICATION
Figure 5. Data and clock
SDA
SCL
tcwl
tcs
tch
Symbol
tcwh
Parameter
Minimum time (ns)
tcs
Data to clock set up time
100
tch
Data to clock hold time
50
tcwh
Clock pulse width high
100
tcwl
Clock pulse width low
100
Figure 6. Start and stop
SDA
SCL
tstop2tstop1
tstart1 tstart2
Symbol
12/20
Parameter
Minimum time (ns)
Tstart1,2
Clock to data start time
100
Tstop1,2
Data to clock down stop time
100
STA001
Figure 7.
SDA
SCL
8
9
td2
td1
Symbol
Parameter
Maximum time (ns)
td1
Ack begin delay
200
td2
Ack end delay
200
SOFTWARE SPECIFICATION
Interface protocol
The interface protocol comprises:
- A start condition (S)
- A chip address byte
- A two data bytes
- A stop condition (P)
MSB
S
chip address
1
1
0
0
0
0
LSB
MSB
1st data byte
LSB
MSB
2nd data byte
LSB
0 ack 1 D6 D5 D4 D3 D2 D1 D0 ack 0 D6 D5 D4 D3 D2 D1 D0 ack
0
P
ack = Acknowledge
S = Start
P = Stop
"Byte by byte" option
A "byte by byte" programming mode is also possible when there is no need to use both data bytes to program
the chip (for example during the setup of 2nd PLL).
To use this feature remember that first bit of both data bytes is reserved to chose the destination of the remaining
7 bits.
MSB
S
chip address
1
1
0
0
0
LSB
0
0
0
MSB
ack
K
1st data byte
D6
D5
D4
D3
LSB
D2
D1
D0
ack
P
ack = Acknowledge
S = Start
13/20
STA001
P = Stop
K= destination of the remaining 7bit:
K=1 the data byte has the same function of the 1st data byte in the normal programming mode.
K=0 the data byte has the same function of the 2nd data byte in the normal programming mode.
Table 1. First data byte selection table (selection of synthesizer channel) using a 14.72Mhz quartz
MSB
LSB
RF LO freq. selected
Units
Division ratio
selected on
synthesizer
Notes
from REF1 to
LO1
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
1
1
0
1324.8+6*0.46
(1327.56)
MHz
360.75
0
0
0
0
1
1
1
1324.8+7*0.46
MHz
360.875
0
0
0
1
0
0
0
1324.8 + 8*0.46
MHz
361
-
-
-
-
-
-
-
0
0
1
1
1
0
1
1338.14
MHz
363.625
first used freq.
-
-
-
-
-
-
-
1324.8 + N*0.46
N=(D6..D0)
represented decimal
number
MHz
360 + N*0.125
general freq.
generation rule
1
1
0
1
1
1
0
1375.4
MHz
373.75
Last used freq.
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1383.22
MHz
375.875
0
0
0
0
0
0
0
1383.68
MHz
376
-
-
-
-
-
-
-
0
0
0
0
1
0
1
1324.8+133*0.46
(1385.98)
MHz
376.625
Highest
selectable freq.
1
0
0
0
1
0
1
1356.54
MHz
368.625
Startup
presetted data
14/20
Lowest
selectable freq.
STA001
Table 2. First data byte selection table (selection of synthesizer channel) using a 14.725Mhz quartz
MSB
LSB
RF LO freq. selected
Units
Division ratio
selected on
synthesizer
Notes
D6
D5
D4
D3
D2
D1
D0
from REF1 to
LO1
0
0
0
0
1
1
0
1325.25 +6*0.46015625
(1328.010938)
MHz
360.75
0
0
0
0
1
1
1
1325.25 +7*0.46015625
MHz
360.875
0
0
0
1
0
0
0
1325.25+ 8*0.46015625
MHz
361
-
-
-
-
-
-
-
0
0
1
1
1
0
0
1338.134375
MHz
363.5
first used freq.
-
-
-
-
-
-
-
1325.25+
N*0.46015625
N=(D6..D0) represented
decimal number
MHz
360 + N*0.125
general freq.
generation
rule
1
1
0
1
1
0
1
1375.407031
MHz
373.625
Last used freq.
-
-
-
-
-
-
-
1
1
1
1
1
1
0
1383.229688
MHz
375.75
1
1
1
1
1
1
1
1383.689844
MHz
375.875
-
-
-
-
-
-
-
0
0
0
0
1
0
1
1325.25
+133*0.46015625
(1386.450781)
MHz
376.625
Highest
selectable
freq.
1
0
0
0
1
0
1
1357.000781
MHz
368.625
Startup
presetted data
Lowest
selectable
freq.
Table 3. Second data byte selection table (LOCK test on both pll, dividers test and IF pll test)
MSB
LSB
Working mode
Notes
0
Lock test on RF pll
lock flag to be tested: TLCK;
Startup presetted data
0
0
Lock test on IF pll
lock flag to be tested: TLCK
0
0
1
Lock test on RF and IF pll
lock flag to be tested: TLCK
0
1
0
First pll programmable
divider test
output freq. divided by 16
available on TLCK
1
0
1
0
First pll reference divider
test
output freq. divided by 8
available on TLCK
1
0
1
1
0
Second pll fixed divider
test
output freq. divided by 2
available on TLCK
0
1
1
1
1
0
Second pll reference
divider test
output freq. available on TLCK
1
0
0
0
0
0
0
Test frequency on IF pll
divider by 1034
Division ratio changed to 987
1
1
0
0
0
0
0
Test frequency on IF pll
divider by 1034
Division ratio changed to 1081
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
15/20
C41 100pF
VCC
C39 100pF
VCC
C33 100pF
VCC
C26 100pF
VCC
C22 100pF
VCC
C19 100pF
VCC
RF IN
IF1 OUT
IF2 IN
J2
2
J5
2
2
SMA
1
C34
8pF
C12
C35
1nF
L3
R7
50
SMA
1
R3
50
1
SMA
C36
100nF
1:1
6
4
2
1:4
T2
6
4
2
1:1
T3
6
4
2
+
C31
10uF
VCC
LDB20C500A1500
5
1
NEOSID 553210
5
1
NEOSID 553200
5
1
T1
C14
C13
C10
C8
C4
C2
8pF
8pF
1nF
1nF
1nF
1nF
R16 1K
R13 1K
L5
1nH
C37 8pF
HVU355
D4
HVU355
D3
C17 8pF
L4 1nH
VCC
AGC1
AGC2
1
3
2
4
C30
JUMPER2
JP1
R10
VP1
VP2b
VP2a
R14
0
100K
R4
100K
R1
R2
VP1
SIP
SIN
VN1
LNI
NLNI
VN1
NC
PADJ1
PADJ2
ENRFOSC
C29
150nF
R15
390
1
2
3
4
5
6
7
8
9
10
11
U1
C6
100nF
C3
100nF
MA372J
D1
L1
68nH
STA001
C24
15nF
CRYSTAL
Y1
C27
C23
C28 10nF
RXI
NRXI
GADJ1
GADJ2
CE
VP3
SCL
SDA
VN3
M_CLK1
M_CLK2
VP4a
33
32
31
30
29
28
27
26
25
24
23
R17
50
5.6 K
R5
L2
68nH
VP4b
MA372J
D2
680pF
C1
44
43
42
41
40
39
38
37
36
35
34
VN4
SOP
SON
VN4
AGC1
AGC2
VP4
NTK2
TK2
VP4
FLT2
VP2
TK1
NTK1
VP2
FLT1
VN2
XTAL1
XTAL2
REF
XOSEL
TLCK
12
13
14
15
16
17
18
19
20
21
22
J1
1
330pF
J6
JP2
SMA
1
3
VP3
C7
3.3 nF
C5
2
R12
4.7K
2
4
C20 10nF
C16 10nF
R11
4.7K
R6
18 k
VCC
R8
220nF
VCC
VCC
C11
C9 220nF
T_LOCK
CLK2
CLK1
SCL
SDA
1
J4
1
J3
2
16/20
RXI OUT
R9 1K
NRXI OUT
SMA
SMA
C15
10nF
2
VCC
CE
STA001
TEST AND APPLICATION BOARD SCHEMATIC
Figure 8. Test Board Schematic Diagram
NOTE: Connect a resistor from10K to 100K between pins PADJ1 (9) and PADJ2 (10) so to obtain intermediate gain between 25 and 30dB
RF IN
SMA
C34
100pF
C33
100pF
C30
100pF
C25
100pF
C22
100pF
VCC
VCC
VCC
VCC
VCC
10n
C17
1
L5
100nH
100p
C10
100p
C18
5p
C11
L6
7.5nH
C6
10n
C5
100p
22p
C8
3
I
O
ANT +B
U3
C32
1nF
VCC
100p
4 C12
S+M B69813-N1477-A840
33
R4
GND
GND
GND
GND
1
2
5
6
J3
2
VCC
R5
33K
L7
1
3
2
2SC5096
Q1
L4
56nH
C13
6.8p
1K
R11 1K
R8
L8
6.8nH
2.2p
C15
100nH
L3
1:1
6
4
T1 2
C16
C14
2.2nH
L10 2.2nH
C31 8pF
HVC355B
D4
HVC355B
D3
C19 8pF
L9
LDB20C500A1500
5
1
18
17
16
15
14
13
12
11
10
GND
IN
IN
GND
GND
GND
NC
NC
GND
8pF
8pF
VP1
1
2
3
4
5
6
7
8
9
C28
GND
NC
NC
GND
GND
GND
OUT
OUT
GND
S+M Y012B
U1
R9
0
VP2b
VP2a
VCC
C27
150nF
R10
390
1
2
3
4
5
6
7
8
9
10
11
VP1
SIP
SIN
VN1
LNI
NLNI
VN1
NC
PADJ1
PADJ2
ENRFOSC
U2
10K
C2
100nF
VCC
MA2S372
D1
L1
68nH
AGC
44
43
42
41
40
39
38
37
36
35
34
STA001
C24
15nF
CRYSTAL
Y1
C26
C23
VCC
RXI
NRXI
GADJ1
GADJ2
CE
VP3
SCL
SDA
VN3
M_CLK1
M_CLK2
VP4a
33
32
31
30
29
28
27
26
25
24
23
5.6 K
R2
L2
68nH
VP4b
MA2S372
D2
680pF
C1
VN4
SOP
SON
VN4
AGC1
AGC2
VP4
NTK2
TK2
VP4
FLT2
VP2
TK1
NTK1
VP2
FLT1
VN2
XTAL1
XTAL2
REF
XOSEL
TLCK
12
13
14
15
16
17
18
19
20
21
22
VCC
VP3
VCC
330pF
C4
3.3 nF
C3
C21 10nF
C20 10nF
R6
4.7K
R3
18 k
C7
C9
R7
4.7K
VCC
150nF
150nF
T_LOCK
CLK2
CLK1
SCL
SDA
1
J2
1
2
2
R1
J1
SMA
SMA
NRX
RXI O
STA001
Figure 9. Application Board Schematic Diagram
Suggested minimum differential RLoad on RXI and NRXI output 3K
17/20
STA001
Application note: the crystal oscillator must have the following features:
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
CRYSTAL OSCILLATOR (T = 25°, VP-VN = 3V)
fxtal1
Quartz frequency
- Resonance mode: series
- Using a 14.72
14.72
MHz
fxtal2
Quartz frequency
- Resonance mode: series
- using a 14.725 quartz
14.725
MHz
Phase noise
∆f = 1 KHz
XTAL1, XTAL2 common
mode DC voltage
XOSEL high
Pn
VDC
18/20
VP-1.1
-120
-118
dBc/Hz
VP-0.9
VP-0.7
V
STA001
mm
DIM.
MIN.
TYP.
A
inch
MAX.
MIN.
TYP.
1.60
A1
0.05
A2
1.35
B
0.30
C
0.09
0.063
0.15
0.002
0.006
1.40
1.45
0.053
0.055
0.057
0.37
0.45
0.012
0.014
0.018
0.20
0.004
0.008
D
12.00
0.472
D1
10.00
0.394
D3
8.00
0.315
e
0.80
0.031
E
12.00
0.472
E1
10.00
0.394
E3
8.00
0.315
L
0.45
0.60
0.75
OUTLINE AND
MECHANICAL DATA
MAX.
0.018
0.024
L1
1.00
K
0°(min.), 3.5˚(typ.), 7°(max.)
0.030
0.039
TQFP44 (10 x 10)
D
D1
A
A2
A1
33
23
34
22
0.10mm
.004
B
E
B
E1
Seating Plane
12
44
11
1
C
L
e
K
TQFP4410
19/20
STA001
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
20/20