STMICROELECTRONICS VND5N0713TR

VND5N07/VND5N07-1
VNP5N07FI/K5N07FM
"OMNIFET":
FULLY AUTOPROTECTED POWER MOSFET
Table 1. General Features
Figure 1. Package
Type
Vclamp
RDS(on)
Ilim
VND5N07
VND5N07-1
VND5N07FI
VND5N07FM
70 V
0.2 Ω
5A
3
3
2
1
■
LINEAR CURRENT LIMITATION
■
THERMAL SHUT DOWN
■
SHORT CIRCUIT PROTECTION
■
INTEGRATED CLAMP
■
LOW CURRENT DRAWN FROM INPUT PIN
■
DIAGNOSTIC FEEDBACK THROUGH INPUT
PIN
■
ESD PROTECTION
■
DIRECT ACCESS TO THE GATE OF THE
POWER MOSFET (ANALOG DRIVING)
■
COMPATIBLE WITH STANDARD POWER
MOSFET
1
DPAK
TO-252
IPAK
TO-251
3
1
ISOWATT220
2
SOT-82FM
DESCRIPTION
The VND5N07, VND5N07-1, VNP5N07FI and
VNK5N07FM are monolithic devices made using
STMicroelectronics VIPower M0 Technology,
intended for replacement of standard power
MOSFETS in DC to 50 KHz applications. Built-in
thermal shut-down, linear current limitation and
overvoltage clamp protect the chip in harsh
enviroments.
Fault feedback can be detected by monitoring the
voltage at the input pin.
Table 2. Order Codes
Package
Tube
Tape and Reel
DPAK
VND5N07
VND5N0713TR
IPAK
VND5N07-1
–
ISOWATT220
VND5N07FI
–
SOT-82FM
VND5N07FM
–
REV. 2
June 2004
1/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 2. Block Diagram
Table 3. Absolute Maximum Ratings
Value
Symbol
Parameter
DPAK
ISOWATT220
SOT-82FM
Unit
IPAK
VDS
Drain-Source Voltage (Vin = 0)
Internally Clamped
V
Vin
Input Voltage
18
V
ID
Drain Current
Internally Limited
A
IR
Reverse DC Output Current
–7
A
2000
V
Vesd
Electrostatic Discharge (C = 100 pF,
R =1.5 KΩ)
Ptot
Total Dissipation at Tc = 25 °C
60
24
9
W
Tj
Operating Junction Temperature
Internally Limited
°C
Tc
Case Operating Temperature
Internally Limited
°C
-55 to 150
°C
Tstg
Storage Temperature
Table 4. Thermal Data
Symbol
Parameter
DPAK/IPAK
ISOWATT220
SOT-82FM
Unit
Rthj-case
Thermal Resistance Junction-case
Max
3.75
5.2
14
°C/W
Rthj-amb
Thermal Resistance Junction-ambient
Max
100
62.5
100
°C/W
2/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
ELECTRICAL CHARACTERISTICS (Tcase = 25°C unless otherwise specified)
Table 5. Off
Symbol
VCLAMP
Parameter
Drain-source Clamp Voltage
Test Conditions
ID = 200 mA; Vin = 0
Min.
Typ.
Max.
Unit
60
70
80
V
VCLTH
Drain-source Threshold Voltage ID = 2 mA; Vin = 0
55
VINCL
Input-Source Reverse Clamp
Voltage
Iin = –1 mA
–1
IDSS
Zero Input Voltage Drain
Current (Vin = 0)
VDS = 13 V; Vin = 0
VDS = 25 V; Vin = 0
IISS
Supply Current from Input Pin
VDS = 0 V; Vin = 10 V
V
–0.3
V
50
200
µA
µA
250
500
µA
Typ.
Max.
Unit
3
V
0.200
0.280
Ω
Ω
Max.
Unit
Table 6. On (1)
Symbol
Parameter
Test Conditions
VIN(th)
Input Threshold Voltage
VDS = Vin; ID + Iin = 1 mA
RDS(on)
Static Drain-source On
Resistance
Vin = 10 V; ID = 2.5 A
Vin = 5 V; ID = 2.5 A
Min.
0.8
Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5%
Table 7. Dynamic
Symbol
Parameter
Test Conditions
gfs (2)
Forward Transconductance
VDS = 13 V; ID = 2.5 A
Coss
Output Capacitance
VDS = 13 V; f = 1 MHz; Vin = 0
Min.
Typ.
3
4
S
200
300
pF
Typ.
Max.
Unit
Note: 2. Pulsed: Pulse duration = 300 µs, duty cycle 1.5%.
Table 8. Switching (3)
Symbol
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
(di/dt)on
Qi
Parameter
Test Conditions
Min.
Turn-on Delay Time
VDD = 15 V; Id = 2.5 A;
50
100
ns
Rise Time
Vgen = 10V; Rgen = 10 Ω
60
100
ns
Turn-off Delay Time
(see Figure 28)
150
300
ns
40
80
ns
Fall Time
Turn-on Delay Time
VDD = 15 V; Id = 2.5 A;
150
250
ns
Rise Time
Vgen = 10V; Rgen = 1000 Ω
400
600
ns
Turn-off Delay Time
(see Figure 28)
3900
5000
ns
1100
1600
ns
Fall Time
Turn-on Current Slope
VDD = 15 V; ID = 2.5 A
Vin = 10 V; Rgen = 10 Ω
80
A/µS
Total Input Charge
VDD = 12 V; ID = 2.5 A; Vin = 10 V
18
nC
Note: 3. Parameters guaranteed by design/characterization.
3/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
ELECTRICAL CHARACTERISTICS (cont’d)
Table 9. Source Drain Diode
Symbol
Parameter
Test Conditions
Forward On Voltage
ISD = 2.5 A; Vin = 0
trr(5)
Reverse Recovery Time
Qrr(5)
Reverse Recovery Charge
ISD = 2.5 A; di/dt = 100 A/µs
VDD = 30 V; Tj = 25 °C
(see test circuit, Figure 30)
IRRM(5)
Reverse Recovery Current
VSD(4)
Min.
Typ.
Max.
Unit
1.6
V
150
ns
0.3
µC
5.7
A
Note: 4. Pulsed: Pulse duration = 300 µs, duty cycle 1.5%
5. Parameters guaranteed by design/characterization.
Table 10. Protection
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
3.5
3.5
5
5
7
7
A
A
15
40
20
60
µs
µs
Drain Current Limit
Vin = 10 V; VDS = 13 V
Vin = 5 V; VDS = 13 V
tdlim(6)
Step Response Current Limit
Vin = 10 V
Vin = 5 V
Tjsh(6)
Overtemperature Shutdown
150
°C
Tjrs(6)
Overtemperature Reset
135
°C
Igf(6)
Fault Sink Current
Vin = 10 V; VDS = 13 V
Vin = 5 V; VDS = 13 V
Eas(6)
Single Pulse
Avalanche Energy
starting Tj = 25 °C; VDD = 20 V
Vin = 10 V; Rgen = 1 KΩ; L = 10 mH
Ilim
50
20
0.2
mA
mA
J
Note: 6. Parameters guaranteed by design/characterization.
PROTECTION FEATURES
During normal operation, the Input pin is
electrically connected to the gate of the internal
power MOSFET. The device then behaves like a
standard power MOSFET and can be used as a
switch from DC to 50 KHz. The only difference
from the user’s standpoint is that a small DC
current (Iiss) flows into the Input pin in order to
supply the internal circuitry.
The device integrates:
– OVERVOLTAGE
CLAMP
PROTECTION:
internally set at 70V, along with the rugged
avalanche characteristics of the Power
MOSFET stage give this device unrivalled
ruggedness and energy handling capability.
This feature is mainly important when driving
inductive loads.
– LINEAR CURRENT LIMITER CIRCUIT: limits
the drain current Id to Ilim whatever the Input pin
voltage. When the current limiter is active, the
device operates in the linear region, so power
dissipation may exceed the capability of the
heatsink. Both case and junction temperatures
increase, and if this phase lasts long enough,
and the ability to be driven from a TTL Logic circuit
4/15
junction
temperature
may
reach
the
overtemperature threshold Tjsh.
– OVERTEMPERATURE AND SHORT CIRCUIT
PROTECTION: these are based on sensing the
chip temperature and are not dependent on the
input voltage. The location of the sensing
element on the chip in the power stage area
ensures fast, accurate detection of the junction
temperature. Overtemperature cutout occurs at
minimum 150°C. The device is automatically
restarted when the chip temperature falls below
135°C.
– STATUS FEEDBACK: In the case of an
overtemperature fault condition, a Status
Feedback is provided through the Input pin. The
internal protection circuit disconnects the input
from the gate and connects it instead to ground
via an equivalent resistance of 100 Ω. The
failure can be detected by monitoring the
voltage at the Input pin, which will be close to
ground potential.
Additional features of this device are ESD
protection according to the Human Body model
(with a small increase in RDS(on)).
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 3. Thermal Impedance for DPAK/IPAK
Figure 4. Thermal Impedance for ISOWATT220
Figure 5. Derating Curve
Figure 6. Output Characteristics
Figure 7. Transconductance
Figure 8. Static Drain-source On Resistance vs
Input Voltage
5/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 9. Static Drain-Source On Resistance
Figure 10. Static Drain-Source On Resistance
Figure 11. Input Charge vs Input Voltage
Figure 12. Capacitance Variations
Figure 13. Normalized Input Threshold Voltage
vs Temperature
Figure 14. Normalized On Resistance vs
Temperature
6/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 15. Normalized On Resistance vs
Temperature
Figure 16. Turn-on Current Slope
Figure 17. Turn-on Current Slope
Figure 18. Turn-off Drain-Source Voltage Slope
Figure 19. Turn-off Drain-Source Voltage Slope
Figure 20. Switching Time Resistive Load
7/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 21. Switching Time Resistive Load
Figure 22. Switching Time Resistive Load
Figure 23. Current Limit vs Junction
Temperature
Figure 24. Step Response Current Limit
Figure 25. Source Drain Diode Forward
Characteristics
8/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Figure 26. Unclamped Inductive Load Test
Circuit
Figure 27. Unclamped Inductive Waveforms
Figure 28. Switching Times Test Circuits For
Resistive Load
Figure 29. Input Charge Test Circuit
Figure 30. Test Circuit For Inductive Load
Switching And Diode Recovery Times
Figure 31. Waveforms
9/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
PACKAGE MECHANICAL
Table 11. DPAK Mechanical Data
Symbol
millimeters
Min
Typ
Max
A
2.20
2.40
A1
0.90
1.10
A2
0.03
0.23
B
0.64
0.90
B2
5.20
5.40
C
0.45
0.60
C2
0.48
0.60
D
6.00
6.20
D1
E
5.1
6.40
6.60
E1
4.7
e
2.28
G
4.40
4.60
H
9.35
10.10
L2
L4
0.8
0.60
R
V2
1.00
0.2
0°
Package Weight
8°
Gr. 0.29
Figure 32. DPAK Package Dimensions
P032P
Note: Drawing is not to scale.
10/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Table 12. IPAK Mechanical Data
millimeters
Symbol
Min
Typ
Max
A
2.2
2.4
A1
0.9
1.1
A3
0.7
1.3
B
0.64
0.9
B2
5.2
5.4
B3
0.85
B5
0.3
B6
0.95
C
0.45
0.6
C2
0.48
0.6
D
6
6.2
E
6.4
6.6
G
4.4
4.6
H
15.9
16.3
L
9
9.4
L1
0.8
1.2
L2
0.8
1
Figure 33. IPAK Package Dimensions
A1
C2
A3
A
C
H
L
B5
2
G
=
1
=
=
E
B2
=
3
B
B6
=
D
=
B3
L2
L1
Note: Drawing is not to scale.
11/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Table 13. ISOWATT220 Mechanical Data
millimeters
Symbol
Min
A
Typ
Max
4.4
4.6
B
2.5
2.7
D
2.5
2.75
E
0.4
0.7
F
0.75
1
F1
1.15
1.7
F2
1.15
1.7
G
4.95
5.2
G1
2.4
2.7
H
10
10.4
L2
16
L3
28.6
30.6
L4
9.8
10.6
L6
15.9
16.4
L7
9
9.3
3
3.2
B
D
A
E
Figure 34. ISOWATT220 Package Dimensions
L3
L6
F2
H
G
G1
¯
F
F1
L7
1 2 3
L2
Note: Drawing is not to scale.
12/15
L4
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Table 14. SOT-82FM Mechanical Data
millimeters
Symbol
Min
Typ
Max
A
2.85
3.05
A1
1.47
1.67
b
0.40
0.60
b1
1.4
1.6
b2
1.3
1.5
c
0.45
0.6
D
10.5
10.9
e
2.2
2.8
E
7.45
7.75
L
15.5
15.9
L
1 1.95
2.35
Figure 35. SOT-82FM Package Dimensions
Note: Drawing is not to scale.
13/15
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
REVISION HISTORY
Table 15. Revision History
Date
Revision
June-1996
1
First Issue
18-June-2004
2
Stylesheet update. No content change.
14/15
Description of Changes
VND5N07/VND5N07-1/VNP5N07FI/K5N07FM
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
15/15