FREESCALE MPC5604B

Freescale Semiconductor
Data Sheet: Advance Information
Document Number: MPC5604BC
Rev. 8, 11/2010
MPC5604B/C
MAPBGA–225
QFN12
144 LQFP
##_mm_x_##mm
208 15
MAPBGA
mm x 15 mm
(17 x 17 x 1.7 mm)
MPC5604B/C
Microcontroller Data Sheet
SOT-343R
##_mm_x_##mm
100 LQFP
(14 x 14 x 1.4 mm)
32-bit MCU family built on the Power Architecture® for
automotive body electronics applications
1
Features
2
3
•
•
•
•
•
•
•
•
•
•
•
•
Single issue, 32-bit CPU core complex (e200z0)
— Compliant with the Power Architecture®
embedded category
— Includes an instruction set enhancement
allowing variable length encoding (VLE) for
code size footprint reduction. With the optional
encoding of mixed 16-bit and 32-bit
instructions, it is possible to achieve significant
code size footprint reduction.
Up to 512 KB on-chip code flash supported with the
flash controller
64 (4 × 16) KB on-chip data flash memory with ECC
Up to 48 KB on-chip SRAM
Memory protection unit (MPU) with 8 region
descriptors and 32-byte region granularity
Interrupt controller (INTC) with 148 interrupt
vectors, including 16 external interrupt sources and
18 external interrupt/wakeup sources
Frequency modulated phase-locked loop (FMPLL)
Crossbar switch architecture for concurrent access to
peripherals, flash, or RAM from multiple bus
masters
Boot assist module (BAM) supports internal flash
programming via a serial link (CAN or SCI)
Timer supports input/output channels providing a
range of 16-bit input capture, output compare, and
pulse width modulation functions (eMIOS-lite)
10-bit analog-to-digital converter (ADC)
3 serial peripheral interface (DSPI) modules
4
5
6
7
TBD
PKG-TBD
## mm x ## mm
64 LQFP
(10 x 10 x 1.4 mm)
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . 8
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Recommended operating conditions . . . . . . . . . . . . . . 36
4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . 40
4.8 RESET electrical characteristics . . . . . . . . . . . . . . . . . 51
4.9 Power management electrical characteristics . . . . . . . 53
4.10 Low voltage domain power consumption . . . . . . . . . . . 56
4.11 Flash memory electrical characteristics . . . . . . . . . . . . 58
4.12 Electromagnetic compatibility (EMC) characteristics . . 62
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.14 Slow external crystal oscillator (32 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.15 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . 69
4.16 Fast internal RC oscillator (16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.17 Slow internal RC oscillator (128 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.18 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . 72
4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . 89
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 100
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2009, 2010. All rights reserved.
(20 x 20 x 1.4 mm)
Introduction
•
•
•
•
•
•
•
•
•
•
Up to 4 serial communication interface (LINFlex) modules
Up to 6 enhanced full CAN (FlexCAN) modules with configurable buffers
1 inter IC communication interface (I2C) module
Up to 123 configurable general purpose pins supporting input and output operations (package dependent)
Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC oscillator supporting autonomous
wakeup with 1 ms resolution with max timeout of 2 seconds
Up to 6 periodic interrupt timers (PIT) with 32-bit counter resolution
1 System Module Timer (STM)
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard
Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)
On-chip voltage regulator (VREG) for regulation of input supply for all internal levels
1
Introduction
1.1
Document overview
This document describes the features of the family and options available within the family members, and highlights important
electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also
to the device reference manual and errata sheet.
1.2
Description
The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture® embedded category.
The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers.
It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics
applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family
complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU,
providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for
low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and
is supported with software drivers, operating systems and configuration code to assist with users implementations.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
2
Freescale Semiconductor
3
Device
Feature
MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC560
02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL 4BxMG
CPU
e200z0h
Execution
speed2
Static – up to 64 MHz
Code Flash
256 KB
384 KB
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Data Flash
64 KB (4 × 16 KB)
RAM
24 KB
32 KB
28 KB
40 KB
MPU
ADC
512 KB
32 KB
48 KB
8-entry
12 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
8 ch,
10-bit
28 ch,
10-bit
12 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
CTU
8 ch,
10-bit
28 ch,
10-bit
12 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
8 ch,
10-bit
28 ch,
10-bit
36 ch,
10-bit
Yes
Total timer I/O3 12 ch,
eMIOS
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
• PWM + MC
+ IC/OC4
2 ch
5 ch
10 ch
2 ch
5 ch
2 ch
5 ch
10 ch
2 ch
5 ch
2 ch
5 ch
10 ch
2 ch
5 ch
10 ch
• PWM +
IC/OC4
10 ch
20 ch
40 ch
10 ch
20 ch
10 ch
20 ch
40 ch
10 ch
20 ch
10 ch
20 ch
40 ch
10 ch
20 ch
40 ch
• IC/OC4
0 ch
3 ch
6 ch
0 ch
3 ch
0 ch
3 ch
6 ch
0 ch
3 ch
0 ch
3 ch
6 ch
0 ch
3 ch
6 ch
35
SCI (LINFlex)
SPI (DSPI)
2
4
3
2
6
CAN
(FlexCAN)
5
2
3
2
3
2
37
6
Freescale Semiconductor
I2C
Debug
5
6
45
79
2
3
37
2
3
5
6
1
32 kHz
oscillator
GPIO8
3
Yes
45
79
123
45
79
45
79
123
JTAG
45
79
123
45
79
123
Nexus2+
Introduction
Table 1. MPC5604B/C device comparison1
4
Table 1. MPC5604B/C device comparison1 (continued)
Feature
Package
1
MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC560
02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL 4BxMG
64
LQFP9
100
LQFP
144
LQFP
64
LQFP9
100
LQFP
64
LQFP9
100
LQFP
144
LQFP
64
LQFP9
100
LQFP
64
LQFP9
Feature set dependent on selected peripheral multiplexing—table shows example implementation
Based on 125 °C ambient operating temperature
3 Refer to eMIOS section of device reference manual for information on the channel configuration and functions
4 IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter
5 SCI0, SCI1 and SCI2 are available. SCI3 is not available.
6 CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
7 CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
8 I/O count based on multiplexing with peripherals
9 All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
10 208 MAPBGA available only as development package for Nexus2+
2
100
LQFP
144
LQFP
64
LQFP9
100
LQFP
208
MAPBG
A10
Introduction
Device
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Block diagram
2
Block diagram
Figure 1 shows a top-level block diagram of the MPC5604B/C device series.
Figure 1. MPC5604B/C series block diagram
SRAM
48 KB
Code Flash Data Flash
512 KB
64 KB
SRAM
controller
Flash
controller
JTAG
e200z0h
Nexus
(Master)
Data
NMI
Nexus 2+
(Master)
SIUL
Voltage
regulator
Interrupt requests
from peripheral
blocks
NMI
INTC
Clocks
MPU
Instructions
Nexus port
64-bit 2 x 3 Crossbar Switch
JTAG port
(Slave)
(Slave)
(Slave)
MPU
registers
CMU
FMPLL
RTC
STM
SWT
ECSM
MC_RGM MC_CGM MC_ME
PIT
MC_PCU
SSCM
BAM
Peripheral bridge
Interrupt
request
SIUL
Reset control
36 Ch.
ADC
CTU
2x
eMIOS
4x
LINFlex
3x
DSPI
6x
FlexCAN
I2C
External
interrupt
request
IMUX
WKPU
GPIO and
pad control
I/O
...
...
...
...
...
Interrupt
request with
wakeup
functionality
Legend:
ADC
BAM
FlexCAN
CMU
CTU
DSPI
eMIOS
FMPLL
I2C
IMUX
INTC
JTAG
LINFlex
ECSM
MC_CGM
Analog-to-Digital Converter
Boot Assist Module
Controller Area Network
Clock Monitor Unit
Cross Triggering Unit
Deserial Serial Peripheral Interface
Enhanced Modular Input Output System
Frequency-Modulated Phase-Locked Loop
Inter-integrated Circuit Bus
Internal Multiplexer
Interrupt Controller
JTAG controller
Serial Communication Interface (LIN support)
Error Correction Status Module
Clock Generation Module
MC_ME
MC_PCU
MC_RGM
MPU
Nexus
NMI
PIT
RTC
SIUL
SRAM
SSCM
STM
SWT
WKPU
Mode Entry Module
Power Control Unit
Reset Generation Module
Memory Protection Unit
Nexus Development Interface (NDI) Level
Non-Maskable Interrupt
Periodic Interrupt Timer
Real-Time Clock
System Integration Unit Lite
Static Random-Access Memory
System Status Configuration Module
System Timer Module
Software Watchdog Timer
Wakeup Unit
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
5
Block diagram
Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the
presence and number of blocks varies by device and package.
Table 2. MPC5604B/C series block summary
Block
Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to digital-converter
Boot assist module (BAM)
A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU)
Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices
(DSPI)
Error Correction Status Module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset status
register, wakeup control for exiting sleep modes, and optional features such as
information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor
(eDMA)
via “n” programmable channels.
Enhanced modular input output
system (eMIOS)
Provides the functionality to generate or measure events
Flash memory
Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network) Supports the standard CAN communications protocol
FMPLL (frequency-modulated
phase-locked loop)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock
Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests
JTAG controller
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINflex controller
Manages a high number of LIN (Local Interconnect Network protocol) messages
efficiently with a minimum of CPU load
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control unit,
reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the device
MPC5604B/C Microcontroller Data Sheet, Rev. 8
6
Freescale Semiconductor
Block diagram
Table 2. MPC5604B/C series block summary (continued)
Block
Function
Memory protection unit (MPU)
Provides hardware access control for all memory references generated in a
device
Nexus development interface
(NDI)
Provides real-time development support capabilities in compliance with the
IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)
Produces periodic interrupts and triggers
Real-time counter (RTC)
A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
System integration unit (SIU)
Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
Static random-access memory
(SRAM)
Provides storage for program code, constants, and variables
System status configuration
module (SSCM)
Provides system configuration and status data (such as memory size and status,
device mode and security status), device identification data, debug status port
enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)
Provides a set of output compare events to support AUTOSAR and operating
system tasks
System watchdog timer (SWT)
Provides protection from runaway code
Wakeup unit (WKPU)
The wakeup unit supports up to 18 external sources that can generate interrupts
or wakeup events, of which 1 can cause non-maskable interrupt requests or
wakeup events.
Crossbar (XBAR) switch
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
7
Package pinouts and signal descriptions
3
Package pinouts and signal descriptions
3.1
Package pinouts
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,
please refer to the device reference manual.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
Figure 2. LQFP 64-pin configuration (top view)1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
64 LQFP
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]
VPP_TEST
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
Figure 3. LQFP 64-pin configuration 5CAN 4LIN (top view)2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
64 LQFP
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PF[14]
PF[15]
PG[0]
PG[1]
PA[3]
PB[15]
PB[14]
PB[11]
PB[7]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]
VPP_TEST
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
1. All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
8
Freescale Semiconductor
Package pinouts and signal descriptions
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
Figure 4. LQFP 100-pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
100 LQFP
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
Note:
Availability of port pin alternate functions depends on product selection.
2. All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
9
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144 LQFP
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
Figure 5. LQFP 144-pin configuration (top view)
Note:
Availability of port pin alternate functions depends on product selection.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
10
Freescale Semiconductor
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
PC[8]
PC[13]
NC
NC
PH[8]
PH[4]
PC[5]
PC[0]
NC
NC
PC[2]
NC
PE[15]
NC
NC
NC
A
B
PC[9]
PB[2]
NC
PC[12]
PE[6]
PH[5]
PC[4]
PH[9]
PH[10]
NC
PC[3]
PG[11]
PG[15]
PG[14]
PA[11]
PA[10]
B
C
PC[14]
VDD_HV
PB[3]
PE[7]
PH[7]
PE[5]
PE[3]
VSS_LV
PC[1]
NC
PA[5]
NC
PE[14]
PE[12]
PA[9]
PA[8]
C
D
NC
NC
PC[15]
NC
PH[6]
PE[4]
PE[2]
VDD_LV
VDD_HV
NC
PA[6]
NC
PG[10]
PF[14]
PE[13]
PA[7]
D
E
PG[4]
PG[5]
PG[3]
PG[2]
PG[1]
PG[0]
PF[15]
VDD_HV
E
F
PE[0]
PA[2]
PA[1]
PE[1]
PH[0]
PH[1]
PH[3]
PH[2]
F
G
PE[9]
PE[8]
PE[10]
PA[0]
VSS_HV VSS_HV VSS_HV VSS_HV
VDD_HV
NC
NC
MSEO
G
H
VSS_HV
PE[11]
VDD_HV
NC
VSS_HV VSS_HV VSS_HV VSS_HV
MDO3
MDO2
MDO0
MDO1
H
J
RESET
VSS_LV
NC
NC
VSS_HV VSS_HV VSS_HV VSS_HV
NC
NC
NC
NC
J
K
EVTI
NC
VDD_BV
VDD_LV
VSS_HV VSS_HV VSS_HV VSS_HV
NC
PG[12]
PA[3]
PG[13]
K
L
PG[9]
PG[8]
NC
EVTO
PB[15]
PD[15]
PD[14]
PB[14]
L
M
PG[7]
PG[6]
PC[10]
PC[11]
PB[13]
PD[13]
PD[12]
PB[12]
M
N
PB[1]
PF[9]
PB[0]
NC
NC
PA[4]
VSS_LV
EXTAL
VDD_HV
PF[0]
PF[4]
NC
PB[11]
PD[10]
PD[9]
PD[11]
N
P
PF[8]
NC
PC[7]
NC
NC
PA[14]
VDD_LV
XTAL
PB[10]
PF[1]
PF[5]
PD[0]
PD[3]
VDD_HV
_ADC
PB[6]
PB[7]
P
R
PF[12]
PC[6]
PF[10]
PF[11]
VDD_HV
PA[15]
PA[13]
NC
OSC32K
_XTAL
PF[3]
PF[7]
PD[2]
PD[4]
PD[7]
VSS_HV
_ADC
PB[5]
R
T
NC
NC
NC
MCKO
NC
PF[13]
PA[12]
NC
OSC32K
_EXTAL
PF[2]
PF[6]
PD[1]
PD[5]
PD[6]
PD[8]
PB[4]
T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Note: 208 MAPBGA available only as development package for Nexus 2+.
NC
= Not connected
Figure 6. 208 MAPBGA configuration
3.2
Pin muxing
Table 3 defines the pin list and muxing for this device.
Each entry of Table 3 shows all the possible configurations for each pin, via the alternate functions. The default function
assigned to each pin after reset is indicated by AF0.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
11
12
Table 3. Functional port pin descriptions
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PA[0]
PCR[0]
AF0
AF1
AF2
AF3
—
GPIO[0]
E0UC[0]
CLKOUT
—
WKUP[19]4
SIUL
eMIOS0
CGL
—
WKPU
I/O
I/O
O
—
I
M
Tristate
5
PA[1]
PCR[1]
AF0
AF1
AF2
AF3
—
—
GPIO[1]
E0UC[1]
—
—
NMI5
WKUP[2]4
SIUL
eMIOS0
—
—
WKPU
WKPU
I/O
I/O
—
—
I
I
S
Tristate
PA[2]
PCR[2]
AF0
AF1
AF2
AF3
—
GPIO[2]
E0UC[2]
—
—
WKUP[3]4
SIUL
eMIOS0
—
—
WKPU
I/O
I/O
—
—
I
S
PA[3]
PCR[3]
AF0
AF1
AF2
AF3
—
GPIO[3]
E0UC[3]
—
—
EIRQ[0]
SIUL
eMIOS0
—
—
SIUL
I/O
I/O
—
—
I
PA[4]
PCR[4]
AF0
AF1
AF2
AF3
—
GPIO[4]
E0UC[4]
—
—
WKUP[9]4
SIUL
eMIOS0
—
—
WKPU
PA[5]
PCR[5]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
—
—
SIUL
eMIOS0
—
—
100
LQFP
144
LQFP
208
MAP
BGA3
5
12
16
G4
4
4
7
11
F3
Tristate
3
3
5
9
F2
S
Tristate
43
39
68
90
K15
I/O
I/O
—
—
I
S
Tristate
20
20
29
43
N6
I/O
I/O
—
—
M
Tristate
51
51
79
118
C11
Package pinouts and signal descriptions
Pin No.
13
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PA[6]
PCR[6]
AF0
AF1
AF2
AF3
—
GPIO[6]
E0UC[6]
—
—
EIRQ[1]
SIUL
eMIOS0
—
—
SIUL
I/O
I/O
—
—
I
S
Tristate
52
PA[7]
PCR[7]
AF0
AF1
AF2
AF3
—
GPIO[7]
E0UC[7]
LIN3TX
—
EIRQ[2]
SIUL
eMIOS0
LINFlex_3
—
SIUL
I/O
I/O
O
—
I
S
Tristate
PA[8]
PCR[8]
AF0
AF1
AF2
AF3
—
N/A6
—
GPIO[8]
E0UC[8]
—
—
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS0
—
—
SIUL
BAM
LINFlex_3
I/O
I/O
—
—
I
I
I
S
PA[9]
PCR[9]
AF0
AF1
AF2
AF3
N/A6
GPIO[9]
E0UC[9]
—
—
FAB
SIUL
eMIOS_0
—
—
BAM
I/O
I/O
—
—
I
PA[10]
PCR[10]
AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
—
SIUL
eMIOS_0
I2C_0
—
PA[11]
PCR[11]
AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
—
SIUL
eMIOS0
I2C_0
—
100
LQFP
144
LQFP
208
MAP
BGA3
52
80
119
D11
44
44
71
104
D16
Input,
weak
pull-up
45
45
72
105
C16
S
Pulldown
46
46
73
106
C15
I/O
I/O
I/O
—
S
Tristate
47
47
74
107
B16
I/O
I/O
I/O
—
S
Tristate
48
48
75
108
B15
Package pinouts and signal descriptions
Pin No.
14
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PA[12]
PCR[12]
AF0
AF1
AF2
AF3
—
GPIO[12]
—
—
—
SIN_0
SIUL
—
—
—
DSPI0
I/O
—
—
—
I
S
Tristate
22
PA[13]
PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
—
—
SIUL
DSPI_0
—
—
I/O
O
—
—
M
Tristate
PA[14]
PCR[14]
AF0
AF1
AF2
AF3
—
GPIO[14]
SCK_0
CS0_0
—
EIRQ[4]
SIUL
DSPI_0
DSPI_0
—
SIUL
I/O
I/O
I/O
—
I
M
PA[15]
PCR[15]
AF0
AF1
AF2
AF3
—
GPIO[15]
CS0_0
SCK_0
—
WKUP[10]4
SIUL
DSPI_0
DSPI_0
—
WKPU
I/O
I/O
I/O
—
I
PB[0]
PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
—
—
SIUL
FlexCAN_0
—
—
PB[1]
PCR[17]
AF0
AF1
AF2
AF3
—
—
GPIO[17]
—
—
—
WKUP[4]4
CAN0RX
SIUL
—
—
—
WKPU
FlexCAN_0
100
LQFP
144
LQFP
208
MAP
BGA3
22
31
45
T7
21
21
30
44
R7
Tristate
19
19
28
42
P6
M
Tristate
18
18
27
40
R6
I/O
O
—
—
M
Tristate
14
14
23
31
N3
I/O
—
—
—
I
I
S
Tristate
15
15
24
32
N1
Package pinouts and signal descriptions
Pin No.
15
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PB[2]
PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
—
SIUL
LINFlex_0
I2C_0
—
I/O
O
I/O
—
M
Tristate
64
PB[3]
PCR[19]
AF0
AF1
AF2
AF3
—
—
GPIO[19]
—
SCL
—
WKUP[11]4
LIN0RX
SIUL
—
I2C_0
—
WKPU
LINFlex_0
I/O
—
I/O
—
I
I
S
Tristate
PB[4]
PCR[20]
AF0
AF1
AF2
AF3
—
GPIO[20]
—
—
—
ANP[0]
SIUL
—
—
—
ADC
I
—
—
—
I
I
PB[5]
PCR[21]
AF0
AF1
AF2
AF3
—
GPIO[21]
—
—
—
ANP[1]
SIUL
—
—
—
ADC
I
—
—
—
I
PB[6]
PCR[22]
AF0
AF1
AF2
AF3
—
GPIO[22]
—
—
—
ANP[2]
SIUL
—
—
—
ADC
PB[7]
PCR[23]
AF0
AF1
AF2
AF3
—
GPIO[23]
—
—
—
ANP[3]
SIUL
—
—
—
ADC
100
LQFP
144
LQFP
208
MAP
BGA3
64
100
144
B2
1
1
1
1
C3
Tristate
32
32
50
72
T16
I
Tristate
35
—
53
75
R16
I
—
—
—
I
I
Tristate
36
—
54
76
P15
I
—
—
—
I
I
Tristate
37
35
55
77
P16
Package pinouts and signal descriptions
Pin No.
16
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PB[8]
PCR[24]
AF0
AF1
AF2
AF3
—
—
GPIO[24]
—
—
—
ANS[0]
OSC32K_XTAL7
SIUL
—
—
—
ADC
SXOSC
I
—
—
—
I
I/O
I
Tristate
30
PB[9]
PCR[25]
AF0
AF1
AF2
AF3
—
—
GPIO[25]
—
—
—
ANS[1]
OSC32K_EXTAL7
SIUL
—
—
—
ADC
SXOSC
I
—
—
—
I
I/O
I
Tristate
PB[10]
PCR[26]
AF0
AF1
AF2
AF3
—
—
GPIO[26]
—
—
—
ANS[2]
WKUP[8]4
SIUL
—
—
—
ADC
WKPU
I/O
—
—
—
I
I
J
PB[11]8 PCR[27]
AF0
AF1
AF2
AF3
—
GPIO[27]
E0UC[3]
—
CS0_0
ANS[3]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
I/O
I
PB[12]
PCR[28]
AF0
AF1
AF2
AF3
—
GPIO[28]
E0UC[4]
—
CS1_0
ANX[0]
SIUL
eMIOS
—
DSPI_0
ADC
PB[13]
PCR[29]
AF0
AF1
AF2
AF3
—
GPIO[29]
E0UC[5]
—
CS2_0
ANX[1]
SIUL
eMIOS_0
—
DSPI_0
ADC
100
LQFP
144
LQFP
208
MAP
BGA3
30
39
53
R9
29
29
38
52
T9
Tristate
31
31
40
54
P9
J
Tristate
38
36
59
81
N13
I/O
I/O
—
O
I
J
Tristate
39
—
61
83
M16
I/O
I/O
—
O
I
J
Tristate
40
—
63
85
M13
Package pinouts and signal descriptions
Pin No.
17
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PB[14]
PCR[30]
AF0
AF1
AF2
AF3
—
GPIO[30]
E0UC[6]
—
CS3_0
ANX[2]
SIUL
eMIOS0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
41
PB[15]
PCR[31]
AF0
AF1
AF2
AF3
—
GPIO[31]
E0UC[7]
—
CS4_0
ANX[3]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
PC[0]9
PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
—
TDI
—
SIUL
—
JTAGC
—
I/O
—
I
—
M
PC[1]9
PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
—
TDO10
—
SIUL
—
JTAGC
—
I/O
—
O
—
PC[2]
PCR[34]
AF0
AF1
AF2
AF3
—
GPIO[34]
SCK_1
CAN4TX11
—
EIRQ[5]
SIUL
DSPI_1
LINFlex_4
—
SIUL
PC[3]
PCR[35]
AF0
AF1
AF2
AF3
—
—
—
GPIO[35]
CS0_1
MA[0]
—
CAN1RX
CAN4RX11
EIRQ[6]
SIUL
DSPI_1
ADC
—
FlexCAN_1
FlexCAN_4
SIUL
100
LQFP
144
LQFP
208
MAP
BGA3
37
65
87
L16
42
38
67
89
L13
Input,
weak
pull-up
59
59
87
126
A8
M
Tristate
54
54
82
121
C9
I/O
I/O
O
—
I
M
Tristate
50
50
78
117
A11
I/O
I/O
O
—
I
I
I
S
Tristate
49
49
77
116
B11
Package pinouts and signal descriptions
Pin No.
18
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PC[4]
PCR[36]
AF0
AF1
AF2
AF3
—
—
GPIO[36]
—
—
—
SIN_1
CAN3RX11
SIUL
—
—
—
DSPI_1
FlexCAN_3
I/O
—
—
—
I
I
M
Tristate
62
PC[5]
PCR[37]
AF0
AF1
AF2
AF3
—
GPIO[37]
SOUT_1
CAN3TX11
—
EIRQ[7]
SIUL
DSPI1
FlexCAN_3
—
SIUL
I/O
O
O
—
I
M
Tristate
PC[6]
PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
—
—
SIUL
LINFlex_1
—
—
I/O
O
—
—
S
PC[7]
PCR[39]
AF0
AF1
AF2
AF3
—
—
GPIO[39]
—
—
—
LIN1RX
WKUP[12]4
SIUL
—
—
—
LINFlex_1
WKPU
I/O
—
—
—
I
I
PC[8]
PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
—
—
SIUL
LINFlex_2
—
—
PC[9]
PCR[41]
AF0
AF1
AF2
AF3
—
—
GPIO[41]
—
—
—
LIN2RX
WKUP[13]4
SIUL
—
—
—
LINFlex_2
WKPU
100
LQFP
144
LQFP
208
MAP
BGA3
62
92
131
B7
61
61
91
130
A7
Tristate
16
16
25
36
R2
S
Tristate
17
17
26
37
P3
I/O
O
—
—
S
Tristate
63
63
99
143
A1
I/O
—
—
—
I
I
S
Tristate
2
2
2
2
B1
Package pinouts and signal descriptions
Pin No.
19
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PC[10]
PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX11
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC
I/O
O
O
O
M
Tristate
13
PC[11]
PCR[43]
AF0
AF1
AF2
AF3
—
—
—
GPIO[43]
—
—
—
CAN1RX
CAN4RX11
WKUP[5]4
SIUL
—
—
—
FlexCAN_1
FlexCAN_4
WKPU
I/O
—
—
—
I
I
I
S
Tristate
PC[12]
PCR[44]
AF0
AF1
AF2
AF3
—
GPIO[44]
E0UC[12]
—
—
SIN_2
SIUL
eMIOS_0
—
—
DSPI_2
I/O
I/O
—
—
I
M
PC[13]
PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
—
SIUL
eMIOS_0
DSPI_2
—
I/O
I/O
O
—
PC[14]
PCR[46]
AF0
AF1
AF2
AF3
—
GPIO[46]
E0UC[14]
SCK_2
—
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
—
SIUL
PC[15]
PCR[47]
AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
—
SIUL
eMIOS_0
DSPI_2
—
100
LQFP
144
LQFP
208
MAP
BGA3
13
22
28
M3
—
—
21
27
M4
Tristate
—
—
97
141
B4
S
Tristate
—
—
98
142
A2
I/O
I/O
I/O
—
I
S
Tristate
—
—
3
3
C1
I/O
I/O
I/O
—
M
Tristate
—
—
4
4
D3
Package pinouts and signal descriptions
Pin No.
20
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PD[0]
PCR[48]
AF0
AF1
AF2
AF3
—
GPIO[48]
—
—
—
ANP[4]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
PD[1]
PCR[49]
AF0
AF1
AF2
AF3
—
GPIO[49]
—
—
—
ANP[5]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
PD[2]
PCR[50]
AF0
AF1
AF2
AF3
—
GPIO[50]
—
—
—
ANP[6]
SIUL
—
—
—
ADC
I
—
—
—
I
I
PD[3]
PCR[51]
AF0
AF1
AF2
AF3
—
GPIO[51]
—
—
—
ANP[7]
SIUL
—
—
—
ADC
I
—
—
—
I
PD[4]
PCR[52]
AF0
AF1
AF2
AF3
—
GPIO[52]
—
—
—
ANP[8]
SIUL
—
—
—
ADC
PD[5]
PCR[53]
AF0
AF1
AF2
AF3
—
GPIO[53]
—
—
—
ANP[9]
SIUL
—
—
—
ADC
100
LQFP
144
LQFP
208
MAP
BGA3
—
41
63
P12
—
—
42
64
T12
Tristate
—
—
43
65
R12
I
Tristate
—
—
44
66
P13
I
—
—
—
I
I
Tristate
—
—
45
67
R13
I
—
—
—
I
I
Tristate
—
—
46
68
T13
Package pinouts and signal descriptions
Pin No.
21
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PD[6]
PCR[54]
AF0
AF1
AF2
AF3
—
GPIO[54]
—
—
—
ANP[10]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
PD[7]
PCR[55]
AF0
AF1
AF2
AF3
—
GPIO[55]
—
—
—
ANP[11]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
PD[8]
PCR[56]
AF0
AF1
AF2
AF3
—
GPIO[56]
—
—
—
ANP[12]
SIUL
—
—
—
ADC
I
—
—
—
I
I
PD[9]
PCR[57]
AF0
AF1
AF2
AF3
—
GPIO[57]
—
—
—
ANP[13]
SIUL
—
—
—
ADC
I
—
—
—
I
PD[10]
PCR[58]
AF0
AF1
AF2
AF3
—
GPIO[58]
—
—
—
ANP[14]
SIUL
—
—
—
ADC
PD[11]
PCR[59]
AF0
AF1
AF2
AF3
—
GPIO[59]
—
—
—
ANP[15]
SIUL
—
—
—
ADC
100
LQFP
144
LQFP
208
MAP
BGA3
—
47
69
T14
—
—
48
70
R14
Tristate
—
—
49
71
T15
I
Tristate
—
—
56
78
N15
I
—
—
—
I
I
Tristate
—
—
57
79
N14
I
—
—
—
I
I
Tristate
—
—
58
80
N16
Package pinouts and signal descriptions
Pin No.
22
Table 3. Functional port pin descriptions (continued)
Port
pin
PCR
register
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Alternate
function1
Function
Peripheral
PD[12]8 PCR[60]
AF0
AF1
AF2
AF3
—
GPIO[60]
CS5_0
E0UC[24]
—
ANS[4]
SIUL
DSPI_0
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
PD[13]
PCR[61]
AF0
AF1
AF2
AF3
—
GPIO[61]
CS0_1
E0UC[25]
—
ANS[5]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
I/O
I/O
—
I
J
Tristate
PD[14]
PCR[62]
AF0
AF1
AF2
AF3
—
GPIO[62]
CS1_1
E0UC[26]
—
ANS[6]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
PD[15]
PCR[63]
AF0
AF1
AF2
AF3
—
GPIO[63]
CS2_1
E0UC[27]
—
ANS[7]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
PE[0]
PCR[64]
AF0
AF1
AF2
AF3
—
—
GPIO[64]
E0UC[16]
—
—
CAN5RX11
WKUP[6]4
SIUL
eMIOS_0
—
—
FlexCAN_5
WKPU
PE[1]
PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX11
—
SIUL
eMIOS_0
FlexCAN_5
—
100
LQFP
144
LQFP
208
MAP
BGA3
—
60
82
M15
—
—
62
84
M14
Tristate
—
—
64
86
L15
J
Tristate
—
—
66
88
L14
I/O
I/O
—
—
I
I
S
Tristate
—
—
6
10
F1
I/O
I/O
O
—
M
Tristate
—
—
8
12
F4
Package pinouts and signal descriptions
Pin No.
23
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PE[2]
PCR[66]
AF0
AF1
AF2
AF3
—
GPIO[66]
E0UC[18]
—
—
SIN_1
SIUL
eMIOS0
—
—
DSPI_1
I/O
I/O
—
—
I
M
Tristate
—
PE[3]
PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
—
SIUL
eMIOS0
DSPI_1
—
I/O
I/O
O
—
M
Tristate
PE[4]
PCR[68]
AF0
AF1
AF2
AF3
—
GPIO[68]
E0UC[20]
SCK_1
—
EIRQ[9]
SIUL
eMIOS0
DSPI_1
—
SIUL
I/O
I/O
I/O
—
I
M
PE[5]
PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
PE[6]
PCR[70]
AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
SIUL
eMIOS_0
DSPI_0
ADC
PE[7]
PCR[71]
AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
SIUL
eMIOS_0
DSPI_0
ADC
PE[8]
PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX12
E0UC[22]
CAN3TX11
100
LQFP
144
LQFP
208
MAP
BGA3
—
89
128
D7
—
—
90
129
C7
Tristate
—
—
93
132
D6
M
Tristate
—
—
94
133
C6
I/O
I/O
O
O
M
Tristate
—
—
95
139
B5
I/O
I/O
O
O
M
Tristate
—
—
96
140
C4
M
Tristate
—
—
9
13
G2
SIUL
I/O
FlexCAN_2
O
eMIOS0
I/O
FlexCAN_3
O
Package pinouts and signal descriptions
Pin No.
24
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PE[9]
PCR[73]
AF0
AF1
AF2
AF3
—
—
—
GPIO[73]
—
E0UC[23]
—
WKUP[7]4
CAN2RX12
CAN3RX11
SIUL
—
eMIOS_0
—
WKPU
FlexCAN_2
FlexCAN_3
I/O
—
I/O
—
I
I
I
S
Tristate
—
PE[10]
PCR[74]
AF0
AF1
AF2
AF3
—
GPIO[74]
LIN3TX
CS3_1
—
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
—
SIUL
I/O
O
O
—
I
S
Tristate
PE[11]
PCR[75]
AF0
AF1
AF2
AF3
—
—
GPIO[75]
—
CS4_1
—
LIN3RX
WKUP[14]4
SIUL
—
DSPI_1
—
LINFlex_3
WKPU
I/O
—
O
—
I
I
S
PE[12]
PCR[76]
AF0
AF1
AF2
AF3
—
—
GPIO[76]
—
E1UC[19]13
—
SIN_2
EIRQ[11]
SIUL
—
eMIOS_1
—
DSPI_2
SIUL
I/O
—
I/O
—
I
I
PE[13]
PCR[77]
AF0
AF1
AF2
AF3
GPIO[77]
SOUT2
E1UC[20]
—
SIUL
DSPI_2
eMIOS_1
—
PE[14]
PCR[78]
AF0
AF1
AF2
AF3
—
GPIO[78]
SCK_2
E1UC[21]
—
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
—
SIUL
100
LQFP
144
LQFP
208
MAP
BGA3
—
10
14
G1
—
—
11
15
G3
Tristate
—
—
13
17
H2
S
Tristate
—
—
76
109
C14
I/O
O
I/O
—
S
Tristate
—
—
—
103
D15
I/O
I/O
I/O
—
I
S
Tristate
—
—
—
112
C13
Package pinouts and signal descriptions
Pin No.
25
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PE[15]
PCR[79]
AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
—
SIUL
DSPI_2
eMIOS_1
—
I/O
I/O
I/O
—
M
Tristate
—
PF[0]
PCR[80]
AF0
AF1
AF2
AF3
—
GPIO[80]
E0UC[10]
CS3_1
—
ANS[8]
SIUL
eMIOS_0
DSPI_1
—
ADC
I/O
I/O
O
—
I
J
Tristate
PF[1]
PCR[81]
AF0
AF1
AF2
AF3
—
GPIO[81]
E0UC[11]
CS4_1
—
ANS[9]
SIUL
eMIOS_0
DSPI_1
—
I
I/O
I/O
O
—
I
J
PF[2]
PCR[82]
AF0
AF1
AF2
AF3
—
GPIO[82]
E0UC[12]
CS0_2
—
ANS[10]
SIUL
eMIOS_0
DSPI_2
—
ADC
I/O
I/O
I/O
—
I
PF[3]
PCR[83]
AF0
AF1
AF2
AF3
—
GPIO[83]
E0UC[13]
CS1_2
—
ANS[11]
SIUL
eMIOS_0
DSPI_2
—
ADC
PF[4]
PCR[84]
AF0
AF1
AF2
AF3
—
GPIO[84]
E0UC[14]
CS2_2
—
ANS[12]
SIUL
eMIOS_0
DSPI_2
—
ADC
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
113
A13
—
—
—
55
N10
Tristate
—
—
—
56
P10
J
Tristate
—
—
—
57
T10
I/O
I/O
O
—
I
J
Tristate
—
—
—
58
R10
I/O
I/O
O
—
I
J
Tristate
—
—
—
59
N11
Package pinouts and signal descriptions
Pin No.
26
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PF[5]
PCR[85]
AF0
AF1
AF2
AF3
—
GPIO[85]
E0UC[22]
CS3_2
—
ANS[13]
SIUL
eMIOS_0
DSPI_2
—
ADC
I/O
I/O
O
—
I
J
Tristate
—
PF[6]
PCR[86]
AF0
AF1
AF2
AF3
—
GPIO[86]
E0UC[23]
—
—
ANS[14]
SIUL
eMIOS_0
—
—
ADC
I/O
I/O
—
—
I
J
Tristate
PF[7]
PCR[87]
AF0
AF1
AF2
AF3
—
GPIO[87]
—
—
—
ANS[15]
SIUL
—
—
—
ADC
I/O
—
—
—
I
J
PF[8]
PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX14
CS4_0
CAN2TX15
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
PF[9]
PCR[89]
AF0
AF1
AF2
AF3
—
—
GPIO[89]
—
CS5_0
—
CAN2RX15
CAN3RX14
SIUL
—
DSPI_0
—
FlexCAN_2
FlexCAN_3
PF[10]
PCR[90]
AF0
AF1
AF2
AF3
GPIO[90]
—
—
—
SIUL
—
—
—
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
60
P11
—
—
—
61
T11
Tristate
—
—
—
62
R11
M
Tristate
—
—
—
34
P1
I/O
—
O
—
I
I
S
Tristate
—
—
—
33
N2
I/O
—
—
—
M
Tristate
—
—
—
38
R3
Package pinouts and signal descriptions
Pin No.
27
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PF[11]
PCR[91]
AF0
AF1
AF2
AF3
—
GPIO[91]
—
—
—
WKUP[15]4
SIUL
—
—
—
WKPU
I/O
—
—
—
I
S
Tristate
—
PF[12]
PCR[92]
AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
PF[13]
PCR[93]
AF0
AF1
AF2
AF3
—
GPIO[93]
E1UC[26]
—
—
WKUP[16]4
SIUL
eMIOS_1
—
—
WKPU
I/O
I/O
—
—
I
S
PF[14]
PCR[94]
AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX11
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_4
I/O
O
I/O
O
PF[15]
PCR[95]
AF0
AF1
AF2
AF3
—
—
—
GPIO[95]
—
—
—
CAN1RX
CAN4RX11
EIRQ[13]
SIUL
—
—
—
FlexCAN_1
FlexCAN_4
SIUL
PG[0]
PCR[96]
AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX11
E1UC[23]
—
SIUL
FlexCAN_5
eMIOS_1
—
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
39
R4
—
—
—
35
R1
Tristate
—
—
—
41
T6
M
Tristate
—
43
—
102
D14
I/O
—
—
—
I
I
I
S
Tristate
—
42
—
101
E15
I/O
O
I/O
—
M
Tristate
—
41
—
98
E14
Package pinouts and signal descriptions
Pin No.
28
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PG[1]
PCR[97]
AF0
AF1
AF2
AF3
—
—
GPIO[97]
—
E1UC[24]
—
CAN5RX11
EIRQ[14]
SIUL
—
eMIOS_1
—
FlexCAN_5
SIUL
I/O
—
I/O
—
I
I
S
Tristate
—
PG[2]
PCR[98]
AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
PG[3]
PCR[99]
AF0
AF1
AF2
AF3
—
GPIO[99]
E1UC[12]
—
—
WKUP[17]4
SIUL
eMIOS_1
—
—
WKPU
I/O
I/O
—
—
I
S
PG[4]
PCR[100]
AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
PG[5]
PCR[101]
AF0
AF1
AF2
AF3
—
GPIO[101]
E1UC[14]
—
—
WKUP[18]4
SIUL
eMIOS_1
—
—
WKPU
PG[6]
PCR[102]
AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
—
—
PG[7]
PCR[103]
AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
—
—
100
LQFP
144
LQFP
208
MAP
BGA3
40
—
97
E13
—
—
—
8
E4
Tristate
—
—
—
7
E3
M
Tristate
—
—
—
6
E1
I/O
I/O
—
—
I
S
Tristate
—
—
—
5
E2
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
—
30
M2
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
—
29
M1
Package pinouts and signal descriptions
Pin No.
29
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PG[8]
PCR[104]
AF0
AF1
AF2
AF3
—
GPIO[104]
E1UC[17]
—
CS0_2
EIRQ[15]
SIUL
eMIOS_1
—
DSPI_2
SIUL
I/O
I/O
—
I/O
I
S
Tristate
—
PG[9]
PCR[105]
AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
—
SCK_2
SIUL
eMIOS1
—
DSPI_2
I/O
I/O
—
I/O
S
Tristate
PG[10] PCR[106]
AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
S
PG[11] PCR[107]
AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
PG[12] PCR[108]
AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
—
—
SIUL
eMIOS_0
—
—
PG[13] PCR[109]
AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
—
—
PG[14] PCR[110]
AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
—
—
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
26
L2
—
—
—
25
L1
Tristate
—
—
—
114
D13
M
Tristate
—
—
—
115
B12
I/O
I/O
—
—
M
Tristate
—
—
—
92
K14
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
—
—
—
91
K16
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
S
Tristate
—
—
—
110
B14
Package pinouts and signal descriptions
Pin No.
30
Table 3. Functional port pin descriptions (continued)
Port
pin
PCR
register
PG[15] PCR[111]
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
Alternate
function1
Function
Peripheral
AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
111
B13
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
PH[0]
PCR[112]
AF0
AF1
AF2
AF3
—
GPIO[112]
E1UC[2]
—
—
SIN1
SIUL
eMIOS_1
—
—
DSPI_1
I/O
I/O
—
—
I
M
Tristate
—
—
—
93
F13
PH[1]
PCR[113]
AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
O
—
M
Tristate
—
—
—
94
F14
PH[2]
PCR[114]
AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
I/O
—
M
Tristate
—
—
—
95
F16
PH[3]
PCR[115]
AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
I/O
—
M
Tristate
—
—
—
96
F15
PH[4]
PCR[116]
AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
—
134
A6
PH[5]
PCR[117]
AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
S
Tristate
—
—
—
135
B6
Package pinouts and signal descriptions
Pin No.
31
Table 3. Functional port pin descriptions (continued)
I/O
Pad RESET
direction2 type config.
64
LQFP
64
5CAN 4
LQFP
LIN
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Port
pin
PCR
register
Alternate
function1
Function
Peripheral
PH[6]
PCR[118]
AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
—
MA[2]
SIUL
eMIOS_1
—
ADC
I/O
I/O
—
O
M
Tristate
—
PH[7]
PCR[119]
AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M
Tristate
PH[8]
PCR[120]
AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M
PH[9]9 PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
—
TCK
—
SIUL
—
JTAGC
—
I/O
—
I
—
PH[10]9 PCR[122]
AF0
AF1
AF2
AF3
GPIO[122]
—
TMS
—
SIUL
—
JTAGC
—
I/O
—
I
—
1
Freescale Semiconductor
2
3
4
5
6
7
100
LQFP
144
LQFP
208
MAP
BGA3
—
—
136
D5
—
—
—
137
C5
Tristate
—
—
—
138
A5
S
Input,
weak
pull-up
—
—
88
127
B8
S
Input,
weak
pull-up
—
—
81
120
B9
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 -> AF0;
PCR.PA = 01 -> AF1; PCR.PA = 10 -> AF2; PCR.PA = 11 -> AF3. This is intended to select the output functions; to use one of the input
functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value
corresponding to an input only function is reported as “—”.
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of
the PSMIO.PADSELx bitfields inside the SIUL module.
208 MAPBGA available only as development package for Nexus2+
All WKUP pins also support external interrupt capability. See wakeup unit chapter for further details.
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
“Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual
for details.
Value of PCR.IBE bit must be 0
Package pinouts and signal descriptions
Pin No.
8
32
MPC5604B/C Microcontroller Data Sheet, Rev. 8
4
Electrical characteristics
4.1
Introduction
This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application
of any voltage higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by the internal pull-up and pull-down,
which is provided by the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in
the Symbol column.
Freescale Semiconductor
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement
is included in the Symbol column.
CAUTION
All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
Electrical characteristics
This pad is used on MPC5607B 100-pin and 144-pinto provide supply for the second ADC. Therefore it is recommended not using it to
keep the compatibility with the family devices.
9 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed, in this case MPC5604B/C get incompliance with IEEE 1149.1-2001.
10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However,
no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is
connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected.
An external pull-up resistor in the range of 47–100 kOhms should be added between the TDO pin and VDD. Only in case the TDO pin
is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin
and GND instead.
11 Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices
12 Not available on MPC5602B devices
13 Not available in 100 LQFP package
14 Available only on MPC5604B 208 MAPBGA devices
15 Not available on MPC5603B 144-pin devices
Electrical characteristics
4.2
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where
appropriate.
Table 4. Parameter classifications
Classification tag
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
4.3
NVUSRO register
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are
controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
33
Electrical characteristics
4.3.1
NVUSRO[PAD3V5V] field description
Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration.
Table 5. PAD3V5V field description1
Value2
1
2
Description
0
High voltage supply is 5.0 V
1
High voltage supply is 3.3 V
See the device reference manual for more information on the NVUSRO register.
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.
The DC electrical characteristics are dependent on the PAD3V5V bit value.
4.3.2
NVUSRO[OSCILLATOR_MARGIN] field description
Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
Table 6. OSCILLATOR_MARGIN field description1
Value2
1
2
Description
0
Low consumption configuration (4 MHz/8 MHz)
1
High margin configuration (4 MHz/16 MHz)
See the device reference manual for more information on the NVUSRO register.
'1' is delivery value. It is part of shadow Flash, thus programmable by customer.
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.
For a detailed description of the NVUSRO register, please refer to the MPC5604B/C Reference Manual.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
34
Freescale Semiconductor
Electrical characteristics
4.4
Absolute maximum ratings
Table 7. Absolute maximum ratings
Value
Symbol
Parameter
Conditions
Unit
Min
Max
VSS
SR Digital ground on VSS_HV pins
—
0
0
V
VDD
SR Voltage on VDD_HV pins with respect to
ground (VSS)
—
0.3
6.0
V
VSS_LV
SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
—
VDD_BV
SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
—
Relative to VDD
VSS_ADC SR Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS)
—
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—
VIN
SR Voltage on any GPIO pin with respect to
ground (VSS)
VSS0.1 VSS+0.1
0.3
6.0
0.3
VDD+0.3
VSS0.1 VSS+0.1
0.3
6.0
V
V
V
V
VDD 0.3 VDD+0.3
Relative to VDD
—
Relative to VDD
0.3
6.0
—
VDD+0.3
V
IINJPAD
SR Injected input current on any pin during
overload condition
—
10
10
IINJSUM
SR Absolute sum of all injected input
currents during overload condition
—
50
50
—
70
—
64
—
—
150
mA
—
55
150
°C
IAVGSEG SR Sum of all the static I/O current within a VDD = 5.0 V ± 10%, PAD3V5V = 0
supply segment
VDD = 3.3 V ± 10%, PAD3V5V = 1
ICORELV SR Low voltage static current sink through
VDD_BV
TSTORAGE SR Storage temperature
mA
mA
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. During overload conditions (VIN > VDD or
VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the
recommended values.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
35
Electrical characteristics
4.5
Recommended operating conditions
Table 8. Recommended operating conditions (3.3 V)
Value
Symbol
VSS
Parameter
0
0
V
SR Voltage on VDD_HV pins with respect to
ground (VSS)
—
3.0
3.6
V
VSS_LV2
SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)
—
VDD_BV3
SR Voltage on VDD_BV pin (regulator supply)
with respect to ground (VSS)
—
SR Voltage on VSS_HV_ADC (ADC reference)
pin with respect to ground (VSS)
—
VDD_ADC4
SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—
SR Voltage on any GPIO pin with respect to
ground (VSS)
Relative to VDD
3.6
V
VDD0.1 VDD+0.1
VSS0.1 VSS+0.1
3.05
3.6
V
V
VDD0.1 VDD+0.1
VSS0.1
—
—
VDD+0.1
V
—
5
5
IINJSUM
SR Absolute sum of all injected input currents
during overload condition
—
50
50
SR VDD slope to ensure correct power up6
—
—
0.25
V/µs
40
85
°C
40
110
40
105
40
130
40
125
40
150
TA V-Grade Part SR Ambient temperature under bias
TJ V-Grade Part SR Junction temperature under bias
TA M-Grade Part SR Ambient temperature under bias
TJ M-Grade Part SR Junction temperature under bias
6
—
3.0
V
SR Injected input current on any pin during
overload condition
TJ C-Grade Part SR Junction temperature under bias
5
Relative to VDD
VSS0.1 VSS+0.1
IINJPAD
TA C-Grade Part SR Ambient temperature under bias
4
Relative to VDD
VSS_ADC
TVDD
3
Max
—
1
VIN
2
Unit
Min
SR Digital ground on VSS_HV pins
VDD
1
Conditions
fCPU < 64 MHz
—
fCPU < 64 MHz
—
fCPU < 64 MHz
—
mA
100 nF capacitance needs to be provided between each VDD/VSS pair
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL,
device is reset.
Guaranteed by device validation
MPC5604B/C Microcontroller Data Sheet, Rev. 8
36
Freescale Semiconductor
Electrical characteristics
Table 9. Recommended operating conditions (5.0 V)
Value
Symbol
VSS
VDD
1
Parameter
Conditions
—
0
0
V
SR Voltage on VDD_HV pins with respect to
ground (VSS)
—
4.5
5.5
V
3.0
5.5
SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
VDD_BV4
SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
Voltage drop2
—
—
Voltage
drop2
Relative to VDD
VSS_ADC
SR Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS
—
VDD_ADC5
SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—
Voltage drop2
Relative to VDD
2
3
4
5
6
SR Voltage on any GPIO pin with respect to
ground (VSS)
—
Relative to VDD
VSS0.1 VSS+0.1
4.5
5.5
3.0
5.5
V
V
VDD0.1 VDD+0.1
VSS0.1 VSS+0.1
4.5
5.5
3.0
5.5
V
V
VDD0.1 VDD+0.1
VSS0.1
—
—
VDD+0.1
V
IINJPAD
SR Injected input current on any pin during
overload condition
—
5
5
IINJSUM
SR Absolute sum of all injected input
currents during overload condition
—
50
50
SR VDD slope to ensure correct power up6
—
—
0.25
V/µs
40
85
°C
40
110
40
105
40
130
40
125
40
150
TVDD
1
Max
SR Digital ground on VSS_HV pins
VSS_LV3
VIN
Unit
Min
TA C-Grade Part
SR Ambient temperature under bias
TJ C-Grade Part
SR Junction temperature under bias
TA V-Grade Part
SR Ambient temperature under bias
TJ V-Grade Part
SR Junction temperature under bias
TA M-Grade Part
SR Ambient temperature under bias
TJ M-Grade Part
SR Junction temperature under bias
fCPU < 64 MHz
—
fCPU < 64 MHz
—
fCPU < 64 MHz
—
mA
100 nF capacitance needs to be provided between each VDD/VSS pair.
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain
analog electrical characteristics will not be guaranteed to stay within the stated limits.
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
Guaranteed by device validation
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
37
Electrical characteristics
NOTE
RAM data retention is guaranteed with VDD_LV not below 1.08 V.
4.6
4.6.1
Thermal characteristics
Package thermal characteristics
Table 10. LQFP thermal characteristics1
Symbol
C
RJA CC
D
Parameter
Thermal resistance,
junction-to-ambient natural
convection3
Conditions2
Single-layer board - 1s
Four-layer board - 2s2p
RJB CC
D
Thermal resistance,
junction-to-board4
Single-layer board - 1s
Four-layer board - 2s2p
RJC CC
D
Thermal resistance,
junction-to-case5
Single-layer board - 1s
Four-layer board - 2s2p
JB CC
D
Junction-to-board thermal
characterization parameter,
natural convection
Single-layer board - 1s
Four-layer board - 2s2p
Pin count
Value
Unit
64
60
°C/W
100
64
144
64
64
42
100
51
144
49
64
24
100
36
144
37
64
24
100
34
144
35
64
11
100
22
144
22
64
11
100
22
144
22
64
TBD
100
33
144
34
64
TBD
100
34
144
35
°C/W
°C/W
°C/W
MPC5604B/C Microcontroller Data Sheet, Rev. 8
38
Freescale Semiconductor
Electrical characteristics
Table 10. LQFP thermal characteristics1 (continued)
Symbol
C
JC CC
D
Parameter
Junction-to-case thermal
characterization parameter,
natural convection
Conditions2
Single-layer board - 1s
Four-layer board - 2s2p
Pin count
Value
Unit
64
TBD
°C/W
100
9
144
10
64
TBD
100
9
144
10
1
Thermal characteristics are based on simulation.
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C
3
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test
board meets JEDEC specification for this package.
4 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
5 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface
layer.
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
39
Electrical characteristics
4.6.2
Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1:
TJ = TA + (PD x RJA)
Eqn. 1
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device
is configured to continuously drive external modules and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273 °C)
Eqn. 2
K = PD x (TA + 273 °C) + RJA x PD2
Eqn. 3
Therefore, solving equations 1 and 2:
Where:
K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2
iteratively for any value of TA.
4.7
4.7.1
I/O pad electrical characteristics
I/O pad types
The device provides four main I/O pad types depending on the associated alternate functions:
•
•
•
•
Slow pads—These pads are the most common pads, providing a good compromise between transition time and low
electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication channels with controlled
current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.
Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC)
providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
40
Freescale Semiconductor
Electrical characteristics
4.7.2
I/O input DC characteristics
Table 11 provides input DC electrical characteristics as described in Figure 7.
Figure 7. I/O input DC electrical characteristics definition
VIN
VDD
VIH
VHYS
VIL
PDIx = ‘1’
(GPDI register of SIUL)
PDIx = ‘0’
Table 11. I/O input DC electrical characteristics
Symbol
C
Parameter
Typ
Max
SR P Input high level CMOS (Schmitt
Trigger)
—
0.65VDD
—
VDD+0.4
VIL
SR P Input low level CMOS (Schmitt
Trigger)
—
0.4
—
0.35VDD
—
0.1VDD
—
—
TA = 40 °C
—
2
—
TA = 25 °C
—
2
—
D
TA = 105 °C
—
12
500
P
TA = 125 °C
—
70
1000
—
—
—
40
ns
—
1000
—
—
ns
ILKG CC P Digital input leakage
P
WFI
2
SR P Wakeup input filtered pulse
WNFI2 SR P Wakeup input not filtered pulse
2
Unit
Min
VIH
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger)
1
Value
Conditions1
No injection
on adjacent
pin
V
nA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and
voltage.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
41
Electrical characteristics
4.7.3
I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
•
•
•
•
Table 12 provides weak pull figures. Both pull-up and pull-down resistances are supported.
Table 13 provides output driver characteristics for I/O pads when in SLOW configuration.
Table 14 provides output driver characteristics for I/O pads when in MEDIUM configuration.
Table 15 provides output driver characteristics for I/O pads when in FAST configuration.
Table 12. I/O pull-up/pull-down DC electrical characteristics
Symbol
C
|IWPU| CC P Weak pull-up current
absolute value
C
1
Typ
Max
10
—
150
PAD3V5V = 1
10
—
250
VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1
10
—
150
VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0
10
—
150
PAD3V5V = 1
10
—
250
VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1
10
—
150
2
|IWPD| CC P Weak pull-down current
absolute value
C
2
Unit
Min
VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0
P
P
Value
Conditions1
Parameter
µA
µA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 13. SLOW configuration output buffer electrical characteristics
Symbol C
Typ
Max
Push Pull IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD
—
—
C
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.8VDD
—
—
C
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
—
—
—
—
0.1VDD
VOL CC P Output low level
SLOW configuration
1
Unit
Min
VOH CC P Output high level
SLOW configuration
2
Value
Conditions1
Parameter
Push Pull IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
C
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
—
—
0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
V
V
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
42
Freescale Semiconductor
Electrical characteristics
Table 14. MEDIUM configuration output buffer electrical characteristics
Symbol C
Value
Conditions1
Parameter
Unit
Min
Typ
Max
Push Pull IOH = 3.8 mA,
VOH CC C Output high level
MEDIUM configuration
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
P
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD
—
—
C
IOH = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.8VDD
—
—
C
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
—
—
C
IOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
VOL CC C Output low level
Push Pull IOL = 3.8 mA,
MEDIUM configuration
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.2VDD
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
C
IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
—
—
0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
C
IOL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.1VDD
1
2
V
V
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 15. FAST configuration output buffer electrical characteristics
Symbol C
Value
Conditions1
Parameter
Unit
Min
Typ
Max
IOH = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD
—
—
C
IOH = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.8VDD
—
—
C
IOH = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
—
—
VOH CC P Output high level
FAST configuration
Push
Pull
V
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
43
Electrical characteristics
Table 15. FAST configuration output buffer electrical characteristics (continued)
Symbol C
2
Unit
Min
Typ
Max
IOL = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
C
IOL = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
—
—
0.1VDD
C
IOL = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
VOL CC P Output low level
FAST configuration
1
Value
Conditions1
Parameter
Push
Pull
V
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
4.7.4
Output pin transition times
Table 16. Output pin transition times
Symbol
C
Ttr CC D Output transition time output pin2
SLOW configuration
T
CL = 25 pF
CL = 50 pF
D
CL = 100 pF
D
CL = 25 pF
T
CL = 50 pF
D
CL = 100 pF
Ttr CC D Output transition time output pin2
MEDIUM configuration
T
CL = 25 pF
CL = 50 pF
D
CL = 100 pF
D
CL = 25 pF
T
CL = 50 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0
VDD = 3.3 V ± 10%,
PAD3V5V = 1
VDD = 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
VDD = 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
CL = 100 pF
D
Ttr CC D Output transition time output pin
FAST configuration
2
CL = 25 pF
CL = 50 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0
CL = 100 pF
CL = 25 pF
CL = 50 pF
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF
1
Value
Conditions1
Parameter
Unit
Min
Typ
Max
—
—
50
—
—
100
—
—
125
—
—
50
—
—
100
—
—
125
—
—
10
—
—
20
—
—
40
—
—
12
—
—
25
—
—
40
—
—
4
—
—
6
—
—
12
—
—
4
—
—
7
—
—
12
ns
ns
ns
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
MPC5604B/C Microcontroller Data Sheet, Rev. 8
44
Freescale Semiconductor
Electrical characteristics
2
CL includes device and package capacitances (CPKG < 5 pF).
4.7.5
I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as
described in Table 17.
Table 18 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG
maximum value.
In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain
below the IDYNSEG maximum value.
Table 17. I/O supply segment
Supply segment
Package
1
208 MAPBGA1
2
3
4
Equivalent to 144 LQFP segment pad distribution
6
MCKO
MDOn/MSEO
—
—
pin20–pin49
pin51–pin99
100 LQFP
pin16–pin35
pin37–pin69
pin70–pin83
pin 84–pin15
—
—
pin8–pin26
pin28–pin55
pin56–pin7
—
—
—
2
pin100–pin122 pin 123–pin19
5
144 LQFP
64 LQFP
1
2
208 MAPBGA available only as development package for Nexus2+
All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
Table 18. I/O consumption
Symbol
ISWTSLW,2
ISWTMED2
ISWTFST2
C
Value
Conditions1
Parameter
CC D Dynamic I/O current
for SLOW
configuration
CL = 25 pF
CC D Dynamic I/O current
for MEDIUM
configuration
CL = 25 pF
CC D Dynamic I/O current
for FAST
configuration
CL = 25 pF
Unit
Min
Typ
Max
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
20
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
16
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
29
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
17
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
110
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
50
mA
mA
mA
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
45
Electrical characteristics
Table 18. I/O consumption (continued)
Symbol
IRMSSLW
C
Value
Conditions1
Parameter
Unit
Min
Typ
Max
—
—
2.3
—
—
3.2
—
—
6.6
—
—
1.6
—
—
2.3
—
—
4.7
—
—
6.6
—
—
13.4
—
—
18.3
—
—
5
—
—
8.5
—
—
11
—
—
22
—
—
33
—
—
56
—
—
14
—
—
20
CL = 100 pF, 40 MHz
—
—
35
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
70
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
65
CC D Root medium square CL = 25 pF, 2 MHz
I/O current for SLOW
CL = 25 pF, 4 MHz
configuration
CL = 100 pF, 2 MHz
CL = 25 pF, 2 MHz
CL = 25 pF, 4 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 2 MHz
IRMSMED
CC D Root medium square CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
I/O current for
PAD3V5V = 0
CL = 25 pF, 40 MHz
MEDIUM
configuration
CL = 100 pF, 13 MHz
CL = 25 pF, 13 MHz
CL = 25 pF, 40 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 13 MHz
IRMSFST
CC D Root medium square CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
I/O current for FAST
PAD3V5V = 0
CL = 25 pF, 64 MHz
configuration
CL = 100 pF, 40 MHz
CL = 25 pF, 40 MHz
CL = 25 pF, 64 MHz
IAVGSEG
1
2
SR D Sum of all the static
I/O current within a
supply segment
VDD = 3.3 V ± 10%,
PAD3V5V = 1
mA
mA
mA
mA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 19 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain
below the 100%.
Table 19. I/O weight1
64 LQFP2
144/100 LQFP
PAD
Weight 5V Weight 5V Weight 3.3V Weight 3.3V Weight 5V Weight 5V Weight 3.3V Weight 3.3V
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
PB[3]
10%
—
12%
—
10%
—
12%
—
PC[9]
10%
—
12%
—
10%
—
12%
—
PC[14]
9%
—
11%
—
9%
—
11%
—
PC[15]
9%
13%
11%
12%
9%
13%
11%
12%
MPC5604B/C Microcontroller Data Sheet, Rev. 8
46
Freescale Semiconductor
Electrical characteristics
Table 19. I/O weight1
64 LQFP2
144/100 LQFP
PAD
Weight 5V Weight 5V Weight 3.3V Weight 3.3V Weight 5V Weight 5V Weight 3.3V Weight 3.3V
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
PG[5]
9%
—
11%
—
9%
—
11%
—
PG[4]
9%
12%
10%
11%
9%
12%
10%
11%
PG[3]
9%
—
10%
—
9%
—
10%
—
PG[2]
8%
12%
10%
10%
8%
12%
10%
10%
PA[2]
8%
—
9%
—
8%
—
9%
—
PE[0]
8%
—
9%
—
8%
—
9%
—
PA[1]
7%
—
9%
—
7%
—
9%
—
PE[1]
7%
10%
8%
9%
7%
10%
8%
9%
PE[8]
7%
9%
8%
8%
7%
9%
8%
8%
PE[9]
6%
—
7%
—
6%
—
7%
—
PE[10]
6%
—
7%
—
6%
—
7%
—
PA[0]
5%
8%
6%
7%
5%
8%
6%
7%
PE[11]
5%
—
6%
—
5%
—
6%
—
PG[9]
9%
—
10%
—
9%
—
10%
—
PG[8]
9%
—
11%
—
9%
—
11%
—
PC[11]
9%
—
11%
—
9%
—
11%
—
PC[10]
9%
13%
11%
12%
9%
13%
11%
12%
PG[7]
10%
14%
11%
12%
10%
14%
11%
12%
PG[6]
10%
14%
12%
12%
10%
14%
12%
12%
PB[0]
10%
14%
12%
12%
10%
14%
12%
12%
PB[1]
10%
—
12%
—
10%
—
12%
—
PF[9]
10%
—
12%
—
10%
—
12%
—
PF[8]
10%
15%
12%
13%
10%
15%
12%
13%
PF[12]
10%
15%
12%
13%
10%
15%
12%
13%
PC[6]
10%
—
12%
—
10%
—
12%
—
PC[7]
10%
—
12%
—
10%
—
12%
—
PF[10]
10%
14%
12%
12%
10%
14%
12%
12%
PF[11]
10%
—
11%
—
10%
—
11%
—
PA[15]
9%
12%
10%
11%
9%
12%
10%
11%
PF[13]
8%
—
10%
—
8%
—
10%
—
PA[14]
8%
11%
9%
10%
8%
11%
9%
10%
PA[4]
8%
—
9%
—
8%
—
9%
—
PA[13]
7%
10%
9%
9%
7%
10%
9%
9%
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
47
Electrical characteristics
Table 19. I/O weight1
64 LQFP2
144/100 LQFP
PAD
Weight 5V Weight 5V Weight 3.3V Weight 3.3V Weight 5V Weight 5V Weight 3.3V Weight 3.3V
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
PA[12]
7%
—
8%
—
7%
—
8%
—
PB[9]
1%
—
1%
—
1%
—
1%
—
PB[8]
1%
—
1%
—
1%
—
1%
—
PB[10]
6%
—
7%
—
6%
—
7%
—
PF[0]
6%
—
7%
—
6%
—
7%
—
PF[1]
7%
—
8%
—
7%
—
8%
—
PF[2]
7%
—
8%
—
7%
—
8%
—
PF[3]
7%
—
9%
—
8%
—
9%
—
PF[4]
8%
—
9%
—
8%
—
9%
—
PF[5]
8%
—
10%
—
8%
—
10%
—
PF[6]
8%
—
10%
—
9%
—
10%
—
PF[7]
9%
—
10%
—
9%
—
11%
—
PD[0]
1%
—
1%
—
1%
—
1%
—
PD[1]
1%
—
1%
—
1%
—
1%
—
PD[2]
1%
—
1%
—
1%
—
1%
—
PD[3]
1%
—
1%
—
1%
—
1%
—
PD[4]
1%
—
1%
—
1%
—
1%
—
PD[5]
1%
—
1%
—
1%
—
1%
—
PD[6]
1%
—
1%
—
1%
—
1%
—
PD[7]
1%
—
1%
—
1%
—
1%
—
PD[8]
1%
—
1%
—
1%
—
1%
—
PB[4]
1%
—
1%
—
1%
—
1%
—
PB[5]
1%
—
1%
—
1%
—
2%
—
PB[6]
1%
—
1%
—
1%
—
2%
—
PB[7]
1%
—
1%
—
1%
—
2%
—
PD[9]
1%
—
1%
—
1%
—
2%
—
PD[10]
1%
—
1%
—
1%
—
2%
—
PD[11]
1%
—
1%
—
1%
—
2%
—
PB[11]
11%
—
13%
—
17%
—
21%
—
PD[12]
11%
—
13%
—
18%
—
21%
—
PB[12]
11%
—
13%
—
18%
—
21%
—
PD[13]
10%
—
12%
—
18%
—
21%
—
PB[13]
10%
—
12%
—
18%
—
21%
—
MPC5604B/C Microcontroller Data Sheet, Rev. 8
48
Freescale Semiconductor
Electrical characteristics
Table 19. I/O weight1
64 LQFP2
144/100 LQFP
PAD
Weight 5V Weight 5V Weight 3.3V Weight 3.3V Weight 5V Weight 5V Weight 3.3V Weight 3.3V
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
PD[14]
10%
—
12%
—
18%
—
21%
—
PB[14]
10%
—
12%
—
18%
—
21%
—
PD[15]
10%
—
11%
—
18%
—
21%
—
PB[15]
9%
—
11%
—
18%
—
21%
—
PA[3]
9%
—
11%
—
18%
—
21%
—
PG[13]
9%
13%
10%
11%
18%
26%
21%
23%
PG[12]
9%
12%
10%
11%
18%
26%
21%
23%
PH[0]
5%
8%
6%
7%
18%
26%
21%
23%
PH[1]
5%
7%
6%
6%
18%
26%
21%
23%
PH[2]
5%
6%
5%
6%
18%
25%
21%
22%
PH[3]
4%
6%
5%
5%
18%
25%
21%
22%
PG[1]
4%
—
4%
—
18%
—
21%
—
PG[0]
3%
4%
4%
4%
17%
25%
21%
22%
PF[15]
3%
—
4%
—
17%
—
20%
—
PF[14]
4%
5%
5%
5%
16%
23%
20%
21%
PE[13]
4%
—
5%
—
16%
—
19%
—
PA[7]
5%
—
6%
—
16%
—
19%
—
PA[8]
5%
—
6%
—
16%
—
19%
—
PA[9]
5%
—
6%
—
15%
—
18%
—
PA[10]
6%
—
7%
—
15%
—
18%
—
PA[11]
6%
—
8%
—
14%
—
17%
—
PE[12]
7%
—
8%
—
11%
—
14%
—
PG[14]
7%
—
8%
—
10%
—
12%
—
PG[15]
7%
10%
8%
9%
10%
14%
12%
12%
PE[14]
7%
—
8%
—
9%
—
11%
—
PE[15]
7%
9%
8%
8%
9%
12%
10%
11%
PG[10]
6%
—
8%
—
8%
—
10%
—
PG[11]
6%
9%
7%
8%
8%
11%
9%
10%
PC[3]
6%
—
7%
—
7%
—
9%
—
PC[2]
6%
8%
7%
7%
6%
9%
8%
8%
PA[5]
5%
7%
6%
6%
6%
8%
7%
7%
PA[6]
5%
—
6%
—
5%
—
6%
—
PC[1]
5%
—
5%
—
5%
—
5%
—
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
49
Electrical characteristics
Table 19. I/O weight1
64 LQFP2
144/100 LQFP
PAD
1
2
Weight 5V Weight 5V Weight 3.3V Weight 3.3V Weight 5V Weight 5V Weight 3.3V Weight 3.3V
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
SRE=0
SRE=1
PC[0]
6%
9%
7%
8%
6%
9%
7%
8%
PE[2]
7%
10%
9%
9%
7%
10%
9%
9%
PE[3]
8%
11%
9%
9%
8%
11%
9%
9%
PC[5]
8%
11%
9%
10%
8%
11%
9%
10%
PC[4]
8%
12%
10%
10%
8%
12%
10%
10%
PE[4]
8%
12%
10%
11%
8%
12%
10%
11%
PE[5]
9%
12%
10%
11%
9%
12%
10%
11%
PH[4]
9%
13%
11%
11%
9%
13%
11%
11%
PH[5]
9%
—
11%
—
9%
—
11%
—
PH[6]
9%
13%
11%
12%
9%
13%
11%
12%
PH[7]
9%
13%
11%
12%
9%
13%
11%
12%
PH[8]
10%
14%
11%
12%
10%
14%
11%
12%
PE[6]
10%
14%
12%
12%
10%
14%
12%
12%
PE[7]
10%
14%
12%
12%
10%
14%
12%
12%
PC[12]
10%
14%
12%
13%
10%
14%
12%
13%
PC[13]
10%
—
12%
—
10%
—
12%
—
PC[8]
10%
—
12%
—
10%
—
12%
—
PB[2]
10%
15%
12%
13%
10%
15%
12%
13%
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
All 64 LQFPinformation is indicative and must be confirmed during silicon validation.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
50
Freescale Semiconductor
Electrical characteristics
4.8
RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 8. Start-up reset requirements
VDD
VDDMIN
RESET
VIH
VIL
device reset forced by RESET
device start-up phase
Figure 9. Noise filtering on reset signal
VRESET
hw_rst
VDD
‘1’
VIH
VIL
‘0’
filtered by
hysteresis
filtered by
lowpass filter
WFRST
filtered by
lowpass filter
unknown reset
state
device under hardware reset
WFRST
WNFRST
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
51
Electrical characteristics
Table 20. Reset electrical characteristics
Symbol
C
Parameter
Value
Conditions1
Unit
Min
Typ
Max
VIH
SR P Input High Level CMOS
(Schmitt Trigger)
—
0.65VDD
—
VDD+0.4
V
VIL
SR P Input low Level CMOS
(Schmitt Trigger)
—
0.4
—
0.35VDD
V
VHYS
CC C Input hysteresis CMOS
(Schmitt Trigger)
—
0.1VDD
—
—
V
VOL
CC P Output low level
Push Pull, IOL = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
V
C
Push Pull, IOL = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
—
—
0.1VDD
C
Push Pull, IOL = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
CL = 25pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
10
CL = 50pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
20
CL = 100pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
40
CL = 25pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
12
CL = 50pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
25
CL = 100pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
40
WFRST SR P RESET input filtered
pulse
—
—
—
40
ns
WNFRST SR P RESET input not filtered
pulse
—
1000
—
—
ns
VDD = 3.3 V ± 10%, PAD3V5V = 1
10
—
150
µA
VDD = 5.0 V ± 10%, PAD3V5V = 0
10
—
150
VDD = 5.0 V ± 10%, PAD3V5V = 12
10
—
250
Ttr
CC D Output transition time
output pin3
|IWPU| CC P Weak pull-up current
absolute value
P
C
ns
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
This transient configuration does not occurs when device is used in the VDD = 3.3 V ± 10% range.
3 C includes device and package capacitance (C
L
PKG < 5 pF).
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
52
Freescale Semiconductor
Electrical characteristics
4.9
Power management electrical characteristics
4.9.1
Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage
ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supplies are involved:
•
•
•
HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD
power pin.
BV—High voltage external power supply for internal ballast module. This must be provided externally through
VDD_BV power pin. Voltage values should be aligned with VDD.
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure
noise isolation between critical LV modules within the device:
— LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
— LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to
LV_COR through double bonding.
— LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to
LV_COR through double bonding.
— LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.
Figure 10. Voltage regulator capacitance connection
CREG2 (LV_COR/LV_CFLA)
GND
VDD
VSS_LV
VDD_BV
Voltage Regulator
I
VSS_LVn
VDD_BV
CREG1 (LV_COR/LV_DFLA)
VDD_LVn
CDEC1 (Ballast decoupling)
VREF
VDD_LV
VDD_LV
DEVICE
VSS_LV
GND
VSS_LV
DEVICE
GND
VSS
VDD_LV
VDD
GND
CREG3 (LV_COR/LV_PLL)
CDEC2 (supply/IO decoupling)
The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.
Care should also be taken to limit the serial inductance of the board to less than 5 nH.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
53
Electrical characteristics
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see
Section 4.5, “Recommended operating conditions).
Table 21. Voltage regulator electrical characteristics
Symbol
C
Parameter
Value
Conditions1
Unit
Min
Typ
Max
CREGn
SR — Internal voltage regulator external
capacitance
—
200
—
500
nF
RREG
SR — Stability capacitor equivalent serial
resistance
—
—
—
0.2

CDEC1
SR — Decoupling capacitance2 ballast
VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to 5.5 V
1003
4704
—
nF
VDD_BV/VSS_LV pair:
VDD_BV = 3 V to 3.6 V
400
—
CDEC2
SR — Decoupling capacitance regulator
supply
VDD/VSS pair
10
100
—
nF
VMREG
CC T Main regulator output voltage
Before exiting from
reset
—
1.32
—
V
1.15
1.28
1.32
—
—
150
mA
IMREG = 200 mA
—
—
2
mA
IMREG = 0 mA
—
—
1
1.15
1.23
1.32
V
—
—
15
mA
—
—
600
µA
ILPREG = 0 mA;
TA = 55 °C
—
5
—
After trimming
1.15
1.23
1.32
V
—
—
5
mA
IULPREG = 5 mA;
TA = 55 °C
—
—
100
µA
IULPREG = 0 mA;
TA = 55 °C
—
2
—
—
—
4006
P
IMREG
IMREGINT
After trimming
SR — Main regulator current provided to
VDD_LV domain
CC D Main regulator module current
consumption
—
VLPREG
CC P Low power regulator output voltage After trimming
ILPREG
SR — Low power regulator current
provided to VDD_LV domain
ILPREGINT
CC D Low power regulator module current ILPREG = 15 mA;
consumption
TA = 55 °C
—
VULPREG
CC P Ultra low power regulator output
voltage
IULPREG
SR — Ultra low power regulator current
provided to VDD_LV domain
IULPREGINT
CC D Ultra low power regulator module
current consumption
IDD_BV
—
CC D In-rush current on VDD_BV during
power-up5
—
—
mA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.
A typical value is in the range of 470 nF.
3
This value is acceptable to guarantee operation from 4.5 V to 5.5 V
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
54
Freescale Semiconductor
Electrical characteristics
4
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV
in operating range.
5
In-rush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external
LV capacitances to be load)
6
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
4.9.2
Voltage monitor electrical characteristics
The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage
detectors (LVDs) to monitor the VDD and the VDD_LV voltage while device is supplied:
•
•
•
•
•
POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state
LVDHV3 monitors VDD to ensure device reset below minimum functional supply
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range
LVDLVCOR monitors power domain No. 1
LVDLVBKP monitors power domain No. 0
NOTE
When enabled, power domain No. 2 is monitored through LVD_DIGBKP.
Figure 11. Low voltage monitor vs reset
VDD
VLVDHVxH
VLVDHVxL
RESET
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
55
Electrical characteristics
Table 22. Low voltage monitor electrical characteristics
Symbol
C
VPORUP
SR P Supply for functional POR module
VPORH
CC P Power-on reset threshold
Value
Conditions1
Parameter
Unit
Min
Typ
Max
1.0
—
5.5
1.5
—
2.6
—
1.5
—
2.6
—
—
—
2.95
—
TA = 25 °C,
after trimming
T
VLVDHV3H
CC T LVDHV3 low voltage detector high threshold
VLVDHV3L
CC P LVDHV3 low voltage detector low threshold
2.6
—
2.9
VLVDHV5H
CC T LVDHV5 low voltage detector high threshold
—
—
4.5
VLVDHV5L
CC P LVDHV5 low voltage detector low threshold
3.8
—
4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold
1.08
—
1.15
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold
1.08
—
1.14
1
4.10
V
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Low voltage domain power consumption
Table 23 provides DC electrical characteristics for significant application modes. These values are indicative values; actual
consumption depends on the application.
Table 23. Low voltage power domain electrical characteristics
Symbol
C
Typ
Max
—
115
1403
mA
fCPU = 8 MHz
—
7
—
mA
fCPU = 16 MHz
—
18
—
T
fCPU = 32 MHz
—
29
—
P
fCPU = 48 MHz
—
40
—
fCPU = 64 MHz
—
51
—
Slow internal RC oscillator TA = 25 °C
(128 kHz) running
TA = 125 °C
—
8
15
—
14
25
—
180
7008
D
Slow internal RC oscillator TA = 25 °C
(128 kHz) running
TA = 55 °C
—
500
—
D
TA = 85 °C
—
1
—
D
TA = 105 °C
—
2
—
P
TA = 125 °C
—
4.5
128
CC D RUN mode maximum
average current
IDDRUN4
CC T RUN mode typical average
current5
T
P
CC C HALT mode
current6
P
IDDSTOP
Unit
Min
IDDMAX2
IDDHALT
Value
Conditions1
Parameter
CC P STOP mode current
7
—
mA
µA
mA
MPC5604B/C Microcontroller Data Sheet, Rev. 8
56
Freescale Semiconductor
Electrical characteristics
Table 23. Low voltage power domain electrical characteristics (continued)
Symbol
IDDSTDBY2
IDDSTDBY1
C
Parameter
Value
Conditions1
Unit
Min
Typ
Max
CC P STANDBY2 mode current9 Slow internal RC oscillator TA = 25 °C
(128 kHz) running
D
TA = 55 °C
—
30
100
—
75
—
D
TA = 85 °C
—
180
—
D
TA = 105 °C
—
315
—
P
TA = 125 °C
—
560
1700
Slow internal RC oscillator TA = 25 °C
(128 kHz) running
TA = 55 °C
—
20
60
—
45
—
D
TA = 85 °C
—
100
—
D
TA = 105 °C
—
165
—
D
TA = 125 °C
—
280
900
CC T STANDBY1 mode
current10
D
µA
µA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Running consumption is given on voltage regulator supply (VDDREG). IDDMAX is composed of three components:
IDDMAX = IDD(vdd_bv) + IDD(vdd_hv) + IDD(Vdd_hv_adc). It does not include a fourth component linked to I/Os
toggling which is highly dependent on the application. The given value is thought to be a worst case value with all
peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be
noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce
peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when
possible.
3 Higher current may be sinked by device during power-up and standby exit. please refer to in rush current on Table 21.
4 RUN current measured with typical application with accesses on both flash and RAM.
5 Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and
LIN in loop back mode, DSPi as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and
running at max frequency, periodic SW/WDG timer reset enabled.
6 Data Flash Power Down. Code Flash in Low Power. RC-osc128kHz & RC-OSC 16MHz on. 10MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON
(16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20kHz, instance: 1 clock gated. DSPI: instance: 0
(clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but not conversion except 2 analogue
watchdog
7
Only for the “P” classification: No clock, RC 16MHz off, RC128kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All
possible peripherals off and clock gated. Flash in power down mode.
8 When going from RUN to STOP mode and the core consumption is > 6 mA , it is normal operation for the main
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32kB RAM on, device configured for minimum
consumption, all possible modules switched-off.
10
ULPreg on, HP/LPVreg off, 8kB RAM on, device configured for minimum consumption, all possible modules
switched-off.
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
57
Electrical characteristics
4.11
Flash memory electrical characteristics
4.11.1
Program/Erase characteristics
Table 24 shows the program and erase characteristics.
Table 24. Program and erase specifications
Value
Symbol
C
Parameter
Tdwprogram CC C Double word (64 bits) program time4
Unit
Min
Typ1
Initial
max2
Max3
—
22
50
500
µs
T16Kpperase
16 KB block pre-program and erase time
—
300
500
5000
ms
T32Kpperase
32 KB block pre-program and erase time
—
400
600
5000
ms
T128Kpperase
128 KB block pre-program and erase time
—
800
1300
7500
ms
—
—
30
30
µs
CC D Erase Suspend Latency
Tesus
1
Typical program and erase times assume nominal supply values and operation at 25 °C.
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
4 Actual hardware programming times. This does not include software overhead.
2
Table 25. Flash module life
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
—
—
cycles
P/E
CC C Number of program/erase cycles per
block for 16 KB blocks over the
operating temperature range (TJ)
—
100,000
P/E
CC C Number of program/erase cycles per
block for 32 KB blocks over the
operating temperature range (TJ)
—
10,000 100,000
—
cycles
P/E
CC C Number of program/erase cycles per
block for 128 KB blocks over the
operating temperature range (TJ)
—
1,000
100,000
—
cycles
Blocks with 0–1,000 P/E
cycles
20
—
—
years
Blocks with
1,001–10,000 P/E
cycles
10
—
—
years
Blocks with
10,001–100,000 P/E
cycles
5
—
—
years
Retention CC C Minimum data retention at 85 °C
average ambient temperature1
MPC5604B/C Microcontroller Data Sheet, Rev. 8
58
Freescale Semiconductor
Electrical characteristics
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating
temperature range.
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results.
Some units will experience single bit corrections throughout the life of the product with no impact to product
reliability.
Table 26. Flash read access timing
Symbol
fREAD
1
C
Parameter
Conditions1
Max
Unit
2 wait states
64
MHz
C
1 wait state
40
C
0 wait states
20
CC P Maximum frequency for Flash reading
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
59
Electrical characteristics
4.11.2
Flash power supply DC characteristics
Table 27 shows the power supply DC characteristics on external supply.
Table 27. Code Flash power supply DC electrical characteristics
Symbol
C
Parameter
IFREAD2 CC D Sum of the current consumption on
VDDHV and VDDBV on read access
IFMOD2 CC D Sum of the current consumption on
VDDHV and VDDBV on matrix
modification (program/erase)
IFLPW
IFPWD
CC D Sum of the current consumption on
VDDHV and VDDBV
CC D Sum of the current consumption on
VDDHV and VDDBV
Value
Conditions1
Unit
Min
Typ
Max
Code Flash module read
fCPU = 64 MHz3
—
15
33
Data Flash module read
fCPU = 64 MHz3
—
15
33
Program/Erase on-going while
reading Code Flash registers
fCPU = 64 MHz3
—
15
33
Program/Erase on-going while
reading Data Flash registers
fCPU = 64 MHz3
—
15
33
during Code Flash low-power
mode
—
—
900
during Data Flash low-power
mode
—
—
900
during Code Flash power-down
mode
—
—
150
during Data Flash power-down
mode
—
—
150
mA
mA
µA
µA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
This value is only relative to the actual duration of the read cycle
3 f
CPU 64 MHz can be achieved only at up to 105 °C
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
60
Freescale Semiconductor
Electrical characteristics
4.11.3
Start-up/Switch-off timings
Table 28. Start-up time/Switch-off time
Symbol
C
Parameter
Value
Conditions1
Unit
Min
Typ
Max
Code Flash
—
—
125
Data Flash
—
—
125
CC T Delay for Flash module to exit low-power
mode
T
Code Flash
—
—
0.5
Data Flash
—
—
0.5
CC T Delay for Flash module to exit power-down
mode
T
Code Flash
—
—
30
Data Flash
—
—
30
TFLALPENTRY CC T Delay for Flash module to enter low-power
mode
T
Code Flash
—
—
0.5
Data Flash
—
—
0.5
TFLAPDENTRY CC T Delay for Flash module to enter power-down
T mode
Code Flash
—
—
1.5
Data Flash
—
—
1.5
TFLARSTEXIT
CC T Delay for Flash module to exit reset mode
T
TFLALPEXIT
TFLAPDEXIT
1
µs
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
61
Electrical characteristics
4.12
Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.12.1
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in
particular.
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC
level requested for his application.
•
Software recommendations:The software flowchart must include the management of runaway conditions such as:
— Corrupted program counter
— Unexpected reset
— Critical data corruption (control registers...)
Prequalification trials:Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the
software can be hardened to prevent unrecoverable errors occurring.
•
4.12.2
Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1
standard, which specifies the general conditions for EMI measurements.
Table 29. EMI radiated emission measurement1,2
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
—
0.150
—
fCPU SR — Operating frequency
—
—
64
—
MHz
VDD_LV SR — LV operating voltages
—
—
1.28
—
V
No PLL frequency
VDD = 5 V, TA = 25 °C,
modulation
LQFP144 package
Test conforming to IEC 61967-2,
± 2% PLL frequency
fOSC = 8 MHz/fCPU = 64 MHz
modulation
—
—
18
dBµV
—
—
14
dBµV
—
SR — Scan range
SEMI CC T Peak level
1
2
Max
1000 MHz
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your
local marketing representative.
4.12.3
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine
its performance in terms of electrical sensitivity.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
62
Freescale Semiconductor
Electrical characteristics
4.12.3.1
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
Table 30. ESD absolute maximum ratings1 2
Symbol
C
Ratings
Conditions
Class
Max value
Unit
V
VESD(HBM) CC T Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
VESD(MM) CC T Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
VESD(CDM) CC T Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011
C3A
500
750 (corners)
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
4.12.3.2
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
•
•
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 31. Latch-up results
Symbol
LU
CC
C
Parameter
T Static latch-up class
Conditions
TA = 125 °C
conforming to JESD 78
Class
II level A
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
63
Electrical characteristics
4.13
Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and
provides an example of a connection for an oscillator or a resonator.
Table 32 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.
Figure 12. Crystal oscillator and resonator connection scheme
EXTAL
C1
Crystal
EXTAL
XTAL
C2
DEVICE
VDD
I
R
EXTAL
XTAL
Resonator
DEVICE
XTAL
DEVICE
Note: XTAL/EXTAL must not be directly used to drive external circuits.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
64
Freescale Semiconductor
Electrical characteristics
Table 32. Crystal description
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)1
Shunt
capacitance
between
xtalout
and xtalin
C02 (pF)
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR 
4
NX8045GB
300
2.68
591.0
21
2.93
8
NX5032GA
300
2.46
160.7
17
3.01
10
150
2.93
86.6
15
2.91
12
120
3.11
56.5
15
2.93
16
120
3.90
25.3
10
3.00
1
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2 The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,
package, etc.).
Figure 13. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
S_MTRANS bit (ME_GS register)
‘1’
‘0’
VXTAL
1/fFXOSC
VFXOSC
90%
VFXOSCOP
10%
TFXOSCSU
valid internal clock
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
65
Electrical characteristics
Table 33. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol
C
Parameter
Typ
Max
SR — Fast external crystal
oscillator frequency
—
4.0
—
16.0
MHz
gmFXOSC
CC C Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2
—
8.2
mA/V
CC P
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0
—
7.4
CC C
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7
—
9.7
CC C
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5
—
9.2
CC T Oscillation amplitude at
EXTAL
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
1.3
—
—
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
1.3
—
—
—
—
0.95
VFXOSCOP CC P Oscillation operating point
2
Unit
Min
fFXOSC
VFXOSC
1
Value
Conditions1
V
V
IFXOSC,2
CC T Fast external crystal
oscillator consumption
—
—
2
3
mA
TFXOSCSU
CC T Fast external crystal
oscillator start-up time
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
—
—
6
ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
—
—
1.8
VIH
SR P Input high level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.65VDD
—
VDD+0.4
V
VIL
SR P Input low level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.4
—
0.35VDD
V
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Stated values take into account only analog module consumption but not the digital contributor (clock tree and
enabled peripherals)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
66
Freescale Semiconductor
Electrical characteristics
4.14
Slow external crystal oscillator (32 kHz) electrical characteristics
The device provides a low power oscillator/resonator driver.
Figure 14. Crystal oscillator and resonator connection scheme
OSC32K_EXTAL
OSC32K_EXTAL
Crystal
Resonator
C1
OSC32K_XTAL
OSC32K_XTAL
C2
DEVICE
DEVICE
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
Figure 15. Equivalent circuit of a quartz crystal
C0
C1
Crystal
Cm
C2
Rm
C1
Lm
C2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
67
Electrical characteristics
Table 34. Crystal motional characteristics1
Value
Symbol
Parameter
Conditions
Unit
Min
Typ
Max
Lm
Motional inductance
—
—
11.796
—
KH
Cm
Motional capacitance
—
—
2
—
fF
—
18
—
28
pF
k
C1/C2 Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground2
Rm3
Motional resistance
AC coupled @ C0 = 2.85 pF4
—
—
65
4
AC coupled @ C0 = 4.9 pF
—
—
50
AC coupled @ C0 = 7.0 pF4
—
—
35
4
—
—
30
AC coupled @ C0 = 9.0 pF
1
The crystal used is Epson Toyocom MC306.
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to
ground. It includes all the parasitics due to board traces, crystal and package.
3 Maximum ESR (R ) of the crystal is 50 k
m
4
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins
2
Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics
OSCON bit (OSC_CTL register)
1
0
VOSC32K_XTAL
1/fSXOSC
VSXOSC
90%
10%
TSXOSCSU
valid internal clock
MPC5604B/C Microcontroller Data Sheet, Rev. 8
68
Freescale Semiconductor
Electrical characteristics
Table 35. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol
C
Value
Conditions1
Parameter
Unit
Min
Typ
Max
fSXOSC
SR — Slow external crystal oscillator
frequency
—
32
32.768
40
kHz
VSXOSC
CC T Oscillation amplitude
—
—
2.1
—
V
—
—
2.5
—
µA
ISXOSCBIAS CC T Oscillation bias current
ISXOSC
CC T Slow external crystal oscillator
consumption
—
—
—
8
µA
TSXOSCSU
CC T Slow external crystal oscillator
start-up time
—
—
—
22
s
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal
1
2
4.15
FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main
oscillator driver.
Table 36. FMPLL electrical characteristics
Symbol
C
Value
Conditions1
Parameter
Unit
Min
Typ
Max
fPLLIN
SR — FMPLL reference clock2
—
4
—
64
MHz
PLLIN
SR — FMPLL reference clock duty
cycle2
—
40
—
60
%
—
16
—
64
MHz
—
256
—
512
MHz
—
245
—
533
fPLLOUT CC D FMPLL output clock frequency
fVCO3
CC P VCO frequency without
frequency modulation
C VCO frequency with frequency
modulation
fCPU
SR — System clock frequency
—
—
—
64
MHz
fFREE
CC P Free-running frequency
—
20
—
150
MHz
tLOCK
CC P FMPLL lock time
40
100
µs
tLTJIT CC — FMPLL long term jitter
IPLL
CC C FMPLL consumption
Stable oscillator (fPLLIN = 16 MHz)
fPLLIN = 16 MHz (resonator),
fPLLCLK @ 64 MHz, 4000 cycles
—
—
10
ns
TA = 25 °C
—
—
4
mA
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3
Frequency modulation is considered ± 4%
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
69
Electrical characteristics
4.16
Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.
Table 37. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol
fFIRC
C
Parameter
CC P Fast internal RC oscillator high TA = 25 °C, trimmed
frequency
SR —
—
IFIRCRUN2, CC T Fast internal RC oscillator high TA = 25 °C, trimmed
frequency current in running
mode
IFIRCPWD
Value
Conditions1
Typ
Max
—
16
—
12
MHz
20
—
—
200
µA
—
—
10
µA
sysclk = off
—
500
—
µA
sysclk = 2 MHz
—
600
—
sysclk = 4 MHz
—
700
—
sysclk = 8 MHz
—
900
—
sysclk = 16 MHz
—
1250
—
CC D Fast internal RC oscillator high TA = 125 °C
frequency current in power
down mode
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C
frequency and system clock
current in stop mode
Unit
Min
TFIRCSU
CC C Fast internal RC oscillator
start-up time
VDD = 5.0 V ± 10%
—
1.1
2.0
µs
FIRCPRE
CC T Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C
1
—
+1
%
FIRCTRIM CC T Fast internal RC oscillator
trimming step
TA = 25 °C
—
1.6
5
—
FIRCVAR
1
2
4.17
CC P Fast internal RC oscillator
variation in overtemperature
and supply with respect to fFIRC
at TA = 25 °C in high-frequency
configuration
—
%
+5
%
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
70
Freescale Semiconductor
Electrical characteristics
Table 38. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol
1
Parameter
Value
Conditions1
Unit
Min
Typ
Max
—
128
—
100
—
150
—
—
5
µA
CC P Slow internal RC oscillator low
frequency
SR —
TA = 25 °C, trimmed
ISIRC2,
CC C Slow internal RC oscillator low
frequency current
TA = 25 °C, trimmed
TSIRCSU
CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10%
time
—
8
12
µs
SIRCPRE
CC C Slow internal RC oscillator precision TA = 25 °C
after software trimming of fSIRC
2
—
+2
%
SIRCTRIM
CC C Slow internal RC oscillator trimming
step
—
2.7
—
SIRCVAR
CC C Slow internal RC oscillator variation High frequency configuration
in temperature and supply with
respect to fSIRC at TA = 55 °C in high
frequency configuration
10
—
+10
fSIRC
2
C
—
—
kHz
%
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
71
Electrical characteristics
4.18
4.18.1
ADC electrical characteristics
Introduction
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.
Figure 17. ADC characteristic and error definitions
Offset Error OSE
Gain Error GE
1023
1022
1021
1020
1019
1 LSB ideal = VDD_ADC / 1024
1018
(2)
code out
7
(1)
6
(1) Example of an actual transfer curve
5
(2) The ideal transfer curve
(5)
(3) Differential non-linearity error (DNL)
4
(4) Integral non-linearity error (INL)
(4)
(5) Center of a step of the actual transfer curve
3
(3)
2
1
1 LSB (ideal)
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023
Vin(A) (LSBideal)
Offset Error OSE
4.18.2
Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as
MPC5604B/C Microcontroller Data Sheet, Rev. 8
72
Freescale Semiconductor
Electrical characteristics
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources
charge during the sampling phase, when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal
(bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path
to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ
= 1 / (fc*CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit
must be designed to respect the Equation 4:
Eqn. 4
R S + R F + R L + R SW + R AD
V A  ---------------------------------------------------------------------------  1
--- LSB
R EQ
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
73
Electrical characteristics
Equation 4 generates a constraint for external network design, in particular on a resistive path. Internal switch resistances (RSW
and RAD) can be neglected with respect to external resistances.
Figure 18. Input equivalent circuit (precise channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
Filter
RS
Current Limiter
RF
VA
Channel
Selection
Sampling
RSW1
RAD
RL
CF
CP1
CP2
CS
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL
Current Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
Figure 19. Input equivalent circuit (extended channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
RS
VA
Filter
RF
RL
CF
RS
RF
CF
RL
RSW
RAD
CP
CS
Current Limiter
CP1
Channel
Selection
Extended
Switch
Sampling
RSW1
RSW2
RAD
CP3
CP2
CS
Source Impedance
Filter Resistance
Filter Capacitance
Current Limiter Resistance
Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
Sampling Switch Impedance
Pin Capacitance (three contributions, CP1, CP2 and CP3)
Sampling Capacitance
MPC5604B/C Microcontroller Data Sheet, Rev. 8
74
Freescale Semiconductor
Electrical characteristics
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are
initially charged at the source voltage VA (refer to the equivalent circuit in Figure 18): A charge sharing phenomenon is installed
when the sampling phase is started (A/D switch close).
Figure 20. Transient behavior during sampling phase
Voltage transient on CS
VCS
VA
VA2
V <0.5 LSB
1
2
1 < (RSW + RAD) CS << TS
2 = RL (CS + CP1 + CP2)
VA1
TS
t
In particular two different transient periods can be distinguished:
1.
A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be
faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series,
and the time constant is
CP  CS
 1 =  R SW + R AD   --------------------CP + CS
Eqn. 5
Equation 5can again be simplified considering only CS as an additional worst condition. In reality, the transient is
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS
is always much longer than the internal time constant:
Eqn. 6
 1   R SW + R AD   C S « T S
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance
according to Equation 7:
Eqn. 7
V A1   C S + C P1 + C P2  = V A   C P1 + C P2 
2.
A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance
RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality
would be faster), the time constant is:
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
75
Electrical characteristics
Eqn. 8
 2  R L   C S + C P1 + C P2 
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed
well before the end of sampling time TS, a constraints on RL sizing is obtained:
Eqn. 9
10   2 = 10  R L   C S + C P1 + C P2   TS
Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source
impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2
(at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge
balance assuming now CS already charged at VA1):
Eqn. 10
VA2   C S + C P1 + C P2 + C F  = V A  C F + V A1   C P1 + C P2 + C S 
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to
provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of
the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing.
Figure 21. Spectral representation of input signal
Analog source bandwidth (VA)
Noise
TC < 2 RFCF (conversion rate vs. filter pole)
fF = f0 (anti-aliasing filtering condition)
2 f0 < fC (Nyquist)
f0
f
Anti-aliasing filter (fF = RC filter pole)
fF
f
Sampled signal spectrum (fC = conversion rate)
f0
fC
f
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF),
according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater
than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS,
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a
specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the
sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the
sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage
drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled
voltage on CS:
MPC5604B/C Microcontroller Data Sheet, Rev. 8
76
Freescale Semiconductor
Electrical characteristics
Eqn. 11
VA
C P1 + C P2 + C F
------------ = -------------------------------------------------------V A2
C P1 + C P2 + C F + C S
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of
half a count, a constraint is evident on CF value:
Eqn. 12
C F  2048  C S
4.18.3
ADC electrical characteristics
Table 39. ADC input leakage current
Value
Symbol C
Parameter
Conditions
Unit
Min
Typ
Max
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin
—
1
—
C
TA = 25 °C
—
1
—
C
TA = 105 °C
—
8
200
P
TA = 125 °C
—
45
400
nA
Table 40. ADC conversion characteristics
Symbol
C
Parameter
Value
Conditions1
Unit
Min
Typ
Max
VSS_ADC SR — Voltage on
VSS_HV_ADC (ADC
reference) pin with
respect to ground
(VSS)2
—
0.1
—
0.1
V
VDD_ADC SR — Voltage on
VDD_HV_ADC pin
(ADC reference) with
respect to ground
(VSS)
—
VDD0.1
—
VDD+0.1
V
VAINx
SR — Analog input voltage3
—
VSS_ADC0.1
—
VDD_ADC+0.1
V
fADC
SR — ADC analog frequency
—
6
—
32 + 4%
MHz
ADC_SYS SR — ADC digital clock duty ADCLKSEL = 14
cycle (ipg_clk)
45
—
55
%
IADCPWD SR — ADC0 consumption in
power down mode
—
—
—
50
µA
IADCRUN SR — ADC0 consumption in
running mode
—
—
—
4
mA
tADC_PU SR — ADC power up delay
—
—
—
1.5
µs
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
77
Electrical characteristics
Table 40. ADC conversion characteristics (continued)
Symbol
C
Parameter
tADC_S CC T Sample time5
tADC_C CC P Conversion time6
Value
Conditions1
Unit
Min
Typ
fADC = 32 MHz,
INPSAMP = 17
0.5
—
fADC = 6 MHz,
INPSAMP = 255
—
—
fADC = 32 MHz,
INPCMP = 2
0.625
—
Max
µs
42
µs
CS
CC D ADC input sampling
capacitance
—
—
—
3
pF
CP1
CC D ADC input pin
capacitance 1
—
—
—
3
pF
CP2
CC D ADC input pin
capacitance 2
—
—
—
1
pF
CP3
CC D ADC input pin
capacitance 3
—
—
—
1
pF
RSW1
CC D Internal resistance of
analog source
—
—
—
3
k
RSW2
CC D Internal resistance of
analog source
—
—
—
2
k
RAD
CC D Internal resistance of
analog source
—
—
—
2
k
IINJ
SR — Input current Injection Current
injection on one
ADC input,
different from
the converted
one
VDD =
3.3 V ± 10%
5
—
5
mA
VDD =
5.0 V ± 10%
5
—
5
| INL |
CC T Absolute value for
integral non-linearity
No overload
—
0.5
1.5
LSB
| DNL | CC T Absolute differential
non-linearity
No overload
—
0.5
1.0
LSB
| OFS | CC T Absolute offset error
—
—
0.5
—
LSB
| GNE | CC T Absolute gain error
—
—
0.6
—
LSB
CC P Total unadjusted error7 Without current injection
for precise channels,
T
With current injection
input only pins
2
0.6
2
LSB
CC T Total unadjusted error7 Without current injection
for extended channel
T
With current injection
3
TUEp
TUEx
3
4
3
1
3
LSB
4
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Analog and digital VSS must be common (to be tied together externally).
3
VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
78
Freescale Semiconductor
Electrical characteristics
4
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured
by internal divider by 2.
5
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the
end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values
for the sample clock tADC_S depend on programming.
6 This parameter does not include the sample time t
ADC_S, but only the time for determining the digital result and the
time to load the result’s register with the conversion result.
7
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
4.19
On-chip peripherals
4.19.1
Current consumption
Table 41. On-chip peripherals current consumption1
Value
Symbol
C
Parameter
Conditions
Unit
Typ
IDD_BV(CAN)
IDD_BV(eMIOS)
CC T CAN (FlexCAN) supply 500 Kbps
current on VDD_BV
125 Kbps
CC T eMIOS supply current
on VDD_BV
Total (static + dynamic)
consumption:
• FlexCAN in loop-back
mode
• XTAL@ 8MHz used as
CAN engine clock
source
• Message sending period
is 580 µs
Static consumption:
• eMIOS channel OFF
• Global prescaler enabled
Dynamic consumption:
• It does not change varying the
frequency (0.003 mA)
IDD_BV(SCI)
CC T SCI (LINFlex) supply
current on VDD_BV
Total (static + dynamic) consumption:
• LIN mode
• Baudrate: 20 Kbps
IDD_BV(SPI)
CC T SPI (DSPI) supply
current on VDD_BV
Ballast static consumption (only
clocked)
Ballast dynamic consumption
(continuous communication):
• Baudrate: 2 Mbit
• Trasmission every 8 µs
• Frame: 16 bits
8 * fperiph + 85
µA
8 * fperiph + 27
29 * fperiph
3
5 * fperiph + 31
1
16 * fperiph
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
79
Electrical characteristics
Table 41. On-chip peripherals current consumption1 (continued)
Value
Symbol
C
Parameter
Conditions
Unit
Typ
IDD_BV(ADC)
CC T ADC supply current on VDD = 5.5 V Ballast static consumption
VDD_BV
(no conversion)
VDD = 5.5 V
41 * fperiph
Ballast dynamic
consumption (continuous
conversion)
5 * fperiph
IDD_HV_ADC(ADC) CC T ADC supply current on VDD = 5.5 V Analog static consumption
VDD_HV_ADC
(no conversion)
2 * fperiph
IDD_HV(FLASH)
IDD_HV(PLL)
1
µA
VDD = 5.5 V
Analog dynamic
consumption (continuous
conversion)
75 * fperiph + 32
VDD = 5.5 V
—
8.21
mA
CC T PLL supply current on VDD = 5.5 V
VDD_HV
—
3 * fperiph
µA
CC T CFlash + DFlash
supply current on
VDD_HV_ADC
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz
MPC5604B/C Microcontroller Data Sheet, Rev. 8
80
Freescale Semiconductor
81
4.19.2
DSPI characteristics
DSPI0/DSPI1
No.
1
Symbol
tSCK
C
DSPI2
Parameter
Unit
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Min
Typ
Max
Min
Typ
Max
Master mode
(MTFE = 0)
125
—
—
333
—
—
D
Slave mode
(MTFE = 0)
125
—
—
333
—
—
D
Master mode
(MTFE = 1)
83
—
—
125
—
—
D
Slave mode
(MTFE = 1)
83
—
—
125
—
—
—
—
fCPU
—
—
fCPU
MHz
—
—
153
ns
SR D SCK cycle time
ns
—
fDSPI
—
tCSC
CC D Internal delay between pad Master mode
associated to SCK and pad
associated to CSn in
master mode for CSn1->0
—
—
1302
—
tASC
CC D Internal delay between pad Master mode
associated to SCK and pad
associated to CSn in
master mode for CSn1->1
—
—
1303
—
—
1303
ns
SR D DSPI digital controller frequency
2
tCSCext4 SR D CS to SCK delay
Slave mode
32
—
—
32
—
—
ns
3
tASCext5 SR D After SCK delay
Slave mode
1/fDSPI + 5
—
—
1/fDSPI + 5
—
—
ns
—
tSCK/2
—
—
tSCK/2
—
ns
4
tSDC
CC D SCK duty cycle
Master mode
SR D
Slave mode
tSCK/2
—
—
tSCK/2
—
—
Freescale Semiconductor
5
tA
SR D Slave access time
Slave mode
—
—
1/fDSPI + 70
—
—
1/fDSPI + 130
ns
6
tDI
SR D Slave SOUT disable time
Slave mode
7
—
—
7
—
—
ns
9
tSUI
SR D Data setup time for inputs Master mode
43
—
—
145
—
—
ns
Slave mode
5
—
—
5
—
—
Master mode
0
—
—
0
—
—
Slave mode
26
—
—
26
—
—
10
tHI
SR D Data hold time for inputs
ns
Electrical characteristics
Table 42. DSPI characteristics1
82
Table 42. DSPI characteristics1 (continued)
11
Symbol
tSUO7
C
Unit
CC D Data valid after SCK edge Master mode
Slave mode
12
tHO7
CC D Data hold time for outputs Master mode
Slave mode
1
2
MPC5604B/C Microcontroller Data Sheet, Rev. 8
3
4
5
6
7
DSPI2
Parameter
Min
Typ
Max
Min
Typ
Max
—
—
32
—
—
50
—
—
52
—
—
160
0
—
—
0
—
—
8
—
—
13
—
—
ns
ns
Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns.
Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK
starts before CSn is asserted. DSPI2 has only SLOW SCK available.
Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay
between internal CS and internal SCK must be higher than tCSC to ensure positive tCSCext.
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between
internal CS and internal SCK must be higher than tASC to ensure positive tASCext.
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.
SCK and SOUT configured as MEDIUM pad
Electrical characteristics
DSPI0/DSPI1
No.
Freescale Semiconductor
Electrical characteristics
Figure 22. DSPI classic SPI timing – master, CPHA = 0
2
3
PCSx
1
4
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Last Data
Data
12
SOUT
First Data
11
Data
Last Data
Note: Numbers shown reference Table 42
Figure 23. DSPI classic SPI timing – master, CPHA = 1
PCSx
SCK Output
(CPOL = 0)
10
SCK Output
(CPOL = 1)
9
SIN
Data
First Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Note: Numbers shown reference Table 42
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
83
Electrical characteristics
Figure 24. DSPI classic SPI timing – slave, CPHA = 0
3
2
SS
1
4
SCK Input
(CPOL = 0)
4
SCK Input
(CPOL = 1)
5
First Data
SOUT
9
6
Data
Last Data
Data
Last Data
10
First Data
SIN
11
12
Note: Numbers shown reference Table 42.
Figure 25. DSPI classic SPI timing – slave, CPHA = 1
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Note: Numbers shown reference Table 42
MPC5604B/C Microcontroller Data Sheet, Rev. 8
84
Freescale Semiconductor
Electrical characteristics
Figure 26. DSPI modified transfer format timing – master, CPHA = 0
3
PCSx
4
1
2
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
11
First Data
Last Data
Data
Note: Numbers shown reference Table 42.
Figure 27. DSPI modified transfer format timing – master, CPHA = 1
PCSx
SCK Output
(CPOL = 0)
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Note: Numbers shown reference Table 42
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
85
Electrical characteristics
Figure 28. DSPI modified transfer format timing – slave, CPHA = 0
3
2
SS
1
SCK Input
(CPOL = 0)
4
4
SCK Input
(CPOL = 1)
First Data
SOUT
Data
6
Last Data
10
9
Data
First Data
SIN
12
11
5
Last Data
Note: Numbers shown reference Table 42
Figure 29. DSPI modified transfer format timing – slave, CPHA = 1
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
12
First Data
SOUT
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Note: Numbers shown reference Table 42
MPC5604B/C Microcontroller Data Sheet, Rev. 8
86
Freescale Semiconductor
Electrical characteristics
4.19.3
Nexus characteristics
Table 43. Nexus characteristics
Value
No.
Symbol
C
Parameter
Unit
Min
Typ
Max
1
tTCYC
CC D TCK cycle time
64
—
—
ns
2
tMCYC
CC D MCKO cycle time
32
—
—
ns
3
tMDOV
CC D MCKO low to MDO data valid
—
—
8
ns
4
tMSEOV
CC D MCKO low to MSEO_b data valid
—
—
8
ns
5
tEVTOV
CC D MCKO low to EVTO data valid
—
—
8
ns
10
tNTDIS
CC D TDI data setup time
15
—
—
ns
tNTMSS
CC D TMS data setup time
15
—
—
ns
tNTDIH
CC D TDI data hold time
5
—
—
ns
tNTMSH
CC D TMS data hold time
5
—
—
ns
11
12
tTDOV
CC D TCK low to TDO data valid
35
—
—
ns
13
tTDOI
CC D TCK low to TDO data invalid
6
—
—
ns
Figure 30. Nexus TDI, TMS, TDO timing
TCK
10
11
TMS, TDI
12
TDO
Note: Numbers shown reference Table 43
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
87
Electrical characteristics
4.19.4
JTAG characteristics
Table 44. JTAG characteristics
Value
No.
Symbol
C
Parameter
Unit
Min
Typ
Max
1
tJCYC
CC
D TCK cycle time
64
—
—
ns
2
tTDIS
CC
D TDI setup time
15
—
—
ns
3
tTDIH
CC
D TDI hold time
5
—
—
ns
4
tTMSS
CC
D TMS setup time
15
—
—
ns
5
tTMSH
CC
D TMS hold time
5
—
—
ns
6
tTDOV
CC
D TCK low to TDO valid
—
—
33
ns
7
tTDOI
CC
D TCK low to TDO invalid
6
—
—
ns
Figure 31. Timing diagram – JTAG boundary scan
TCK
2/4
DATA INPUTS
3/5
INPUT DATA VALID
6
DATA OUTPUTS
OUTPUT DATA VALID
7
DATA OUTPUTS
Note: Numbers shown reference Table 44
MPC5604B/C Microcontroller Data Sheet, Rev. 8
88
Freescale Semiconductor
Package characteristics
5
Package characteristics
5.1
Package mechanical data
5.1.1
64 LQFP
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
89
Package characteristics
Figure 32. 64 LQFP package mechanical drawing (1 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
90
Freescale Semiconductor
Package characteristics
Figure 33. 64 LQFP package mechanical drawing (2 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
91
Package characteristics
Figure 34. 64 LQFP package mechanical drawing (3 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
92
Freescale Semiconductor
Package characteristics
5.1.2
100 LQFP
Figure 35. 100 LQFP package mechanical drawing (1 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
93
Package characteristics
Figure 36. 100 LQFP package mechanical drawing (2 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
94
Freescale Semiconductor
Package characteristics
Figure 37. 100 LQFP package mechanical drawing (3 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
95
Package characteristics
5.1.3
144 LQFP
Figure 38. 144 LQFP package mechanical drawing (1 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
96
Freescale Semiconductor
Package characteristics
Figure 39. 144 LQFP package mechanical drawing (2 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
97
Package characteristics
5.1.4
208 MAPBGA
Figure 40. 208 MAPBGA package mechanical drawing (1 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
98
Freescale Semiconductor
Package characteristics
Figure 41. 208 MAPBGA package mechanical drawing (2 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
99
Ordering information
6
Ordering information
Figure 42. Commercial product code structure
Example code:
M
PC
56
0
4
B
F1
M
LL
4
R
Qualification Status
PowerPC Core
Automotive Platform
Core Version
Flash Size (core dependent)
Product
Fab and Mask Indicator
Temperature spec.
Package Code
Frequency
R = Tape & Reel (blank if Tray)
Qualification Status
M = MC status
S = Auto qualified
P = PC status
Flash Size (z0 core)
2 = 256 KB
3 = 384 KB
4 = 512 KB
Temperature spec.
C = -40 to 85 °C
V = -40 to 105 °C
M = -40 to 125 °C
Automotive Platform
56 = PPC in 90nm
Product
B = Body
C = Gateway
Package Code
LH = 64 LQFP
LL = 100 LQFP
LQ = 144 LQFP
MG = 208 MAPBGA1
Core Version
0 = e200z0
1
Fab and Mask Indicator
F = ATMC
1 = Maskset Revision
Frequency
4 = Up to 48 MHz
6 = Up to 64 MHz
208 MAPBGA available only as development package for Nexus2+
7
Document revision history
Table 45 summarizes revisions to this document.
Table 45. Revision history
Revision
1
Date
Description of Changes
04-Apr-2008 Initial release.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
100
Freescale Semiconductor
Document revision history
Table 45. Revision history (continued)
Revision
2
Date
Description of Changes
06-Mar-2009 Made minor editing and formatting changes to improve readability
Harmonized oscillator naming throughout document
Features:
—Replaced 32 KB with 48 KB as max SRAM size
—Updated descripiton of INTC
—Changed max number of GPIO pins from 121 to 123
Updated Section 1.2, Description
Updated Table 2
Added Section 2, Block diagram
Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these
are found in the device reference manual)
Updated Figure 5:
—Replaced VPP with VSS_HV on pin 18
—Added MA[1] as AF3 for PC[10] (pin 28)
—Added MA[0] as AF2 for PC[3] (pin 116)
—Changed description for pin 120 to PH[10] / GPIO[122] / TMS
—Changed description for pin 127 to PH[9] / GPIO[121] / TCK
—Replaced NMI[0] with NMI on pin 11
Updated Figure 4:
—Replaced VPP with VSS_HV on pin 14
—Added MA[1] as AF3 for PC[10] (pin 22)
—Added MA[0] as AF2 for PC[3] (pin 77)
—Changed description for pin 81 to PH[10] / GPIO[122] / TMS
—Changed description for pin 88 to PH[9] / GPIO[121] / TCK
—Removed E1UC[19] from pin 76
—Replaced [11] with WKUP[11] for PB[3] (pin 1)
—Replaced NMI[0] with NMI on pin 7
Updated Figure 6:
—Changed description for ball B8 from TCK to PH[9]
—Changed description for ball B9 from TMS to PH[10]
—Updated descriptions for balls R9 and T9
Added Section 4.2, Parameter classification and tagged parameters in tables where
appropriate
Added Section 4.3, NVUSRO register
Updated Table 5
Section 4.5, Recommended operating conditions: Added note on RAM data retention to
end of section
Updated Table 6 and Table 7
Added Section 4.6.1, Package thermal characteristics
Updated Section 4.6.2, Power considerations
Updated Figure 7
Updated Table 9, Table 10, Table 11, Table 12 and Table 13
Added Section 4.7.4, Output pin transition times
Updated Table 16
Updated Figure 8
Updated Table 18
Section 4.9.1, Voltage regulator electrical characteristics: Amended description of
LV_PLL
Figure 10: Exchanged position of symbols CDEC1 and CDEC2
Updated Table 19
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
101
Document revision history
Table 45. Revision history (continued)
Revision
Date
Description of Changes
2
06-Mar-2009 Added Figure 11
Updated Table 20 and Table 21
Updated Section 4.11, Flash memory electrical characteristics
Added Section 4.12, Electromagnetic compatibility (EMC) characteristics
Updated Section 4.13, Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
Updated Section 4.14, Slow external crystal oscillator (32 kHz) electrical characteristics
Updated Table 34, Table 35 and Table 36
Added Section 4.19, On-chip peripherals
Added Table 37
Updated Table 38
Updated Table 47
Added Section Appendix A, Abbreviations
4
06-Aug-2009 Updated Figure 6
Table 5
• VDD_ADC: changed min value for “relative to VDD“ condition
• VIN: changed min value for “relative to VDD“ condition
• ICORELV: added new row
Table 7
• TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part:
added new rows
• Changed capacitance value in footnote
Table 14
• MEDIUM configuration: added condition for PAD3V5V = 0
Updated Figure 10
Table 19
• CDEC1: changed min value
• IMREG: changed max value
• IDD_BV: added max value footnote
Table 20
• VLVDHV3H: changed max value
• VLVDHV3L: added max value
• VLVDHV5H: changed max value
• VLVDHV5L: added max value
Updated Table 21
Table 23
• Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“
Table 31
• IFXOSC: added typ value
Table 33
• VSXOSC: changed typ value
• TSXOSCSU: added max value footnote
Table 34
• tLTJIT: added max value
Updated Figure 36
MPC5604B/C Microcontroller Data Sheet, Rev. 8
102
Freescale Semiconductor
Document revision history
Table 45. Revision history (continued)
Revision
5
Date
Description of Changes
02-Nov-2009 In the “MPC5604B/C series block summary“ table, added a new row.
In the “Absolute maximum ratings” table, changed max value of VDD_BV, VDD_ADC, and
VIN.
In the ”Recommended operating conditions (3.3 V)” table, deleted min value of TVDD.
In the “Reset electrical characteristics“ table, changed footnotes 3 and 5.
In the “Voltage regulator electrical characteristics“ table:
• CREGn: changed max value.
• CDEC1: split into 2 rows.
• Updated voltage values in footnote 4
In the “Low voltage monitor electrical characteristics“ table:
• Updated column Conditions.
• VLVDLVCORL, VLVDLVBKPL: changed min/max value.
In the “Program and erase specifications“ table, added initial max valueof Tdwprogram.
In the “Flash module life“ table, changed min value for blocks with 100K P/E cycles
In the “Flash power supply DC electrical characteristics“ table:
• IFREAD, IFMOD: added typ value.
• Added footnote 1.
Added “ NVUSRO[WATCHDOG_EN] field description“ section.
Section 4.18: “ADC electrical characteristics“ has been moved up in hierarchy (it was
Section 4.18.5).
In the “ ADC conversion characteristics“ table, changed initial max value of RAD.
In the “On-chip peripherals current consumption“ table:
• Removed min/max from the heading.
• Changed unit of measurement and consequently rounded the values.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
103
Document revision history
Table 45. Revision history (continued)
Revision
6
Date
Description of Changes
15-Mar-2010 In the “Introduction” section, relocated a note.
In the “MPC5604B/C device comparison“ table, added footnote regarding SCI and CAN.
In the “Absolute maximum ratings“ table, removed the min value of VIN relative tio VDD.
In the ”Recommended operating conditions (3.3 V)” table:
• TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part:
added new rows.
• TVDD: made single row.
In the “LQFP thermal characteristics” table, added more rows.
Removed “208 MAPBGA thermal characteristics” table.
In the “I/O consuption“ table:
• Removed IDYNSEG row.
• Added “I/O weight “ table.
In the “Voltage regulator electrical characteristics“ table:
• Updated the values.
• Removed IVREGREF and IVREDLVD12.
• Added a note about IDD_BC.
In the “Low voltage monitor electrical characteristics“ table:
• Updated VPORH values.
• Updated VLVDLVCORL value.
Entirely updated the “Low voltage power domain electrical characteristics“ table.
In the “Program and erase specifications“ table, inserted Teslat row.
Entirely updated the “Flash power supply DC electrical characteristics“ table.
Entirely updated the “Start-up time/Switch-off time“ table.
In the “Crystal oscillator and resonator connection scheme“ figure, relocated a note.
In the ”Slow external crystal oscillator (32 kHz) electrical characteristics” table:
• Removed gmSXOSC row.
• Inserted values of ISXOSCBIAS.
Entirely updated the “Fast internal RC oscillator (16 MHz) electrical characteristics“ table.
In the “ADC conversion characteristics” table: updated the description of the conditions of
tADC_PU and tADC_S.
Entirely updated the “DSPI characteristics“ table.
In the “Orderable part number summary” table, modified some orderable part number.
Updated the “Commercial product code structure” figure.
Removed the note about the condition from “Flash read access timing“ table
Removed the notes that assert the values need to be confirmed before validation
Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin configuration”
Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP 144-pin
package mechanical drawing”
MPC5604B/C Microcontroller Data Sheet, Rev. 8
104
Freescale Semiconductor
Document revision history
Table 45. Revision history (continued)
Revision
Date
Description of Changes
7
05-Jul-2010
Added 64 LQFP package information
Updated the “Features“ section.
Figures “LQFP 100-pin configuration” and “LQFP 100-pin configuration”: removed
alternate function information
Added “Functional port pin descriptions” table
Added eDMA block in the “MPC5604B/C series block diagram” figure
Deleted the “NVUSRO[WATCHDOG_EN] field description“ section
In the ”Recommended operating conditions (3.3 V)” and ”Recommended operating
conditions (5.0 V)” tables, deleted the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade
Part
In the “LQFP thermal characteristics” table, rounded the values.
In the “RESET electrical characteristics” section, replaced “nRSTIN” with “RESET”.
In the “I/O input DC electrical characteristics” table:
• WFI: insered a footnote
• WNFI: insered a footnote
In the “Low voltage monitor electrical characteristics“ table:
• changed min valueVLVDHV3L, from 2.7 to 2.6
• Inserted max value of VLVDLVCORL
In the ”FMPLL electrical characteristics” table, rounded the values of fVCO.
In the “DSPI characteristics” table:
• Added tASC row
• Update values of tA
In the “ADC conversion characteristics” table, added “IADCPWD” and “IADCRUN” rows
Removed “Orderable part number summary” table.
8
25-Nov-2010 Editorial changes and improvements.
In the “MPC5604B/C device comparison“ table, changed the temperature value from 105
to 125 °C, in the footnote regarding “Execution speed”.
In the ”Recommended operating conditions (3.3 V)” and ”Recommended operating
conditions (5.0 V)” tables, restored the conditions of TA C-Grade Part, TA V-Grade Part, TA
M-Grade Part
In the “LQFP thermal characteristics” table, added values concerning 64 LQFP package.
In the “MEDIUM configuration output buffer electrical characteristics” table: fixed a typo in
last row of conditions column, there was IOH that now is IOL.
In the “Reset electrical characteristics” table, changed the parameter classification tag for
VOL and |IWPU|.
In the “Low voltage monitor electrical characteristics“ table, changed the max value of
VLVDLVCORL from 1.5V to 1.15V.
In the “Program and erase specifications“ table, replaced “Teslat” with “Tesus”.
In the “FMPLL electrical characteristics” table, changed the parameter classification tag
for fVCO.
MPC5604B/C Microcontroller Data Sheet, Rev. 8
Freescale Semiconductor
105
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The described product contains a PowerPC processor
core. The PowerPC name is a trademark of IBM Corp. and used under license.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009, 2010. All rights reserved.
MPC5604BC
Rev. 8
11/2010