STMICROELECTRONICS VN920DSP13TR

VN920DSP
®
HIGH SIDE DRIVER
TYPE
VN920DSP
RDS(on)
16 mΩ
IOUT
25 A
VCC
36 V
10
CMOS COMPATIBLE INPUT
■ ON STATE OPEN LOAD DETECTION
■ OFF STATE OPEN LOAD DETECTION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
■
■
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN920DSP is a monolithic device made by
using
STMicroelectronics
VIPower
M0-3
Technology, intended for driving any kind of load
with one side connected to ground.
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table). Active current limitation
1
PowerSO-10™
ORDER CODES
PACKAGE
TUBE
T&R
PowerSO-10™ VN920DSP VN920DSP13TR
combined with thermal shutdown and automatic
restart protect the device against overload.
The device detects open load condition both is on
and off state. Output shorted to VCC is detected in
the off state. Device automatically turns off in case
of ground pin disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
ON STATE OPENLOAD
DETECTION
STATUS
OVERTEMPERATURE
DETECTION
OFF STATE OPENLOAD
AND OUTPUT SHORTED TO VCC
DETECTION
(*) See application schematic at page 8
October 2002
1/17
VN920DSP
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
ISTAT
VESD
EMAX
Ptot
Tj
Tc
Tstg
Parameter
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
DC Status Current
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
Value
41
- 0.3
- 200
Internally Limited
- 25
+/- 10
+/- 10
Unit
V
V
mA
A
A
mA
mA
- INPUT
4000
V
- CURRENT SENSE
4000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy
5000
V
362
mJ
96.1
Internally Limited
- 40 to 150
- 55 to 150
W
°C
°C
°C
(L=0.25mH; RL=0Ω; Vbat=13.5V; Tjstart =150ºC; IL=45A)
Power Dissipation TC=25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
CONNECTION DIAGRAM (TOP VIEW)
GROUND
INPUT
6
5
OUTPUT
7
4
OUTPUT
STATUS
N.C.
N.C.
8
3
N.C.
9
2
OUTPUT
10
1
OUTPUT
11
VCC
PowerSO-10™
CURRENT AND VOLTAGE CONVENTIONS
IS
IIN
VCC
INPUT
ISTAT
IOUT
STATUS
VCC
OUTPUT
GND
VIN
VSTAT
2/17
1
IGND
VOUT
VN920DSP
THERMAL DATA
Symbol
Rthj-case
Rthj-amb
Parameter
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
Value
1.3
51.3 (*)
Max
Max
Unit
°C/W
°C/W
(*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VUSDhyst
VOV
RON
IS
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Undervoltage Shut-down
hysteresis
Overvoltage Shut-down
On State Resistance
Supply Current
Test Conditions
Min
5.5
3
Typ
13
4
0.5
Off State Output Current
Off State Output Current
Off State Output Current
Off State Output Current
Unit
V
V
V
IOUT=10A; Tj=25°C
36
16
V
mΩ
IOUT=10A
30
mΩ
IOUT=3A; VCC=6V
Off State; VCC=13V; VIN=VOUT=0V
10
50
25
mΩ
µA
Off State; VCC=13V; VIN=VOUT=0V;
Tj=25°C
10
20
µA
5
50
0
5
3
mA
µA
µA
µA
µA
Typ
50
50
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
Typ
Max
1.25
On State; VCC=13V; VIN=5V; IOUT=0A
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Max
36
5.5
VIN=VOUT=0V
VIN=0V; VOUT=3.5V
VIN=VOUT=0V; VCC=13V; Tj =125°C
VIN=VOUT=0V; VCC=13V; Tj =25°C
0
-75
SWITCHING (VCC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on Delay Time
Turn-off Delay Time
RL=1.3Ω
RL=1.3Ω
Test Conditions
dVOUT/
dt(on)
Turn-on Voltage Slope
RL=1.3Ω
dVOUT/
dt(off)
Turn-off Voltage Slope
RL=1.3Ω
Min
V/µs
V/µs
INPUT PIN
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
3/17
1
VN920DSP
ELECTRICAL CHARACTERISTICS (continued)
STATUS PIN
Symbol
VSTAT
ILSTAT
CSTAT
VSCL
Parameter
Test Conditions
Status Low Output Voltage ISTAT=1.6mA
Status Leakage Current
Normal Operation VSTAT=5V
Status Pin Input
Normal Operation VSTAT=5V
Capacitance
ISTAT=1mA
Status Clamp Voltage
ISTAT=-1mA
Min
6
Typ
6.8
Max
0.5
10
Unit
V
µA
100
pF
8
V
-0.7
V
PROTECTIONS
Symbol
TTSD
TR
Thyst
tSDL
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
Status delay in overload
condition
Ilim
Current limitation
Vdemag
Turn-off Output Clamp
Voltage
Test Conditions
Min
150
135
7
Typ
175
45
5.5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
Unit
°C
°C
°C
20
µs
75
A
75
A
15
Tj>TTSD
30
Max
200
VCC-41 VCC-48 VCC-55
V
OPENLOAD DETECTION
Symbol
IOL
tDOL(on)
VOL
tDOL(off)
Parameter
Openload ON State
Detection Threshold
Openload ON State
Detection Delay
Openload OFF State
Voltage Detection
Test Conditions
VIN=5V
VIN=0V
Max
Unit
300
500
700
mA
200
µs
3.5
V
1000
µs
1.5
2.5
Threshold
Openload Detection Delay
at Turn Off
OVERTEMP STATUS TIMING
Tj > TTSD
VIN
VIN
VSTAT
VSTAT
tDOL(off)
2
Typ
IOUT=0A
OPEN LOAD STATUS TIMING (with external pull-up)
IOUT< IOL
VOUT > VOL
4/17
Min
tDOL(on)
tSDL
tSDL
VN920DSP
Switching time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VIN
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS
Normal Operation
Current Limitation
Overtemperature
Undervoltage
Overvoltage
Output Voltage > VOL
Output Current < IOL
INPUT
L
H
L
H
H
L
H
L
H
L
H
L
H
L
H
OUTPUT
L
H
L
X
X
L
L
L
L
L
L
H
H
L
H
STATUS
H
H
H
(Tj < TTSD) H
(Tj > TTSD) L
H
L
X
X
H
H
L
H
H
L
5/17
VN920DSP
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN
ISO T/R 7637/1
Test Pulse
I
II
TEST LEVELS
III
IV
1
2
3a
3b
4
5
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
6/17
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
VN920DSP
Figure1: Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUT
LOAD VOLTAGE
STATUS
OPEN LOAD with external pull-up
INPUT
VOUT>VOL
LOAD VOLTAGE
VOL
STATUS
OPEN LOAD without external pull-up
INPUT
LOAD VOLTAGE
STATUS
Tj
TTSD
TR
OVERTEMPERATURE
INPUT
LOAD CURRENT
STATUS
7/17
VN920DSP
APPLICATION SCHEMATIC
+5V
+5V
VCC
Rprot
STATUS
Dld
µC
Rprot
INPUT
OUTPUT
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the of
the device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggest to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
8/17
1
VN920DSP
High Level Input Current
Off State Output Current
IL(off1) (uA)
Iih (uA)
9
5
8
4.5
7
4
Vin=3.25V
3.5
6
3
5
2.5
4
2
3
1.5
2
1
1
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (°C)
Input Clamp Voltage
Input High Level
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1.8
1
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
9/17
1
VN920DSP
ILIM Vs Tcase
Overvoltage Shutdown
Vov (V)
Ilim (A)
50
100
48
90
46
80
44
70
42
60
40
50
38
40
36
30
34
20
32
10
Vcc=13V
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
100
125
150
175
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
700
550
500
650
600
Vcc=13V
Rl=1.3Ohm
450
Vcc=13V
Rl=1.3Ohm
400
550
350
500
300
450
250
200
400
150
350
100
300
50
0
250
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (ºC)
On State Resistance Vs Tcase
On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
50
50
45
45
Iout=10A
Vcc=8V; 36V
40
40
35
35
30
30
25
25
20
20
15
15
10
10
5
5
Tc= 150ºC
Tc= 25ºC
Tc= - 40ºC
0
0
-50
-25
0
25
50
75
Tc (ºC)
10/17
100
125
150
175
5
10
15
20
25
Vcc (V)
30
35
40
VN920DSP
Status Clamp Voltage
Status Leakage Current
Vscl (V)
Ilstat(µA)
8
0.05
7.8
0.045
Istat=1mA
Vstat=5V
0.04
7.6
0.035
7.4
0.03
7.2
0.025
7
0.02
6.8
0.015
6.6
0.01
6.4
0.005
6.2
6
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
Tc (ºC)
Status Low Output Voltage
Vstat (V)
0.8
0.7
Istat=1.6mA
0.6
0.5
0.4
0.3
0.2
0.1
0
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
11/17
VN920DSP
Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.1
1
10
100
L(mH )
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/17
VN920DSP
PowerSO-10™ THERMAL DATA
PowerSO-10™ PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
13/17
VN920DSP
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
Footprint
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Thermal fitting model of a single channel HSD
in PowerSO-10
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
14/17
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.02
0.1
0.2
0.8
12
37
0.0015
7.00E-03
0.015
0.3
0.75
3
6
22
5
VN920DSP
PowerSO-10™ MECHANICAL DATA
mm.
DIM.
MIN.
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
α
α (*)
inch
TYP
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
MAX.
MIN.
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
0.132
0.134
0.000
0.016
0.014
0.013
0.009
0.370
0.291
0.366
0.283
0.287
0.232
0.232
1.35
1.40
14.40
14.35
0.049
0.047
0.543
0.545
1.80
1.10
8º
8º
0.047
0.031
0º
2º
1.27
TYP.
MAX.
0.144
0.142
0.004
0.024
0.021
0.022
0.0126
0.378
0.300
0.374
300
0.295
0.240
0.248
0.050
1.25
1.20
13.80
13.85
0.50
0.053
0.055
0.567
0.565
0.002
1.20
0.80
0º
2º
0.070
0.043
8º
8º
(*) Muar only POA P013P
B
0.10 A B
10
H
E
E
E2
1
SEATING
PLANE
e
B
DETAIL "A"
A
C
0.25
h
E4
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
P095A
15/17
1
VN920DSP
PowerSO-10™ SUGGESTED PAD LAYOUT
TUBE SHIPMENT (no suffix)
14.6 - 14.9
CASABLANCA
B
10.8- 11
MUAR
C
6.30
C
A
A
0.67 - 0.73
10
9
1
9.5
2
3
B
0.54 - 0.6
All dimensions are in mm.
8
7
4
5
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
6
Casablanca
Muar
50
50
1000
1000
532
532
A
B
C (± 0.1)
10.4 16.4
4.9 17.2
0.8
0.8
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
24
1.5
1.5
11.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
16/17
1
1
VN920DSP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
17/17