ONSEMI BC846BDW1T1G

BC846BDW1T1G,
BC847BDW1T1G,
BC848CDW1T1G
Dual General Purpose
Transistors
http://onsemi.com
NPN Duals
(3)
These transistors are designed for general purpose amplifier
applications. They are housed in the SOT−363/SC−88 which is
designed for low power surface mount applications.
(2)
Q1
(1)
Q2
Features
• These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
(4)
Compliant
MAXIMUM RATINGS
Rating
Symbol
BC846
BC847
BC848
Unit
Collector −Emitter Voltage
VCEO
65
45
30
V
Collector −Base Voltage
VCBO
80
50
30
V
Emitter−Base Voltage
VEBO
6.0
6.0
5.0
V
IC
100
100
100
mAdc
Collector Current −
Continuous
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
(5)
(6)
MARKING
DIAGRAM
6
1
SOT−363
CASE 419B
STYLE 1
1x MG
G
1x = Specific Device Code
x = B, F, G, L
M = Date Code
G = Pb−Free Package
(Note: Microdot may be in either location)
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
PD
380
250
mW
3.0
mW/°C
Thermal Resistance,
Junction to Ambient
RqJA
328
°C/W
Junction and Storage
Temperature Range
TJ, Tstg
−55 to +150
°C
Total Device Dissipation
Per Device
FR−5 Board (Note 1)
TA = 25°C
Derate Above 25°C
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
1. FR−5 = 1.0 x 0.75 x 0.062 in
© Semiconductor Components Industries, LLC, 2010
July, 2010 − Rev. 7
1
Publication Order Number:
BC846BDW1T1/D
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
65
45
30
−
−
−
−
−
−
80
50
30
−
−
−
−
−
−
80
50
30
−
−
−
−
−
−
6.0
6.0
5.0
−
−
−
−
−
−
−
−
−
−
15
5.0
−
−
150
270
−
−
200
420
290
520
450
800
Unit
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage
(IC = 10 mA)
Collector −Emitter Breakdown Voltage
(IC = 10 mA, VEB = 0)
Collector −Base Breakdown Voltage
(IC = 10 mA)
Emitter−Base Breakdown Voltage
(IE = 1.0 mA)
BC846 Series
BC847 Series
BC848 Series
BC846 Series
BC847 Series
BC848 Series
BC846 Series
BC847 Series
BC848 Series
BC846 Series
BC847 Series
BC848 Series
Collector Cutoff Current (VCB = 30 V)
(VCB = 30 V, TA = 150°C)
V(BR)CEO
V(BR)CES
V(BR)CBO
V(BR)EBO
ICBO
V
V
V
V
nA
mA
ON CHARACTERISTICS
DC Current Gain
(IC = 10 mA, VCE = 5.0 V)
(IC = 2.0 mA, VCE = 5.0 V)
hFE
BC846B, BC847B,
BC847C, BC848C
BC846B, BC847B,
BC847C, BC848C
−
Collector −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA)
Collector −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA)
VCE(sat)
−
−
−
−
0.25
0.6
V
Base −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA)
Base −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA)
VBE(sat)
−
−
0.7
0.9
−
−
V
Base −Emitter Voltage (IC = 2.0 mA, VCE = 5.0 V)
Base −Emitter Voltage (IC = 10 mA, VCE = 5.0 V)
VBE(on)
580
−
660
−
700
770
mV
fT
100
−
−
MHz
Cobo
−
−
4.5
pF
−
−
10
SMALL−SIGNAL CHARACTERISTICS
Current −Gain − Bandwidth Product
(IC = 10 mA, VCE = 5.0 Vdc, f = 100 MHz)
Output Capacitance (VCB = 10 V, f = 1.0 MHz)
Noise Figure
(IC = 0.2 mA, VCE = 5.0 Vdc, RS = 2.0 kW,f = 1.0 kHz, BW = 200 Hz)
http://onsemi.com
2
NF
dB
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC846BDW1T1G
600
600
VCE = 10 V
150°C
400
25°C
300
200
−55°C
100
0
0.001
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
hFE, DC CURRENT GAIN
500
0.25
0.01
0.1
500
150°C
400
25°C
300
200
−55°C
100
0
0.001
1
Figure 1. DC Current Gain at VCE = 5 V
Figure 2. DC Current Gain at VCE = 10 V
IC/IB = 10
0.15
150°C
0.10
25°C
0.05
−55°C
0.00
0.0001
0.001
0.01
0.1
IC, COLLECTOR CURRENT (A)
0.25
IC/IB = 20
0.2
0.15
25°C
0.1
0.05
0.80
25°C
0.70
0.60
150°C
0.50
0.40
0.30
0.20
0.0001
0.001
0.01
0.1
IC, COLLECTOR CURRENT (A)
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
−55°C
150°C
−55°C
0
0.0001
0.001
0.01
0.1
IC, COLLECTOR CURRENT (A)
Figure 4. VCE(sat) at IC/IB = 20
IC/IB = 10
0.90
1
0.3
Figure 3. VCE(sat) at IC/IB = 10
1.00
0.1
IC, COLLECTOR CURRENT (A)
0.20
1.10
0.01
IC, COLLECTOR CURRENT (A)
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
hFE, DC CURRENT GAIN
VCE = 5 V
1.10
1.00
IC/IB = 20
0.90
0.80
0.70
−55°C
25°C
0.60
0.50
0.40
150°C
0.30
0.20
0.0001
Figure 5. VBE(sat) at IC/IB = 10
0.001
0.01
IC, COLLECTOR CURRENT (A)
Figure 6. VBE(sat) at IC/IB = 20
http://onsemi.com
3
0.1
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC846BDW1T1G
1000
VCE = 5 V
1.10
fT, CURRENT−GAIN − BANDWIDTH
PRODUCT
VBE(on), BASE−EMITTER VOLTAGE
(V)
1.20
1.00
0.90
−55°C
0.80
25°C
0.70
0.60
150°C
0.50
0.40
0.30
0.20
0.0001
0.001
0.01
0.1
1
10
100
Figure 7. VBE(on) at VCE = 5 V
Figure 8. Current − Gain − Bandwidth Product
2
VCE, COLLECTOR−EMITTER
VOLTAGE (V)
Cib
C, CAPACITANCE (pF)
10
0.1
IC, COLLECTOR CURRENT (A)
TA = 25°C
Cob
1
10
100
1.6
TA = 25°C
IC =
10 mA
IC =
20 mA
IC =
50 mA
IC =
100 mA
1.2
0.8
0.4
0
0.01
0.1
1
10
VR, REVERSE VOLTAGE (V)
IB, BASE CURRENT (mA)
Figure 9. Capacitances
Figure 10. Collector Saturation Region
qVB, TEMPERATURE COEFFICIENT
(mV/°C)
0.1
100
IC, COLLECTOR CURRENT (A)
10
1
VCE = 10 V
TA = 25°C
−0.2
VCE = 5 V
−0.6
−1
−1.4
qVB, for VBE
−1.8
−55°C to 150°C
−2.2
−2.6
−3
0.1
1
10
IB, BASE CURRENT (mA)
100
Figure 11. Base−Emitter Temperature Coefficient
http://onsemi.com
4
100
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC847BDW1T1G
400
25°C
300
−55°C
200
100
0.25
0.001
0.01
0.1
25°C
150°C
0.05
−55°C
0.001
0.01
IC, COLLECTOR CURRENT (A)
0.1
Figure 14. VCE at IC/IB = 10
IC/IB = 10
1.00
−55°C
25°C
0.60
150°C
0.20
0.00
0.0001
−55°C
200
100
0.001
0.01
0.1
Figure 13. DC Current Gain at VCE = 10 V
0.10
0.40
25°C
300
Figure 12. DC Current Gain at VCE = 5 V
0.15
0.80
400
IC, COLLECTOR CURRENT (A)
0.20
1.20
150°C
500
IC, COLLECTOR CURRENT (A)
IC/IB = 10
0.00
0.0001
VCE = 10 V
0
0.0001
1
0.001
0.01
IC, COLLECTOR CURRENT (A)
0.1
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
hFE, DC CURRENT GAIN
150°C
500
0
0.0001
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
600
VCE = 5 V
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
hFE, DC CURRENT GAIN
600
0.30
IC/IB = 20
0.25
0.20
0.15
25°C
0.10
0.05
150°C
−55°C
0.00
0.0001
0.001
0.01
IC, COLLECTOR CURRENT (A)
0.1
Figure 15. VCE at IC/IB = 20
1.20
IC/IB = 20
1.00
0.80
0.60
0.40
−55°C
25°C
150°C
0.20
0.00
0.0001
Figure 16. VBE(sat) at IC/IB = 10
0.001
0.01
IC, COLLECTOR CURRENT (A)
Figure 17. VBE(sat) at IC/IB = 20
http://onsemi.com
5
1
0.1
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC847BDW1T1G
1.10
1000
VCE = 5 V
1.00
0.90
−55°C
0.80
0.70
100
25°C
0.60
0.50
150°C
0.40
0.30
0.20
0.0001
VCE = 10 V
TA = 25°C
fT, CURRENT−GAIN − BANDWIDTH
PRODUCT
VBE(on), BASE−EMITTER VOLTAGE
(V)
1.20
0.001
0.01
IC, COLLECTOR CURRENT (A)
0.1
10
0.1
2
VCE, COLLECTOR−EMITTER
VOLTAGE (V)
TA = 25°C
C, CAPACITANCE (pF)
Cob
1
100
Figure 19. Current − Gain − Bandwidth
Product
Cib
10
100
1.6
TA = 25°C
IC =
10 mA
1.2
IC =
20 mA
IC =
50 mA
IC =
100 mA
0.8
0.4
0
0.01
0.1
1
10
VR, REVERSE VOLTAGE (V)
IB, BASE CURRENT (mA)
Figure 20. Capacitances
Figure 21. Collector Saturation Region
qVB, TEMPERATURE COEFFICIENT
(mV/°C)
1
0.1
10
IC, COLLECTOR CURRENT (A)
Figure 18. VBE(on) at VCE = 5 V
10
1
VCE = 5 V
−0.2
−0.6
−1
−1.4
qVB, for VBE
−55°C to 150°C
−1.8
−2.2
−2.6
−3
0.1
1
10
100
IB, BASE CURRENT (mA)
Figure 22. Base−Emitter Temperature Coefficient
http://onsemi.com
6
100
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC848CDW1T1G
1000
800
700
600
25°C
500
400
−55°C
300
200
100
0.001
0.01
0.1
800
700
25°C
600
500
400
−55°C
300
200
0
0.0001
1
0.001
Figure 23. DC Current Gain at VCE = 5 V
Figure 24. DC Current Gain at VCE = 10 V
IC/IB = 10
0.14
0.12
0.10
150°C
0.08
25°C
0.06
0.04
−55°C
0.02
0.00
0.0001
0.001
0.01
0.1
IC, COLLECTOR CURRENT (A)
0.30
0.25
0.20
0.15
25°C
0.10
0.05
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
VBE(sat), BASE−EMITT SATURATION VOLTAGE (V)
0.9
−55°C
0.7
25°C
0.6
0.5
0.4
150°C
0.3
0.2
0.0001
0.001
0.01
150°C
−55°C
0.00
0.0001
0.001
0.01
0.1
IC, COLLECTOR CURRENT (A)
Figure 26. VCE at IC/IB = 20
IC/IB = 10
0.8
1
IC/IB = 20
Figure 25. VCE at IC/IB = 10
1.0
0.1
IC, COLLECTOR CURRENT (A)
0.16
1.1
0.01
IC, COLLECTOR CURRENT (A)
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
VCE(sat), COLL−EMITT SATURATION VOLTAGE (V)
0.18
VCE = 10 V
100
0
0.0001
0.20
150°C
900
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
1000
VCE = 5 V
150°C
900
0.1
IC, COLLECTOR CURRENT (A)
1.2
IC/IB = 20
1.0
0.8
−55°C
25°C
0.6
0.4
150°C
0.2
0.0
0.0001
Figure 27. VBE(sat) at IC/IB = 10
0.001
0.01
IC, COLLECTOR CURRENT (A)
Figure 28. VBE(sat) at IC/IB = 20
http://onsemi.com
7
0.1
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
TYPICAL CHARACTERISTICS − BC848CDW1T1G
1000
VCE = 5 V
0.9
fT, CURRENT−GAIN − BANDWIDTH
PRODUCT
VBE(on), BASE−EMITTER VOLTAGE
(V)
1.0
−55°C
0.8
25°C
0.7
0.6
0.5
0.4
150°C
0.3
0.2
0.1
0.0
0.0001
0.001
0.01
0.1
1
10
100
IC, COLLECTOR CURRENT (A)
Figure 30. Current − Gain − Bandwidth
Product
2
VCE, COLLECTOR−EMITTER
VOLTAGE (V)
Cib
C, CAPACITANCE (pF)
10
0.1
IC, COLLECTOR CURRENT (A)
TA = 25°C
Cob
1
10
100
IC =
1.6 10 mA
TA = 25°C
IC =
20 mA
1.2
IC =
50 mA
IC =
100 mA
0.8
0.4
0
0.01
0.1
1
10
VR, REVERSE VOLTAGE (V)
IB, BASE CURRENT (mA)
Figure 31. Capacitances
Figure 32. Collector Saturation Region
qVB, TEMPERATURE COEFFICIENT
(mV/°C)
0.1
100
Figure 29. VBE(on) at VCE = 5 V
10
1
VCE = 10 V
TA = 25°C
VCE = 5 V
−0.2
−0.6
−1
−1.4
−1.8
qVB, for VBE
−55°C to 150°C
−2.2
−2.6
−3
0.1
1
10
IB, BASE CURRENT (mA)
100
Figure 33. Base−Emitter Temperature Coefficient
http://onsemi.com
8
100
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
1.0
r(t), TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
D = 0.5
0.2
0.1
0.1
0.05
0.02
0.01
ZqJA(t) = r(t) RqJA
RqJA = 3285C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) RqJC(t)
P(pk)
t1
0.01
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.001
0
1.0
10
100
t, TIME (ms)
1.0k
10k
100k
1.0M
Figure 34. Thermal Response
The safe operating area curves indicate IC−VCE limits
of the transistor that must be observed for reliable
operation. Collector load lines for specific circuits must
fall below the limits indicated by the applicable curve.
The data of Figure 35 is based upon TJ(pk) = 150°C; TC
or TA is variable depending upon conditions. Pulse
curves are valid for duty cycles to 10% provided TJ(pk) ≤
150°C. T J(pk) may be calculated from the data in
Figure 34. At high case or ambient temperatures,
thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by the
secondary breakdown.
-200
IC, COLLECTOR CURRENT (mA)
1s
3 ms
-100
TA = 25°C
-50
TJ = 25°C
BC558
BC557
BC556
-10
-5.0
-2.0
-1.0
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
-5.0
-10
-30 -45 -65 -100
VCE, COLLECTOR-EMITTER VOLTAGE (V)
Figure 35. Active Region Safe Operating Area
ORDERING INFORMATION
Device
BC846BDW1T1G
BC847BDW1T1G
BC847BDW1T3G
BC847CDW1T1G
BC848CDW1T1G
Markings
Package
Shipping†
1B
SOT−363
(Pb−Free)
3000 / Tape & Reel
1F
SOT−363
(Pb−Free)
3000 / Tape & Reel
1F
SOT−363
(Pb−Free)
10000 / Tape & Reel
1G
SOT−363
(Pb−Free)
3000 / Tape & Reel
1L
SOT−363
(Pb−Free)
3000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
9
BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G
PACKAGE DIMENSIONS
SC−88 (SC70−6/SOT−363)
CASE 419B−02
ISSUE W
D
e
6
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419B−01 OBSOLETE, NEW STANDARD 419B−02.
4
HE
−E−
1
2
3
b 6 PL
0.2 (0.008)
M
E
M
A3
INCHES
NOM MAX
0.037 0.043
0.002 0.004
0.008 REF
0.004 0.008 0.012
0.004 0.005 0.010
0.070 0.078 0.086
0.045 0.049 0.053
0.026 BSC
0.004 0.008 0.012
0.078 0.082 0.086
MIN
0.031
0.000
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2
C
A
A1
MILLIMETERS
MIN
NOM MAX
0.80
0.95
1.10
0.00
0.05
0.10
0.20 REF
0.10
0.21
0.30
0.10
0.14
0.25
1.80
2.00
2.20
1.15
1.25
1.35
0.65 BSC
0.10
0.20
0.30
2.00
2.10
2.20
DIM
A
A1
A3
b
C
D
E
e
L
HE
L
SOLDERING FOOTPRINT*
0.50
0.0197
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
10
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
BC846BDW1T1/D