STMICROELECTRONICS VNS7NV04

VNN7NV04 / VNS7NV04
/ VND7NV04 / VND7NV04-1
®
“OMNIFET II”:
FULLY AUTOPROTECTED POWER MOSFET
TYPE
VNN7NV04
VNS7NV04
VND7NV04
RDS(on)
Ilim
Vclamp
60 mΩ
6A
40 V
2
1
2
3
SO-8
SOT-223
VND7NV04-1
n LINEAR CURRENT LIMITATION
n THERMAL SHUT DOWN
n SHORT CIRCUIT PROTECTION
n INTEGRATED CLAMP
n LOW CURRENT DRAWN FROM INPUT PIN
n DIAGNOSTIC FEEDBACK THROUGH INPUT
PIN
n ESD PROTECTION
n DIRECT ACCESS TO THE GATE OF THE
POWER MOSFET (ANALOG DRIVING)
n COMPATIBLE WITH STANDARD POWER
MOSFET
DESCRIPTION
The VNN7NV04, VNS7NV04, VND7NV04
VND7NV04-1, are monolithic devices designed in
STMicroelectronics VIPower M0-3 Technology,
intended for replacement of standard Power
3
3
2
1
1
TO251 (IPAK)
TO252 (DPAK)
ORDER CODES
PACKAGE
SOT-223
TUBE
VNN7NV04
SO-8
VNS7NV04
TO-252 (DPAK) VND7NV04
TO-251 (IPAK)
T&R
VNN7NV0413TR
VNS7NV0413TR
VND7NV0413TR
VND7NV04-1
-
MOSFETS from DC up to 50KHz applications.
Built in thermal shutdown, linear current limitation
and overvoltage clamp protects the chip in harsh
environments.
Fault feedback can be detected by monitoring the
voltage at the input pin.
BLOCK DIAGRAM
DRAIN
2
Overvoltage
Clamp
INPUT
1
Gate
Control
Over
Temperature
Linear
Current
Limiter
3
SOURCE
February 2003
FC01000
1/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
ABSOLUTE MAXIMUM RATING
Symbol
Parameter
VDS
VIN
IIN
RIN MIN
ID
IR
VESD1
Drain-source Voltage (VIN=0V)
Input Voltage
Input Current
Minimum Input Series Impedance
Drain Current
Reverse DC Output Current
Electrostatic Discharge (R=1.5KΩ, C=100pF)
Electrostatic Discharge on output pin only
(R=330Ω, C=150pF)
Total Dissipation at Tc=25°C
Maximum Switching Energy (L=0.7mH;
RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A)
Maximum Switching Energy (L=0.6mH;
RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A)
Operating Junction Temperature
Case Operating Temperature
Storage Temperature
VESD2
Ptot
EMAX
EMAX
Tj
Tc
Tstg
SOT-223
Value
SO-8
DPAK/IPAK
Internally Clamped
Internally Clamped
+/-20
150
Internally Limited
-10.5
4000
16500
7
4.6
40
37
1
8
DRAIN
DRAIN
4
INPUT
5
DRAIN
SO-8 Package (*)
(*) For the pins configuration related to SOT-223, DPAK, IPAK see outlines at page 1.
CURRENT AND VOLTAGE CONVENTIONS
ID
DRAIN
IIN
RIN
INPUT
SOURCE
VIN
2/29
1
W
40
mJ
°C
°C
°C
DRAIN
SOURCE
60
mJ
Internally limited
Internally limited
-55 to 150
SOURCE
V
V
mA
Ω
A
A
V
V
CONNECTION DIAGRAM (TOP VIEW)
SOURCE
Unit
VDS
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
THERMAL DATA
Symbol
Rthj-case
Rthj-lead
Rthj-amb
(*) When
Value
Parameter
SOT-223
Thermal Resistance Junction-case}}} MAX
18
Thermal Resistance Junction-lead
MAX
Thermal Resistance Junction-ambient MAX
96 (*)
SO-8
DPAK
2.1
IPAK
2.1
65 (*)
102
27
90 (*)
Unit
°C/W
°C/W
°C/W
mounted on a standard single-sided FR4 board with 0.5cm2 of Cu (at least 35 µm thick) connected to all DRAIN pins.
ELECTRICAL CHARACTERISTICS (-40°C < Tj < 150°C, unless otherwise specified)
OFF
Symbol
VCLAMP
VCLTH
VINTH
IISS
Parameter
Drain-source Clamp
Voltage
Drain-source Clamp
Threshold Voltage
Input Threshold Voltage
Supply Current from Input
Pin
VINCL
Input-Source Clamp
Voltage
IDSS
Zero Input Voltage Drain
Current (VIN=0V)
Test Conditions
Min
Typ
Max
Unit
VIN=0V; ID=3.5A
40
45
55
V
VIN=0V; ID=2mA
36
VDS=VIN; ID=1mA
0.5
VDS=0V; VIN=5V
IIN=1mA
IIN=-1mA
VDS=13V; VIN=0V; Tj=25°C
6
V
2.5
V
100
150
µA
6.8
8
-1.0
-0.3
30
VDS=25V; VIN=0V
75
V
µA
ON
Symbol
RDS(on)
Parameter
Static Drain-source On
Resistance
Test Conditions
VIN=5V; ID=3.5A; Tj=25°C
VIN=5V; ID=3.5A
Min
Typ
Max
60
120
Unit
mΩ
3/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
ELECTRICAL CHARACTERISTICS (continued) (Tj=25°C, unless otherwise specified)
DYNAMIC
Symbol
gfs (*)
COSS
Parameter
Forward
Transconductance
Output Capacitance
Test Conditions
Min
VDD=13V; ID=3.5A
VDS=13V; f=1MHz; VIN=0V
Typ
Max
Unit
9
S
220
pF
SWITCHING
Symbol
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Parameter
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
(dI/dt)on
Turn-on Current Slope
Qi
Total Input Charge
Test Conditions
Min
VDD=15V; ID=3.5A
Vgen=5V; Rgen=RIN MIN=150Ω
(see figure 1)
VDD=15V; ID=3.5A
Vgen=5V; Rgen=2.2KΩ
(see figure 1)
VDD=15V; ID=3.5A
Vgen=5V; Rgen=RIN MIN=150Ω
VDD=12V; ID=3.5A; VIN=5V
Igen=2.13mA (see figure 5)
Typ
100
470
500
350
0.75
4.6
5.4
3.6
Max
300
1500
1500
1000
2.3
14.0
16.0
11.0
Unit
ns
ns
ns
ns
µs
µs
µs
µs
6.5
A/µs
18
nC
SOURCE DRAIN DIODE
Symbol
VSD (*)
trr
Qrr
IRRM
Parameter
Forward On Voltage
Reverse Recovery Time
Reverse Recovery Charge
Test Conditions
ISD=3.5A; VIN=0V
ISD=3.5A; dI/dt=20A/µs
Min
VDD=30V; L=200µH
Reverse Recovery Current (see test circuit, figure 2)
Typ
0.8
220
0.28
Max
2.5
Unit
V
ns
µC
A
PROTECTIONS (-40°C < Tj < 150°C, unless otherwise specified)
Symbol
Ilim
tdlim
Tjsh
Tjrs
Igf
Eas
Parameter
Drain Current Limit
Step Response Current
Limit
Test Conditions
VIN=5V; VDS=13V
VIN=5V; VDS=13V
Overtemperature
Shutdown
Overtemperature Reset
Fault Sink Current
Single Pulse
Avalanche Energy
2
Typ
9
175
135
VIN= 5V; VDS=13V; Tj=Tjsh
starting Tj=25°C; VDD=24V
VIN=5V; Rgen=RIN MIN=150Ω; L=24mH
(see figures 3 & 4)
Max
12
15
200
Unit
A
µs
4.0
150
(*) Pulsed: Pulse duration = 300µs, duty cycle 1.5%
4/29
Min
6
200
°C
°C
mA
mJ
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
PROTECTION FEATURES
During normal operation, the INPUT pin is
electrically connected to the gate of the internal
power MOSFET through a low impedance path.
The device then behaves like a standard power
MOSFET and can be used as a switch from DC to
50KHz. The only difference from the user’s
standpoint is that a small DC current IISS (typ.
100µA) flows into the INPUT pin in order to supply
the internal circuitry.
The device integrates:
- OVERVOLTAGE CLAMP PROTECTION:
internally set at 45V, along with the rugged
avalanche characteristics of the Power MOSFET
stage give this device unrivalled ruggedness and
energy handling capability. This feature is mainly
important when driving inductive loads.
- LINEAR CURRENT LIMITER CIRCUIT: limits
the drain current ID to Ilim whatever the INPUT pin
voltage. When the current limiter is active, the
device operates in the linear region, so power
dissipation may exceed the capability of the
heatsink. Both case and junction temperatures
increase, and if this phase lasts long enough,
junction
temperature
may
reach
the
overtemperature threshold Tjsh.
- OVERTEMPERATURE AND SHORT CIRCUIT
PROTECTION: these are based on sensing the
chip temperature and are not dependent on the
input voltage. The location of the sensing element
on the chip in the power stage area ensures fast,
accurate detection of the junction temperature.
Overtemperature cut-out occurs in the range 150
to 190 °C, a typical value being 170 °C. The device
is automatically restarted when the chip
temperature falls of about 15°C below shut-down
temperature.
- STATUS FEEDBACK: in the case of an
overtemperature fault condition (Tj > Tjsh), the
device tries to sink a diagnostic current Igf through
the INPUT pin in order to indicate fault condition. If
driven from a low impedance source, this current
may be used in order to warn the control circuit of
a device shutdown. If the drive impedance is high
enough so that the INPUT pin driver is not able to
supply the current Igf, the INPUT pin will fall to 0V.
This will not however affect the device
operation: no requirement is put on the current
capability of the INPUT pin driver except to be
able to supply the normal operation drive
current IISS.
Additional features of this device are ESD
protection according to the Human Body model
and the ability to be driven from a TTL Logic
circuit.
5/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Figure 1: Switching Time Test Circuit for Resistive Load
VD
Rgen
Vgen
ID
90%
tr
tf
10%
t
Vgen
td(on)
td(off)
t
Figure 2: Test Circuit for Diode Recovery Times
A
A
D
I
FAST
DIODE
OMNIFET
S
L=100uH
B
B
150Ω
D
Rgen
Vgen
VDD
I
OMNIFET
S
8.5 Ω
6/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Figure 3: Unclamped Inductive Load Test Circuits
Figure 4: Unclamped Inductive Waveforms
RGEN
VIN
PW
Figure 5: Input Charge Test Circuit
VIN
7/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Source-Drain Diode Forward Characteristics
Static Drain Source On Resistance
Vsd (mV)
Rds(on) (mOhm)
1000
500
Tj= - 40ºC
950
450
Vin=0V
Vin=2.5V
900
400
850
350
800
300
750
250
700
200
650
150
600
100
550
50
500
Tj=25ºC
Tj=150ºC
0
0
2
4
6
8
10
12
14
0
0.25
0.5
Id(A)
0.75
1
1.25
Id(A)
Static Drain-Source On resistance Vs. Input
Voltage
Derating Curve
Rds(on) (mOhm)
120
110
Id=3.5A
100
90
Tj=150ºC
80
70
60
50
Tj=25ºC
40
30
Tj= - 40ºC
20
10
0
3
3.5
4
4.5
5
5.5
6
6.5
7
Vin(V)
Static Drain-Source On resistance Vs. Input
Voltage
Transconductance
Rds(on) (mOhm)
Gfs (S)
140
20
18
120
Vds=13V
Tj=150ºC
16
100
Tj=-40ºC
Tj=25ºC
14
Id=6A
Id=1A
80
Tj=150ºC
12
10
60
40
Tj=25ºC
8
Tj=-40ºC
20
Id=6A
Id=1A
6
Id=6A
Id=1A
4
2
0
0
3
3.5
4
4.5
Vin(V)
5
5.5
6
6.5
0
1
2
3
4
5
6
7
8
Id(A)
8/29
1
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Static Drain-Source On Resistance Vs. Id
Transfer Characteristics
Rds(on) (mOhm)
Idon(A)
140
10
Tj=25ºC
9
120
Tj=-40ºC
Tj=150ºC
Vds=13.5V
8
Vin=3.5V
100
7
Tj=150ºC
Vin=5V
6
80
5
60
Vin=3.5V
4
Tj=25ºC
Vin=5V
Vin=3.5V
40
3
Tj=-40ºC
2
Vin=5V
20
1
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
1
1.5
2
2.5
3
Id(A)
3.5
4
4.5
5
5.5
Vin(V)
Turn On Current Slope
Turn On Current Slope
di/dt(A/us)
di/dt(A/us)
8
2.25
2
7
Vin=5V
Vdd=15V
Id=3.5A
6
Vin=3.5V
Vdd=15V
Id=3.5A
1.75
5
1.5
4
1.25
3
1
2
0.75
1
0.5
0.25
0
100
200
300
400
500
600
700
800
900 1000 1100
100
200
300
400
500
600
700
800
900 1000 1100
Rg(ohm)
Rg(ohm)
Turn off drain source voltage slope
Input Voltage Vs. Input Charge
dv/dt(V/us)
Vin(V)
300
8
250
7
Vds=12V
Id=3.5A
6
Vin=5V
Vdd=15V
Id=3.5A
200
5
150
4
100
3
2
50
1
0
100
0
0
5
10
15
Qg(nC)
20
25
200
300
400
500
600
700
800
900 1000 1100
Rg(ohm)
9/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Turn Off Drain-Source Voltage Slope
Capacitance Variations
C(pF)
dv/dt(v/us)
600
300
250
500
f=1MHz
Vin=0V
Vin=3.5V
Vdd=15V
Id=3.5A
200
400
150
300
100
200
50
0
200
100
400
300
500
600
700
800
900 1000 1100
100
0
5
10
15
20
25
30
35
Vds(V)
Rg(ohm)
Switching Time Resistive Load
Switching Time Resistive Load
t(us)
t(ns)
5.5
1600
tr
5
Vdd=15V
Id=3.5A
Vin=5V
4.5
4
1400
tr
Vdd=15V
Id=3.5A
Rg=150ohm
td(off)
1200
tf
3.5
1000
3
800
2.5
2
600
1.5
td(off)
400
1
tf
td(on)
0.5
200
0
td(on)
250
0
500
750 1000 1250 1500 1750 2000 2250 2500
0
3.25
3.5
3.75
4
Rg(ohm)
4.25
4.5
4.75
5
5.25
Vin(V)
Normalized On Resistance Vs. Temperature
Output Characteristics
ID(A)
Rds(on)
12
2.25
11
2
10
9
Vin=5V
Vin=4.5V
8
Vin=4V
Vin=5V
Id=3.5A
1.75
7
1.5
Vin=3V
6
1.25
5
4
1
3
Vin=2.5V
2
0.75
1
Vin=2V
0.5
0
0
1
2
3
4
5
6
7
VDS(V)
8
9
10
11
12
13
-50
-25
0
25
50
75
100
125
150
175
T(ºC)
10/29
1
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Normalized Input
Temperature
Threshold
Voltage
Vs.
Current Limit Vs. Junction Temperature
Vin(th)
Ilim (A)
1.15
15
14
1.1
Vds=Vin
Id=1mA
1.05
Vds=13V
Vin=5V
13
12
1
11
0.95
10
0.9
9
0.85
8
0.8
7
0.75
6
5
0.7
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tj (ºC)
T(ºC)
Step Response Current Limit
Tdlim(us)
7
6.5
Vin=5V
Rg=150ohm
6
5.5
5
4.5
4
3.5
5
10
15
20
25
30
35
Vdd(V)
11/29
1
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SO-8 Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.01
0.1
1
L(mH)
10
100
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
DPAK Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.01
0.1
1
L(mH)
10
100
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
13/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SOT-223 Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.01
0.1
1
10
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SO-8 THERMAL DATA
SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.14cm2, 0.6cm2, 1.6cm2).
Rthj-amb Vs PCB copper area in open box free air condition
SO-8 at 4 pins connected to TAB
RTHj_amb
(ºC/W)
110
105
100
95
90
85
80
75
70
0
0.5
1
1.5
2
2.5
PCB CU heatsink area (cm^2)
15/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SOT-223 THERMAL DATA
SOT-223 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.11cm2, 1cm2, 2cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTH j-amb (°C/W)
140
130
120
110
100
90
80
70
60
0
0.5
1
1.5
Cu area (cm^2)
16/29
2
2.5
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
DPAK THERMAL DATA
DPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTH j_amb (ºC/W)
90
80
70
60
50
40
30
0
2
4
6
8
10
PCB CU heatsink area (cm^2)
17/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
DPAK Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
100
Footprint
6 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of an OMNIFET II in
DPAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
18/29
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.1
0.35
1.20
2
15
61
0.0006
0.0021
0.05
0.3
0.45
0.8
6
24
5
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SO-8 Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
Footprint
100
2 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of an OMNIFET II in SO-8
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.2
0.9
3.5
21
16
58
3.00E-04
9.00E-04
7.50E-03
0.045
0.35
1.05
2
28
2
19/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SOT-223 Thermal Impedance Junction Ambient Single Pulse
ZT H (°C /W)
1000
Footprint
100
2 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of an OMNIFET II in
SOT-223
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
20/29
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.2
1.1
4.5
24
0.1
100
3.00E-04
9.00E-04
3.00E-02
0.16
1000
0.5
2
45
2
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
TO-251 (IPAK) MECHANICAL DATA
mm.
DIM.
MIN.
inch
TYP
MAX.
MIN.
TYP.
MAX.
A
2.2
2.4
0.086
0.094
A1
0.9
1.1
0.035
0.043
A3
0.7
1.3
0.027
0.051
B
0.64
0.9
0.025
0.031
B2
5.2
5.4
0.204
B3
0.212
0.85
B5
0.033
0.3
0.012
B6
0.95
0.037
C
0.45
0.6
0.017
0.023
C2
0.48
0.6
0.019
0.023
D
6
6.2
0.236
0.244
E
6.4
6.6
0.252
0.260
G
4.4
4.6
0.173
0.181
H
15.9
16.3
0.626
0.641
L
9
9.4
0.354
0.370
L1
0.8
1.2
0.031
0.047
L2
0.8
1
0.031
0.039
A1
C2
A3
A
C
H
B
B6
=
1
=
2
G
=
=
=
E
B2
=
3
B5
L
D
B3
L2
L1
21/29
11
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
TO-252 (DPAK) MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
MAX.
MIN.
TYP.
A
2.2
2.4
0.086
0.094
A1
0.9
1.1
0.035
0.043
A2
0.03
0.23
0.001
0.009
B
0.64
0.9
0.025
0.035
B2
5.2
5.4
0.204
0.212
C
0.45
0.6
0.017
0.023
C2
0.48
0.6
0.019
0.023
D
6
6.2
0.236
0.244
E
6.4
6.6
0.252
0.260
G
4.4
4.6
0.173
0.181
H
9.35
10.1
0.368
0.397
L2
L4
0.8
1
0.023
0.039
0.2
0°
0.008
8°
0°
8°
H
L4
=
=
=
=
G
E
B2
=
=
=
0.60 MIN.
FLAT ZONE
=
B
L2
A2
V2
A1
C2
A
C
R
D
V2
0.031
0.6
R
22/29
MAX.
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SOT-223 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.8
0.071
B
0.6
0.7
0.85
0.024
0.027
0.033
B1
2.9
3
3.15
0.114
0.118
0.124
c
0.24
0.26
0.35
0.009
0.01
0.014
D
6.3
6.5
6.7
0.248
0.256
0.264
e
2.3
0.09
e1
4.6
0.181
E
3.3
3.5
3.7
0.13
0.138
0.146
H
6.7
7
7.3
0.264
0.276
0.287
V
A1
10 (max)
0.02
0.1
0.0008
0.004
0046067
23/29
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SO-8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
a1
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.25
a2
MAX.
0.003
0.009
1.65
0.064
a3
0.65
0.85
0.025
0.033
b
0.35
0.48
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.019
c1
45 (typ.)
D
4.8
5.0
0.188
0.196
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
3.81
0.150
F
3.8
4.0
0.14
0.157
L
0.4
1.27
0.015
0.050
M
F
0.6
0.023
8 (max.)
24/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SOT-223 TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
12.4
60
18.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
12
4
8
1.5
1.5
5.5
4.5
2
All dimensions are in mm.
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
25/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
SO-8 TUBE SHIPMENT (no suffix)
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
A
100
2000
532
3.2
6
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
12
4
8
1.5
1.5
5.5
4.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
26/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
DPAK FOOTPRINT
TUBE SHIPMENT (no suffix)
A
6 .7
1 .8
3 .0
1 .6
C
2 .3
6 .7
2 .3
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
75
3000
532
6
21.3
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
16.4
60
22.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
8
1.5
1.5
7.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
27/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
IPAK TUBE SHIPMENT (no suffix)
A
C
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
75
3000
532
6
21.3
0.6
All dimensions are in mm.
28/29
1
VNN7NV04 / VNS7NV04 / VND7NV04 / VND7NV04-1
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
29/29