STMICROELECTRONICS TDA7420

TDA7420

MULTIFUNCTION AUDIO PROCESSOR
CASSETTE PREAMPLIFIER:
FORWARD/REVERSE INPUTS GROUND
COMPATIBLE
INTERNAL SWITCHES FOR EQUALIZATION
INTERNAL ADJUSTMENT FOR TRAKING
INTERNAL ADJUSTMENT FOR OUTPUT
AMS:
INPUT GAIN CONTROL
ADJUSTABLE GAIN VERSUS FREQUENCY
AUDIOPROCESSOR:
INPUTS: 1 FULLY DIFFERENTIAL, 1 DIFFERENTIAL, 1 STEREO AND 1 MONO
INPUT GAIN FROM 0 TO 15dB (1dB STEP)
VOLUME CONTROL FROM +16 TO -63dB
(1dB STEP)
BASS AND TREBLE CONTROL FROM -18
TO 18dB (1dB STEP)
DIRECT MUTE, SOFT MUTE AND RADIO
MUTE
FOUR INDEPENDENT OUTPUT STAGES:
- ATTENUATION CONTROL FROM
0 TO -79dB (1dB STEP)
- BEEP CONTROL (ON/OFF, FRONT/REAR)
STEREO DECODER:
ROLL-OFF ADJUSTMENT
SELECTABLE DEEMPHASIS
19KHz CANCELLATION
HIGH CUT CONTROL
STEREO BLEND
NOISE BLANKER
AUTOMATIC THRESHOLD CONTROL AND
PROGRAMMABLE TRIGGER THRESHOLD
INTEGRATED HIGH PASS FILTER
PACKAGE: TQFP64 (14x14)
May 1998
TQFP 64 (14x14)
ORDERING NUMBER: TDA7420
DESCRIPTION
The TDA7420 I 2C bus controlled multifunction
audio processor contains all signal processing
blocks of a high performance car radio, including
audioprocessor, stereodecoder, noise blanker,
different mute functions, cassette preamplifier and
AMS function.
The use of BICMOS technology allows the implementation of several filter functions with switched
capacitor techniques like fully integrated, adjustment free PLL Loop filter, pilot detector with integrator.
This minimizes the number of external components.
Due to a highly linear signal processing, using
CMOS-switching techniques instead of standard
bipolar multipliers, very low distortion and very
low noise are obtained also in the stereodecoder
part.
Very low DC stepping is obtained by use of the
BICMOS technology.
1/29
TDA7420
ABSOLUTE MAXIMUM RATINGS
Symbol
VS
Parameter
Operating Supply Voltage
Value
Unit
10
V
Tamb
Operating Temperature Range
-40 to 85
°C
Tstg
Storage Temperature Range
-55 to 150
°C
EQRO
PREOUT_R
VCC_PRE
CD_R+
CD_R-
CD_L-
CD_L+
L1
R1
AM_R
AM_C
AM_L
COMPOSIT
CREF
CSM
AC_IN1_L
PIN CONNECTION
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
AC_IN1_R
1
48
EQRI
AC_OUT1_R
2
47
INR2(FR)
AC_OUT1_L
3
46
INR1(RR)
TREBLE_L
4
45
GND_PRE
TREBLE_R
5
44
INL1(RL)
AC_OUT2_R
6
43
INL2(FL)
AC_OUT2_L
7
42
EQLI
AC_IN2_L
8
41
EQLO
AC_IN2_R
9
40
PREOUT_L
BASS2_R
10
39
EQSW
BASS1_R
11
38
BEEP
BASS2_L
12
37
OUT_RL
BASS1_L
13
36
OUT_FL
VCC
14
35
OUT_RR
SDA
15
34
OUT_FR
SCL
16
33
AMS_OUT
INTS
INTP
AMS_GAIN
AMS_IN
AMS_LF
VCO
PEAK
TBLANK
TRIGGER OUT
VR
VSB
HCL
HCR
VHCC
AGND
DIGGND
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D94AU182
THERMAL DATA
Symbol
Rth j-pins
2/29
Parameter
Thermal Resistance Junction-pins
Value
Unit
max 85
°C/W
COMPOSIT
AM_L
AM_C
AM_R
R1
L1
CD_L-
CD_L+
CD_R+
CD_R-
EQRI
INR2
INR1
EQSW
INL1
INL2
EQLI
GND_PRE
61
60
59
58
57
56
54
50K
55
52
50K
53
48
47
46
39
44
43
42
45
100K
25K
25K
25K
25K
100K
20K
20K
3.8K (Nom)
5% step
41
51
25K
25K
0dB
25K
20K
20K
0dB
49
EQLO EQRO
V CC_PRE
RM
RM
L1
RADIO MUTE
COMP
MULTIPLEXER
+
MUTE
R
L
0 ÷ 15dB
1dB step
G
VCC
14
MUTE
0/-20dB/
-23dB/
MUTE
0/-20dB/
-23dB/
MUTE
0÷-6dB
0.5dB
50
0÷-6dB
0.5dB
R1
PREOUT_R
40
PREOUT_L
18
+
AMS_LF
28
AC_OUT1L
FM/AM
AGND
62
SUPPLY
GAIN
AC_OUT1R
2
29
AMS_IN
CREF
1.5 ÷ 9dB
2.5dB
GAIN 0÷28dB 1dB
3
AC_IN1_L
64
AC_IN1_R
1
AMS_GAIN
AMS
30
32
INTS
VS
33
27
456KHz
BASS1_R
13
VOLUME
+16 ÷ -63
1dB
+
MUTE
(IN, OUT)
11
BASS1_L
19KHz
CANCELLATION
BUS LATCHES
100KΩ
VCO
PLL
DEMODULATOR
&
AMPLITUDE ADJ
31
INTP
VCC
AMS OUT
DOLBY B/C
BASS2_L
12
BASS2_R
4
TR_L
5
AC_OUT2_R
6
7
AC_OUT2_L
26
9
AC_IN2_R
CS4
63
PEAK
25
14 - November - 1995
TBLANK
PEAK DETECTOR +
PULSE FORMER
LEVEL
CONTROL
HIGH CUT
CONTROL
0 ÷ -79
1dB
0 ÷ -79
1dB
0 ÷ -79
1dB
0 ÷ -79
1dB
50 - 75
µsec
DEEMPH
I2 C BUS
DECODER
SOFT
MUTE
&
RADIO MUTE
8
AC_IN2_L
NOISE
BLANKER
THRESHOLD
CONTROL
TR_R
RECTIFIER
25KHz
BASS
-18 ÷ +18
1dB
TREBLE
-18 ÷ +18
1dB
10
D94AU106I
-5dB
24
22
19
23
20
21
17
15
16
38
34
35
36
37
TRIGGER_
OUT
VSB
VHCC
VR
HCR
HCL
DIG GND
SDA
SCL
BEEP
RF_OUT
RR_OUT
LF_OUT
LR_OUT
TDA7420
BLOCK DIAGRAM
3/29
100K
TDA7420
ELECTRICAL CHARACTERISTICS (VS = 8.5V; Tamb = 25°C; RL = 10KΩ; all gains = 0dB; f = 1KHz;
unless otherwise specified, refer to the Test Circuit.)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
63
Unit
INPUT SECTION
Differential Input Pins 52, 53, 54, 55
RI
VCL
CMRR
GDIFF
Input Resistance
37
50
2.0
2.5
Common Mode Rejection Ratio
45
55
Differential Gain
-1
0
1
Input Resistance
75
100
125
Clipping Level
2.0
2.5
Clipping Level
THD = 0.3%
KΩ
Vrms
dB
dB
Stereo Input Pins 56, 57
RI
VCL
KΩ
Vrms
Quasi Differential Input Pins 58, 59,60
RI
VCL
Input Resistance
18
25
Clipping Level
2.0
2.5
32
KΩ
Input Resistance
18
25
Clipping Level
2.0
2.5
100
200
300
-1
0
1
Ω
dB
Vrms
Composite Input Pin 61
RI
VCL
32
KΩ
Vrms
MULTIPLEXER
RO
Output Resistance (pin 2,3)
GIMIN
Minimum Gain
GIMAX
Maximum Gain
14
15
16
dB
GSTEP
Step Resolution
0.5
1
1.5
dB
1
5
VDC
Dc Steps
Adjacent Gain Step
-5
GMIN to GMAX
2
mV
mV
VOLUME CONTROL
RI
Input Resistance (1, 64)
24
33
42
KΩ
C MAX
Max Gain
15
16
17
dB
AMAX
Max Attenuation
dB
63
dB
Step Resolution Coarse
Attenuation
AV = 16 to -40dB
0.5
1.0
1.5
EA
Attenuation Set Error
G =16 to -40dB
-1.5
0
1.5
dB
ET
Tracking Error
2
dB
VDC
DC Steps
0.1
3
mV
0.5
5
mV
ASTEPC
Adjacent Attenuation Steps
-3
from 0dB to AMAX
SOFT MUTE
AMUTE
tD
Mute Attenuation
Delay Time
40
C EXT = 22nF;
0 to -20dB;
I = IMAX
I = I MIN
50
dB
1.0
ms
23
ms
BASS CONTROL
C RANGE
ASTEP
RB
4/29
Control Range
+15
+18
+20
Step Resolution
0.5
1
1.5
dB
dB
Internal Feedback Resistance
48
65
82
KΩ
TDA7420
ELECTRICAL CHARACTERISTICS (continued.)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Control Range
Step Resolution
+17
0.5
+18
1
+19
1.5
dB
dB
Internal Feedback Resistance
37
50
63
KΩ
0.5
80
79
1
100
1.5
TREBLE CONTROL
C RANGE
ASTEP
RT
SPEAKER ATTENUATORS
C RANGE
ASTEP
AMUTE
EA
VDC
Control Range
Step Resolution
Output Mute Attenuation
Attenuation Set Error
DC Step
AV = 0 to -40dB
AV = 0 to -40dB
Adjacent Attenuation Steps
0.1
1.50
3
dB
dB
dB
dB
mV
300
3.85
VRMS
KΩ
Ω
V
AUDIO OUTPUTS
VCLIP
RL
ROUT
VDC
Clipping Level
Output Load Resistance
Output Impedance
DC Voltage Level
d = 0.3%
Output Noise
BW = 20Hz to 20KHz, flat
Output Muted
All gains = 0dB
All gains 0dB; VO = 1VRMS ;
VI = 1VRMS ;
2.0
2
100
3.35
2.5
200
3.6
GENERAL
ENO
S/N
d
SC
ET
Signal to Noise Ratio
Distortion
Channel Separation Left/Right
Total Tracking Error
80
AV = 0 to -20dB;
AV = -20 to -40dB;
4.0
5.0
106
0.01
95
0
0
15
0.08
1
2
µV
µV
dB
%
dB
dB
dB
BUS INPUT
V IL
VIH
IIN
VO
Input Low Voltage
Input High Voltage
Input Current
Output Voltage SDA
Acknowledge
1
VIN = 0.4V
IO = 1.6mA
3
-5
0.1
5
0.4
V
V
µA
V
SUPPLY
V IL
IS
Supply Voltage
Supply Current
SVR
Ripple Rejection
Cref = 22µF
Stereo Decoder = ON
Stereo Decoder = OFF
Audioprocessor
Stereo Decoder + Audioprocessor
6.5
25
20
8.5
33
28
80
60
10.0
41
35
V
mA
mA
dB
dB
5/29
TDA7420
PREAMPLIFIER (VS = 8.5V; T amb = 25°C; RIN = 600Ω; unless otherwise specified (see test circuit)
Symbol
RI
Vout DC
RO
II
Parameter
Input Resistance
Output Voltage DC (pin 40, 50)
Output Resistance (pins 40, 50)
Input Bias Current
GVO
GV
Open Loop Gain
Closed Loop Gain
RN
RMLR
Resistance Normal Position
Resistance Metal Position
(left ,right)
Step Resolution (versus RM)
Maximum Value for RM
Minimum Value for RM
Dolby Level Control
RMR
RMmax
R Mmin
SR
eN
Slew Rate
Total Input Noise
Output Attenuation Control
THD
Total Harmonic Distortion
Test Condition
f = 400Hz
NAB short
Min.
100
3.2
100
Typ.
Max.
3.5
200
3.9
300
10
31
110
32.5
34
µA
dB
dB
50
2.85
250
3.8
500
4.75
Ω
KΩ
3.42
2.28
5.5
0.25
4.56
3.04
6.0
0.5
1
0.8
0.5
5.7
3.8
6.5
0.75
KΩ
KΩ
dB
dB
V/µs
µV
5
Control Range
Step Resolution
NAB Short
RIN = 600Ω; unweighted
RIN = 600Ω; CCIR warn
RIN = 0; unweighted
D1, D0 = 00
D1, D0 = 01
D1, D0 = 10
D1, D0 = 11
VO = 1V; f = 1KHz metal
VO = 1V; f = 1KHz normal
VO = 1V; f = 10KHz metal
VO = 1V; f = 10KHz normal
-0.75
0.45
0
-20
-23
-80
0.02
0.02
0.05
0.04
%
0.75
0.1
VO = 2V; f = 1KHz
SVR 1
CS
CCT
S/N
Ripple Rejection
Channel Separation (L to R)
Channel Cross talk (F to R)
Signal to Noise
Unit
KΩ
V
Ω
µV
µV
dB
dB
dB
dB
%
%
%
%
%
dB
dB
dB
dB
VO = 388mV; metal; CCIR arm
75
60
80
65
IAMOUT = 2mA
500
5
800
mA
mV
100
1.45
5.2
2.8
0.2
0.2
70
125
1.7
5.6
3.6
0.8
0.8
150
KΩ
V
V
V
mV
mV
70
11
42
17.5
22
100
150
45
60
AUDIO MUSIC SENSOR
IAMSOUT
VAMSOUT
R i -29
VTH1
VTH2
AMS th
VINTP
VINTS
6/29
AMS Output Current
AMS Output Low Level
Input Resistance AMS Gain
Interprogram Threshold Voltage
Interspace Threshold Voltage
AMS Threshold Level
INTP Output Voltage
INTS Output Voltage
INTP Charge Current
SG
INTS Charge Current
Gain Sensitivity
R i - 30
AMS Gain Resistance
(pin 23)
75
1.2
4.8
2.0
IOUT = 2mA
IOUT = 2mA
50
50
min Gain V30 vs V29
max Gain V30 vs V29
D6, D5 = 00
D6, D5 = 01
D6, D5 = 11
13
16.5
75
22
27.5
125
µA
µA
dB
dB
KΩ
KΩ
KΩ
TDA7420
STEREO DECODER PART
ELECTRICAL CHARACTERISTICS (VS = 8.5V; de-emphasis time: T = 50µs; nominal MPX input voltage on pin 61 (composite): VMPX = 0.5VRMS (75KHz deviation); modulation frequency = 1KHz;
GI = 1.5dB; Tamb = 27°C; unless otherwise specified)
Symbol
Parameter
SVRR
Supply Voltage Ripple Rejection
VO
DC Output Voltage (HCL, HCR)
α
Channel Separation
THD
S+N
N
Test Condition
VRIPPLE = 100mV; f = 1KHz
Min.
50
65
3.95
4.25
VSB - VR = 100mVDC
Max.
0.02
f = 20Hz to 16KHz;
S = 2VRMS
Unit
dB
4.55
50
Total Harmonic Distortion
Signal Plus Noise to Noise Ratio
Typ.
V
dB
0.3
91
%
dB
MONO/ STEREO SWITCH
VINTH
Pilot Threshold Voltage
for stereo ”ON” P th = 1
P th = 0
12
19
16
26
22
34
mVRMS
mVRMS
VINTH
Pilot Threshold Voltage
for stereo ”OFF” P th = 1
P th = 0
8
16
14
22
20
28
mVRMS
mVRMS
-300
-250
-200
STEREO BLEND
VSB-VR
Control Voltage for Channel
Separation
α = 6dB; (note 5)
α = 26dB;
-80
mV
mV
HIGH CUT CONTROL
τdeemp
R HCC
De-Emphasis Time Constant
High Cut Control Resistance
CL, C R = 1nF; STDDS = 0
VHCC - VR = 100mV
43
50
57
µs
CL, C R = 1nF; STDDS = 1
VHCC - VR = 100mV
64
75
86
µs
VHCC - VR = 100mV; STDDS = 0
43
50
57
KΩ
VHCC - VR = -0.5V (note 5)
115
150
185
KΩ
VCO
fOSC
Oscillator Frequency
∆f/f
Capture and Hold Range
0.5
456
KHz
1
%
CARRIER AND HARMONIC SUPPRESSION AT THE OUTPUT
α19
Pilot Signal f = 19KHz
55
dB
α38
Subcarrier f = 38KHz
75
dB
α57
Subcarrier f = 57KHz
62
dB
α76
Subcarrier f = 76KHz
90
dB
40
INTERMODULATION (note 1)
α2
fmod = 10KHz; fspur = 1KHz
65
dB
α3
fmod = 13KHz; fspur = 1KHz
75
dB
70
dB
75
dB
TRAFFIC RADIO (note 2)
α57
Signal f = 57KHz
SCA - SUBSIDIARY COMMUNICATIONS AUTHORIZATION (note 3)
α67
Signal f = 67KHz
ACI - ADJACENT CHANNEL INTERFERENCE (note4)
α114
Signal f = 114KHz
95
dB
α190
Signal f = 190KHz
84
dB
7/29
TDA7420
NOTES TO THE CHARACTERISTICS
1 INTERMODULATION SUPPRESSION
α2 =
VO (signal) (at1KHz)
; fs = (2 x 10KHz) - 19KHz
VO (spurious) (at1KHZ)
α3 =
VO (signal) (at1KHz)
; fs = (3 x 13KHz) - 38KHz
VO (spurious) (at1KHZ)
measured with : 91% mono signal; 9% pilot signal; fm=10KHz or 13KHz.
2. TRAFFIC RADIO (V.F.) suppression
α57 (V.W.F.) =
VO
VO(signal) (at1KHz)
(spurious) (at1KHZ ±23Hz)
measured with : 91% stereo signal; 9% pilot signal; fm=1KHz; 5% subcarrier
(f=57KHz, fm = 23Hz AM, m = 60%)
3. SCA (SUBSIDIARY COMMUNICATIONS AUTHORIZATION)
α67 =
VO(signal) (at1KHz)
; fs = (2 x 38KHz) - 67KHz
VO (spurious) (at9KHZ)
measured with : 81% mono signal; 9% pilot signal; fm=1KHz;
10% SCA - subcarrier (fs = 67KHz, unmodulated).
4. ACI (ADJACENT CHANNEL INTERFERENCE)
α114 =
VO(signal) (at1KHz)
; fs = 110KHz - (3 x 38KHz)
VO (spurious) (at4KHZ)
α190 =
VO(signal) (at1KHz)
; fs = 186KHz - (5 x 38KHz) VO (spurious) (at4KHZ)
measured with 90% mono signal; 9% pilot signal; fm = 1KHz; 1% spurious signal
(fs = 110KHz or 186KHz, unmodulated).
5: Control range for High Cut Control and Stereo Blend is VR - 400mV ≤ VSB, VHCC ≤VR
Figure : High Cut Control
Figure : Stereo Blend
fc
(KHz)
D94AU183
SEP
(dB)
D94AU184
40
3
30
2
20
1
10
0
-500
8/29
-400
-300
-200
-100
0 VHCC-VR
0
-400
-300
-200
-100
VSB - VR
TDA7420
ADDITIONAL CIRCUITS FOR DEVIATION
AND FIELD STRENGTH -DEPENDENT TRIGGER ADJUSTMENT
BLANKING TIME PROGRAMMABLE BY EXTERNAL CAPACITOR
VERY LOW OFFSET CURRENT DURING
HOLD TIME DUE TO OPAMPS WITH MOS
INPUTS
NOISE BLANKER PART
FEATURES:
INTERNAL 2nd ORDER 140KHz HIGH-PASS
FILTER
NOISE RECTIFIER OUTPUT FOR SIGNAL
QUALITY DETECTION
PROGRAMMABLE TRIGGER THRESHOLD
TRIGGER THRESHOLD DEPENDENT ON
HIGH FREQUENCY NOISE WITH PROGRAMMABLE GAIN
ELECTRICAL CHARACTERISTICS (continued)
Symbol
VTRMIN
VTRMIN
VTRSTEP
VTRNOISE
VPEAK
Parameter
Test Condition
Trigger Threshold (*) 1) minimum
Trigger Threshold 1) maximum
Measured with
NBT = 000
VPEAK = 1.2V
Measured with
NBT = 111
VPEAK = 1.2V
Min.
Typ.
Max.
Unit
D2 on byte 2 = 1
D2 on byte 2 = 0
100
150
30
200
mVp
D2 on byte 2 = 1
D2 on byte 2 = 0
130
185
65
250
mVp
Trigger Threshold Step Size
Noise Adjusted Trigger Threshold
Rectifier Voltage
D2 on byte 2 = 1
2)
Measured with
VPEAK = 1.4V
D2 on byte 2 = 0
NAT
NAT
NAT
NAT
= 00
= 01
= 10
= 11
5
mVp
140
180
240
280
mVp
mVp
mVp
mVp
VMPX = 0mV
0.9
V
VMPX = 50mV
f = 200KHz
1.5
V
VMPX = 100mV
f = 200KHz
2.0
V
VRECTDEV
Deviation Dependent Rectifier
Voltage 3)
Measured with
VMPX = 500mV
(75KHz dev.)
OVD
OVD
OVD
OVD
= 00(off)
= 01
= 10
= 11
0.9
1.2
2.0
2.8
V
V
V
V
VRECTFS
Field Strength Controlled Rectifier
Voltage 4)
Measured with
VMPX = 0mV
VSB-VR = -500mV
(fully mono.)
FSC
FSC
FSC
FSC
= 00(off)
= 01
= 10
= 11
0.9
1.3
1.9
2.4
V
V
V
V
TS
Suppression Pulse Duration
CBLANK = 330pF
IOS
Input Offset Current During
Suppression Time
40
µs
10
pA
(*) All thresholds are measured by using a pulse with T R = 2µs, THIGH = 2µs and TF = 10µs.
The repetition rate must not increase the PEAK voltage.
1) NTB represents bits D0 - D2 of NB byte 1
2) NAT represents bits D3 - D4 of NB byte 1
VMPX
3) OVD represents bits D5 - D6 of NB byte 1
VTH
4) FSC represents bits D0 - D1 of NB byte 2
DC-LEVEL
Time
D94AU185
TR
THIGH
TF
9/29
TDA7420
DESCRIPTION
DESCRIPTION OF THE NOISEBLANKER
In the normal automotive environment the MPX
signal is disturbed by ignition spikes, motors and
high frequency switches etc.
The aim of the noiseblanker part is to cancel the
influence of the spikes produced by these components.
Therefore the output of the stereodecoder is
switched off for a time of 40µs (average spike duration).
In a first stage the spikes must be detected but to
avoid a wrong triggering on high frequency noise
a complex trigger control is implemented.
Behind the triggerstage a pulse former generates
the 40µs ”blanking” pulse.
In the following section all of these circuits are described in their function and their programming,
too (see fig.1).
1.1 Normal Trigger Path (RECT-PEAK, ACT,
PEAK-COMP, BLANK-COMP, BIAS-MONO)
The Incoming MPX signal is highpass-filtered,
amplified and rectified (block RECT-PEAK).
The second order highpass-filter has a corner-frequency of 140KHz.
The gain of the rectifier can be controlled by the
bit D2 of the noiseblanker byte2.
If programming bit D2 to zero the gain is only half
of the nominal value.
All trigger thresholds must be roughly doubled in
this case. The rectified signal, RECT, is used to
generate by peak-rectification a signal called
PEAK, which is available at the PEAK pin.
Also noise with a frequency >100KHz increases
the PEAK voltage. The value of the PEAK voltage
influences the trigger threshold voltage Vth (block
ATC).
Both signals, RECT and PEAK+Vth are fed to a
comparator (block PEAK-COMP) which outputs a
sawtooth-sharped waveform at the TBLANK pin,
it is triggered.
A second comparator (block BLANK-COMP)
forms the internal blanking duration of 40µs.
The noiseblanker is supplied by his own biasing
circuit (block BIAS-MONO).
1.2 Automatic Threshold Control (ATC)
There are two independent possibilities for programming the trigger threshold:
a)the minimum threshold in 8 steps (bits D0-D2,
10/29
NB-byte 1)
b)the maximum threshold in 4 steps (bits D3D4, NB-byte 1) (see fig.2)
The low threshold is used in combination with a
good MPX signal without any noise.
The sensitivity in this operation is high, depending
only on the programmed ”Low Trigger Threshold”,
bits D0-D2 of the noiseblanker byte 1.
It is independent of the PEAK voltage.
The MPX signal is noisy (low fieldstrength) the
PEAK signal increases due to the higher noise,
which is also rectified (see part 1.1).
With increasing of the PEAK voltage the trigger
threshold voltage increases, too. This particular
gain is programmable in 4 steps (see fig.2).
1.3 Automatic Threshold Control by the
Stereoblend voltage (ATC-SB)
Besides the noise controlled threshold adjustment
there is an additional possibility for influencing the
trigger.
It is controlled by the difference between Vsb and
Vr, similar to the Stereoblend.
The reason for implementing such a second control will be explained in the following:
The point where the MPX signal starts to become
noisy is fixed by the RF part.
Therefore also the starting point of the normal
noise controlled trigger adjustment is fixed (fig.3).
But in some cases the behaviour of the noiseblanker can be improved by increasing the
threshold even in a region of higher fieldstrength,
for the MPX signal often shows distortion in this
range.
Because of the overlap of this range and the
range of the stereo/mono transition it can be controlled by Vsb and Vr.
This threshold increase is programmable in 3
steps or switched off (see fig.3).
1.4 Over Deviation Detector (MPX-RECT)
Sometimes when listening to stations with a
higher deviation than 75KHz the noiseblanker
triggers on the high frequency modulation.
To avoid this blanking, which causes noise in the
output signal, the noiseblanker offers a deviationdependent threshold adjustment.
By rectifying the MPX signal a further signal representing the actual deviation is obtained.
It is used to increase the PEAK voltage.
Offset and gain of this circuit are programmable in
3 steps (the first step turns off the detector, see
fig.4).
TDA7420
Figure 1: Block Diagram of the Noise Blanker
LEFT
80KHz LP
SIGNAL PATH
RIGHT
BLANK COMP
PEAK COMP
RECT
AMP
MPX IN
BUF
PEAK
+
to INPUT SELECTOR
of AUDIOPROC.
REF.
TRIGGER
OUT
-
AUTOMATIC
THRESHOLD
CONTROL
ATC
PEAK+VTH
CMOS OUTPUT
STAGE
40µs
40µs
5
RECT-PEAK
1
4
I2C-BUS
ADDITIONAL THRESHOLD
CONTROL
(ATC-SB, MPX_RECT)
VR
VSB
RPEAK
82KΩ
CPEAK
47nF
CBLANK
330pF
D94AU189A
Figure 2: Trigger Threshold vs. Vpeak
VTH
280mV
240mV
180mV
140mV
NOISE ADJUSTED
TRIG. THRESHOLD
TRIG. THRESHOLD
65mV
8 STEPS
30mV
0.9V
D94AU186B
1.4V
VPEAK(V)
11/29
TDA7420
Figure 3: Behaviour of the Field Strength Controlled Threshold Adjustment
VPEAK
MONO
STEREO
3G
2.4V(11)
1.9V(10)
1.3V(01)
TRIG. THRESHOLD
NOISE
0.9V
ATC_SB OFF (00)
noisy signal
good signal
D94AU187B
E’
Figure 4: Behaviour of the Deviation Dependent Threshold Adjust (Over Deviation Detector)
VPEAK
(V)
OVM=11
OVM=10
2.8
2.0
OVM=01
1.2
0.9
DETECTOR OFF (00)
D94AU188
20
32.5
45
I2C BUS INTERFACE
Interface Protocol
The interface protocol comprises:
A start condition (s)
A chip address byte, (the LSB bit determines
read/write transmission).
CHIP ADDRESS
MSB
S
1
0
0
1
0
A subaddress byte
A sequence of data (N-bytes + acknowledge)
A stop condition (P)
DATA 1...DATA n
SUB ADDRESS
LSB
0
DEVIATION(KHz)
75
LSB
MSB
0 R/W ACK X
X
T
I
MSB
A3 A2 A1 A0 ACK
LSB
DATA
ACK = Acknowledge
S = Start
P = Stop
I = Autoincrement
MAX CLOCK SPEED 500kbits/s
Autoincrement
If bit I in the subaddress byte is set to ”1”, the autoincrement of subaddress is enabled.
12/29
ACK P
TDA7420
TRANSMITTED DATA (SEND MODE)
MSB
LSB
X
X
X
X
X
ST
SM
AMS
HIGH = Active
AMS = True Blank Detected
SM = Soft mute activated
ST = Stereo (HIGH = active)
SUBADDRESS (RECEIVE MODE)
MSB
X
LSB
X
X
I
FUNCTION
D3
D2
D1
D0
0
0
0
0
Mux
0
0
0
1
Volume
0
0
1
0
Treble
0
0
1
1
Bass
0
1
0
0
Speaker Attenuator LF
0
1
0
1
Speaker Attenuator RF
0
1
1
0
Speaker Attenuator LR
0
1
1
1
Speaker Attenuator RR
1
0
0
0
Mute & Beep
1
0
0
1
Stereodecoder
1
0
1
0
Noise Blanker 1
1
0
1
1
Noise Blanker 2
1
1
0
0
AMS
1
1
0
1
Dolby Level Control
1
1
1
0
Metal Resistance Control
1
1
1
1
Preamplifier Attenuation
If bit in the subaddress byte is set to ” 1”, the autoincrement of subaddress is enabled
13/29
TDA7420
INPUT SELECTOR
MSB
D7
D6
D5
D4
D3
D2
D1
LSB
D0
0
0
0
0
0dB
0
0
0
1
1dB
0
0
0
0
1
1
0
1
2dB
3dB
0
0
1
1
0
0
0
1
4dB
5dB
0
1
1
0
6dB
0
1
1
1
7dB
1
1
0
0
0
0
0
1
8dB
9dB
1
1
0
0
1
1
0
1
10dB
11dB
1
1
0
0
12dB
1
1
0
1
13dB
1
1
1
1
1
1
0
1
14dB
15dB
FUNCTION
Input Gain
14/29
0
0
0
Full diff CD
0
0
1
Stereo
0
0
1
1
0
1
Stereo Decoder
AM quasi diff input
1
1
0
0
0
1
Quasi diff CD
Not allowed
1
1
0
Not allowed
1
1
1
AM Mono (AM R input)
TDA7420
VOLUME
MSB
D7
LSB
D6
D5
D4
D3
FUNCTION
D2
D1
D0
0
0
0
-0dB
0
0
1
-1dB
0
1
0
-2dB
0
1
1
-3dB
1
0
0
-4dB
1
0
1
-5dB
1
1
0
-6dB
1
1
1
-1 dB STEPS
-7dB
-8 dB STEPS
0
0
1
0
0
0
16dB
0
0
1
8dB
0
1
0
0dB
0
1
1
-8dB
1
0
0
-16dB
1
0
1
-24dB
1
1
0
-32dB
1
1
1
-40dB
1
0
0
0
-48dB
1
0
0
1
-56dB
Mute
15/29
TDA7420
TREBLE
MSB
D7
16/29
LSB
D6
FUNCTION
D5
D4
D3
D2
D1
D0
1
1
0
0
1
0
-18dB
1
1
0
0
0
1
-17dB
1
1
0
0
0
0
-16dB
1
0
1
1
1
1
-15dB
1
0
1
1
1
0
-14dB
1
0
1
1
0
1
-13dB
1
0
1
1
0
0
-12dB
1
0
1
0
1
1
-11dB
1
0
1
0
1
0
-10dB
1
0
1
0
0
1
-9dB
1
0
1
0
0
0
-8dB
1
0
0
1
1
1
-7dB
1
0
0
1
1
0
-6dB
1
0
0
1
0
1
-5dB
1
0
0
1
0
0
-4dB
1
0
0
0
1
1
-3dB
1
0
0
0
1
0
-2dB
1
0
0
0
0
1
-1dB
1
0
0
0
0
0
0dB
0
0
0
0
0
0
0dB
0
0
0
0
0
1
1dB
0
0
0
0
1
0
2dB
0
0
0
0
1
1
3dB
0
0
0
1
0
0
4dB
0
0
0
1
0
1
5dB
0
0
0
1
1
0
6dB
0
0
0
1
1
1
7dB
0
0
1
0
0
0
8dB
0
0
1
0
0
1
9dB
0
0
1
0
1
0
10dB
0
0
1
0
1
1
11dB
0
0
1
1
0
0
12dB
0
0
1
1
0
1
13dB
0
0
1
1
1
0
14dB
0
0
1
1
1
1
15dB
0
1
0
0
0
0
16dB
0
1
0
0
0
1
17dB
0
1
0
0
1
0
18dB
TDA7420
BASS
MSB
D7
LSB
D6
FUNCTION
D5
D4
D3
D2
D1
D0
1
1
0
0
1
0
-18dB
1
1
0
0
0
1
-17dB
1
1
0
0
0
0
-16dB
1
0
1
1
1
1
-15dB
1
0
1
1
1
0
-14dB
1
0
1
1
0
1
-13dB
1
0
1
1
0
0
-12dB
1
0
1
0
1
1
-11dB
1
0
1
0
1
0
-10dB
1
0
1
0
0
1
-9dB
1
0
1
0
0
0
-8dB
1
0
0
1
1
1
-7dB
1
0
0
1
1
0
-6dB
1
0
0
1
0
1
-5dB
1
0
0
1
0
0
-4dB
1
0
0
0
1
1
-3dB
1
0
0
0
1
0
-2dB
1
0
0
0
0
1
-1dB
1
0
0
0
0
0
0dB
0
0
0
0
0
0
0dB
0
0
0
0
0
1
1dB
0
0
0
0
1
0
2dB
0
0
0
0
1
1
3dB
0
0
0
1
0
0
4dB
0
0
0
1
0
1
5dB
0
0
0
1
1
0
6dB
0
0
0
1
1
1
7dB
0
0
1
0
0
0
8dB
0
0
1
0
0
1
9dB
0
0
1
0
1
0
10dB
0
0
1
0
1
1
11dB
0
0
1
1
0
0
12dB
0
0
1
1
0
1
13dB
0
0
1
1
1
0
14dB
0
0
1
1
1
1
15dB
0
1
0
0
0
0
16dB
0
1
0
0
0
1
17dB
0
1
0
0
1
0
18dB
1
Non DC extended bass
0
DC extended bass
17/29
TDA7420
SPEAKERS ATTENUATORS
MSB
D7
LSB
D6
D5
D4
D3
LF, LR, RF, RR
D2
D1
D0
0
0
0
0dB
0
0
1
-1dB
0
1
0
-2dB
0
1
1
-3dB
1
0
0
-4B
1
0
1
-5dB
1
1
0
-6dB
1
1
1
-7dB
-1dB STEPS
8dB STEPS
0
0
0
0
0dB
0
0
0
1
-8dB
0
0
1
0
-16dB
0
0
1
1
-24dB
0
1
0
0
-32dB
0
1
0
1
-40dB
0
1
1
0
-48dB
0
1
1
1
-56dB
1
0
0
0
-64dB
1
0
0
1
-72dB
1
1
0
1
0
1
1
1
1
D5
D4
Mute
MUTE & BEEP
MSB
D7
LSB
D6
1
1
D3
D2
D1
FUNCTION
D0
1
Soft Mute - FAST SLOPE
0
Soft Mute - Slow Slope
1
Soft Mute OFF
0
Soft Mute ON
0
0
Direct Input Mute ON
1
0
Direct Input Mute OFF
0
0
Radio Mute ON
1
0
Radio Mute OFF
1
Composit Input Enabled
0
Composit Mute Enabled
Beep ON - Front
Beep ON - Rear
1
VCO OFF
0
VCO ON
18/29
TDA7420
STEREO DECODER
MSB
D7
LSB
D6
D5
D4
D3
D2
FUNCTION
D1
D0
0
0
1.5dB Input Gain
0
1
4.0dB Input Gain
1
0
6.5dB Input Gain
1
1
Input Gain
9dB Input Gain
Roll Off Adjustement
0
0
1
20.2%
0
1
0
21.9%
0
1
1
23.7%
1
0
0
25.5%
1
0
1
27.3%
1
1
0
29.2%
1
1
1
31%
0
Deemph. Time Constant 75µs
1
Deemph. Time Constant 50µs
1
Forced Mono
0
Stereo Enabled
0
Pilot Threshold High
1
Pilot Threshold Low
NOISE BLANKER 1
MSB
D7
LSB
D6
D5
D4
D3
D2
D1
FUNCTION
D0
Noise Blanker Threshold Vpeak = 0.9V
0
0
0
Vth = 30mV
0
0
1
Vth = 35mV
0
1
0
Vth = 40mV
0
1
1
Vth = 45mV
1
0
0
Vth = 50mV
1
0
1
Vth = 55mV
1
1
0
Vth = 60mV
1
1
1
Vth = 65mV
Noise Blanker Noise Adjusted Threshold Vpeak = 1.4V
0
0
Vth = 140mV
0
1
Vth = 180mV
1
0
Vth = 240mV
1
1
Vth = 280mV
Gain of Overdeviation Detector Vpeak with MPX of 75KHz Deviation
0
0
Detector Off
0
1
Vpeak = 1.2Vop
1
0
Vpeak = 2.0Vop
1
1
Vpeak = 2.8Vop
19/29
TDA7420
NOISE BLANKER 2
MSB
D7
LSB
D6
D5
D4
D3
D2
D1
FUNCTION
D0
Field Strenght Controlled Rectifier Voltage (control by Vsb-Vr) Vpeak at Vsb-Vr = -500mV (fully Mono)
0
0
Control Off
0
1
Vpeak = 1.3V
1
0
Vpeak = 1.9V
1
1
Vpeak = 2.4V
Noise Blanker Gain
1
Low
0
High
AMS
MSB
D7
LSB
D6
D5
D4
D3
D2
FUNCTION
D1
D0
0
0
0dB
0
1
-1dB
1
1
0
1
-2dB
-3dB
Gain Sensitivity Tuning
Att. Sensitivity Tuning
0
1
20/29
0
0
0
0dB
0
0
1
10dB
0
0
1
1
0
1
14dB
18dB
1
1
0
0
0
1
22dB
26dB
1
1
0
30dB
1
1
1
34dB
0
0
0
1
AC Sensitivity Tuning
22dB f = 1.1KHz SW1 = SW2 = SW3
34dB f = 1.1KHz
1
0
not allowed
1
1
21dB f = 160Hz
AMS ON
AMS OFF
TDA7420
DOLBY LEVEL CONTROL
MSB
D7
LSB
D6
D5
D4
FUNCTION
D3
D2
D1
D0
0
0
0
0
0dB
0
0
0
1
-0.5dB
0
0
1
0
-1.0dB
0
0
1
1
-1.5dB
0
1
0
0
-2.0dB
0
1
0
1
-2.5dB
0
1
1
0
-3.0dB
0
1
1
1
-3.5dB
1
0
0
0
-4.0dB
1
0
0
1
-4.5dB
1
0
1
0
-5.0dB
1
0
1
1
-5.5dB
1
1
X
X
-6.0dB
Right Channel
Left Channel
0
0
0
0
-0dB
0
0
0
1
-0.5dB
0
0
1
0
-1.0dB
0
0
1
1
-1.5dB
0
1
0
0
-2.0dB
0
1
0
1
-2.5dB
0
1
1
0
-3.0dB
0
1
1
1
-3.5dB
1
0
0
0
-4.0dB
1
0
0
1
-4.5dB
1
0
1
0
-5.0dB
1
0
1
1
-5.5dB
1
1
X
X
-6.0dB
21/29
TDA7420
METAL RESISTANCE CONTROL
MSB
D7
LSB
D6
D5
D4
FUNCTION
D3
D2
D1
D0
1
0
0
0
R metal +20%
0
0
0
0
R metal +15%
0
0
0
1
R metal +10%
0
0
1
0
R metal +5%
0
0
1
1
R metal =3.8KΩ Typical
0
1
0
0
R metal - 5%
0
1
0
1
R metal - 10%
0
1
1
0
R metal - 15%
0
1
1
1
Right Channel
R metal - 20%
Left Channel
1
0
0
0
R metal +20%
0
0
0
0
R metal +15%
0
0
0
1
R metal +10%
0
0
1
0
R metal +5%
0
0
1
1
R metal =3.8KΩ Typical
0
1
0
0
R metal - 5%
0
1
0
1
R metal - 10%
0
1
1
0
R metal - 15%
0
1
1
1
R metal - 20%
D5
D4
PREAMPLIFIER
MSB
D7
LSB
D6
D3
D2
FUNCTION
D1
D0
0
0
0dB
0
1
-20dB
1
0
-23dB
1
1
Mute
Attenuation control
22/29
0
Reverse Mode On
1
Forward Mode On
TDA7420
PINS: 1, 64
PINS: 2, 3,6,7,
VCC
V CC
VCC
20µA
20µA
GND
GND
33K
50K
GND
Vcc/2
D95AU267
D95AU268
VCC/2
PINS: 40, 50
VCC
PINS: 8, 9
VCC
V CC
20µA
20µA
205
33K
GND
GND
D95AU270
D95AU269
PINS: 10, 12
Vcc/2
GND
PINS: 11, 13
VCC
VS
20µA
20µA
GND
GND
65K
65K
BASS-LB
PIN 11
PIN 13
D95AU271A
BASS-RB
D95AU272
23/29
TDA7420
PIN: 15
PIN: 16
20µA
20µA
GND
GND
D95AU273
GND
PIN: 19
D95AU274
PINS: 20, 21
20µA
VCC
VCC
40µA
205
VCC
GND
VCC
4K
GND
25K
75K
GND
D95AU275
GND
GND
D95AU276
GND
PIN: 22
PIN: 23
20µA
VCC
40µA
VCC
20µA
205
40µA
GND
GND
16K
205
VCC
GND
D95AU277
24/29
GND
D95AU278
GND
TDA7420
PIN: 24
PIN: 25
VCC
VCC
VCC
35µA
40µA
205
205
GND
GND
GND
D95AU279
GND
D95AU280
PIN: 27
PIN: 26
VCC
VCC
VCC
VCC
V CC V CC
4K
40µA
6K
280
50µA
2K
100µA
500
GND
GND
500
GND
56K
D95AU282
D95AU281
PIN: 28
PINS: 29, 56, 57
VCC
VCC
20µA
VCC
12K
20µA
GND
GND
VCC
20µA
100K
12K
GND
GND
VCC/2
D95AU284
D95AU283
25/29
TDA7420
PIN: 30
PIN: 31
VCC
VCC
VCC
10K
GND
100K
GND
GND
GND
GND
D95AU286
D95AU285
PIN: 33
PIN: 32
VCC
VCC
VCC
29K
GND
GND
GND
GND
GND
GND
PINS: 34, 35, 36, 37
GND
D95AU288
D95AU287
PINS: 38
VCC
VCC
205
20µA
24
50K
GND
GND
20µA
50K
GND
D95AU289
26/29
GND
VCC/2
D95AU290
TDA7420
PINS: 39
PINS: 41,49
VCC
VCC
VCC
VCC
4.56K
205
224K
GND
GND
GND
GND
D95AU291
D95AU292
PINS: 42, 48
PINS: 43, 44, 46, 47
VCC
VCC
20µA
205
GND
GND
GND
D95AU293
PIN 43, 44
D95AU294
PIN 46, 47
PINS: 52, 53
PINS: 54, 55
VCC
VCC
50K
GND
50K
GND
PIN 52
VCC/2
20K
20µA
20K
PIN 54
20K
VCC/2
PIN 55
20K
PIN 53
D95AU295
D95AU296
27/29
TDA7420
PIN: 59
PINS: 58, 60
VCC
VCC
20µA
VCC
20µA
25K
25K
25K
VCC/2
20µA
GND
GND
25K
GND
D95AU297
PIN: 61
D95AU298
PIN: 62
VCC
VCC
VCC
20µA
20K
20K
25K
GND
VCC/2
D95AU299
PIN: 63
VCC
20µA
10K
1.7K
GND
GND
D95AU301
28/29
GND
GND
GND
GND
D95AU300
TDA7420
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
29/29