STMICROELECTRONICS STM32F105RB

STM32F105xx
STM32F107xx
Connectivity line, ARM-based 32-bit MCU with 64/256 KB Flash, USB
OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces
Features
■
Core: ARM 32-bit Cortex™-M3 CPU
– 72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1)
performance at 0 wait state memory
access
– Single-cycle multiplication and hardware
division
■
Memories
– 64 to 256 Kbytes of Flash memory
– up to 64 Kbytes of general-purpose SRAM
■
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os
– POR, PDR, and programmable voltage
detector (PVD)
– 3-to-25 MHz crystal oscillator
– Internal 8 MHz factory-trimmed RC
– Internal 40 kHz RC with calibration
– 32 kHz oscillator for RTC with calibration
■
Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC and backup registers
■
2 × 12-bit, 1 µs A/D converters (16 channels)
– Conversion range: 0 to 3.6 V
– Sample and hold capability
– Temperature sensor
– up to 2 MSPS in interleaved mode
■
2 × 12-bit D/A converters
■
DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
I2Ss, SPIs, I2Cs and USARTs
■
Debug mode
– Serial wire debug (SWD) & JTAG interfaces
– Cortex-M3 Embedded Trace Macrocell™
■
Up to 80 fast I/O ports
– 51/80 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
■
CRC calculation unit, 96-bit unique ID
September 2009
LQFP100 14 × 14 mm
LQFP64 10 × 10 mm
■
Up to 10 timers with pinout remap capability
– Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– 1 × 16-bit motor control PWM timer with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window)
– SysTick timer: a 24-bit downcounter
– 2 × 16-bit basic timers to drive the DAC
■
Up to 14 communication interfaces with pinout
remap capability
– Up to 2 × I2C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
– Up to 3 SPIs (18 Mbit/s), 2 with a
multiplexed I2S interface that offers audio
class accuracy via advanced PLL schemes
– 2 × CAN interfaces (2.0B Active) with
512 bytes of dedicated SRAM
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY that supports
HNP/SRP/ID with 1.25 Kbytes of dedicated
SRAM
– 10/100 Ethernet MAC with dedicated DMA
and SRAM (4 Kbytes): IEEE1588 hardware
support, MII/RMII available on all packages
Table 1.
Device summary
Reference
Part number
STM32F105xx
STM32F105R8, STM32F105V8
STM32F105RB, STM32F105VB
STM32F105RC, STM32F105VC
STM32F107xx
STM32F107RB, STM32F107VB
STM32F107RC, STM32F107VC
Doc ID 15274 Rev 4
1/95
www.st.com
1
Contents
STM32F105xx, STM32F107xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2/95
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1
ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 13
2.3.2
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 13
2.3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.7
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.8
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.9
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.10
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.12
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.13
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.14
RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 16
2.3.15
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.16
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17
Universal synchronous/asynchronous receiver transmitters (USARTs) 18
2.3.18
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 19
2.3.21
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.22
Universal serial bus on-the-go full-speed (USB OTG FS) . . . . . . . . . . . 20
2.3.23
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24
Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.25
ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.26
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.27
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.28
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.3.29
Contents
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1
6
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 35
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 35
5.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.8
PLL, PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.11
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 52
5.3.12
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.13
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.14
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.15
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.17
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.18
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Doc ID 15274 Rev 4
3/95
Contents
7
STM32F105xx, STM32F107xx
6.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 80
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Appendix A Applicative block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1
USB OTG FS interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3
Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4
USB OTG FS interface + Ethernet/I2S interface solutions . . . . . . . . . . . . 89
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F105xx and STM32F107xx features and peripheral counts . . . . . . . . . . . . . . . . . . 10
STM32F105xx and STM32F107xx family versus STM32F103xx family . . . . . . . . . . . . . . 11
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 35
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 38
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 38
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
HSE 3-25 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Doc ID 15274 Rev 4
5/95
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
6/95
STM32F105xx, STM32F107xx
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 66
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 67
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 77
LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 78
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Applicative current consumption in Run mode, code with data
processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
STM32F105xx and STM32F107xx connectivity line block diagram . . . . . . . . . . . . . . . . . 12
STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout . . . . . . . . . . . . . . 23
STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout . . . . . . . . . . . . . . . 24
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Typical current consumption in Standby mode versus temperature at
different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 65
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 72
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 72
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
USB OTG FS device mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Host connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
OTG connection (any protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Doc ID 15274 Rev 4
7/95
List of figures
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
8/95
STM32F105xx, STM32F107xx
RMII with a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
USB OTG FS + Ethernet solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
USB OTG FS + I2S (Audio) solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
1
Introduction
Introduction
This datasheet provides the description of the STM32F105xx and STM32F107xx
connectivity line microcontrollers. For more details on the whole STMicroelectronics
STM32F10xxx family, please refer to Section 2.2: Full compatibility throughout the family.
The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
2
Description
The STM32F105xx and STM32F107xx connectivity line family incorporates the highperformance ARM® Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 256 Kbytes and SRAM up to 64 Kbytes),
and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All
devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well
as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2Ss,
five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx
only.
The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to
+105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
The STM32F105xx and STM32F107xx connectivity line family offers devices in two different
package types: from 64 pins to 100 pins. Depending on the device chosen, different sets of
peripherals are included, the description below gives an overview of the complete range of
peripherals proposed in this family.
Doc ID 15274 Rev 4
9/95
Description
STM32F105xx, STM32F107xx
These features make the STM32F105xx and STM32F107xx connectivity line
microcontroller family suitable for a wide range of applications:
●
Motor drive and application control
●
Medical and handheld equipment
●
Industrial applications: PLC, inverters, printers, and scanners
●
Alarm systems, Video intercom, and HVAC
●
Home audio equipment
Figure 1 shows the general block diagram of the device family.
2.1
Device overview
Table 2.
STM32F105xx and STM32F107xx features and peripheral counts
Peripherals(1)
STM32F105Rx
Flash memory in Kbytes
64
128
SRAM in Kbytes
20
32
Ethernet
Timers
STM32F107Rx
256
64
No
128
256
64
128
48
64
20
32
Yes
General-purpose
4
Advanced-control
1
Basic
2
2
(2)
SPI(I S)
I2C
64
128
256
48
64
No
Yes
3(2)
3(2)
2
1
2
1
5
Yes
2
51
80
12-bit ADC
Number of channels
2
16
12-bit DAC
Number of channels
2
2
CPU frequency
72 MHz
Operating voltage
Package
256
3(2)
CAN
Operating temperatures
STM32F107Vx
3(2)
Communication
USART
interfaces
USB OTG FS
GPIOs
STM32F105Vx
2.0 to 3.6 V
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
LQFP64
LQFP100
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required
by the application.
2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I2S audio mode.
10/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.2
Description
Full compatibility throughout the family
The STM32F105xx and STM32F107xx constitute the connectivity line family whose
members are fully pin-to-pin, software and feature compatible.
The STM32F105xx and STM32F107xx are a drop-in replacement for the low-density
(STM32F103x4/6), medium-density (STM32F103x8/B) and high-density
(STM32F103xC/D/E) performance line devices, allowing the user to try different memory
densities and peripherals providing a greater degree of freedom during the development
cycle.
Table 3.
STM32F105xx and STM32F107xx family versus STM32F103xx family(1)
STM32
Low-density
device STM32F103xx devices
Medium-density
STM32F103xx devices
High-density
STM32F103xx devices
STM32F105xx
STM32F107xx
Flash
size (KB)
16
32
32
64
128
256
384
512
64
128
256
128
256
RAM
size (KB)
6
10
10
20
20
48
64
64
20
32
64
48
64
144 pins
100 pins
2 × USARTs
64 pins 2 × 16-bit timers
1 × SPI, 1 × I2C, USB,
CAN,
1 × PWM timer
2 × ADCs
48 pins
5 × USARTs,
5 × USARTs
4 × 16-bit timers,
4 × 16-bit timers,
2 × basic timers,
3 × USARTs
2 × basic timers, 3 × SPIs, 3 × SPIs,
2
2 × USARTs 3 × 16-bit
2 × I Ss, 2 × I2Cs, USB, 2 × I2Ss,
timers
2 × 16-bit
CAN, 2 × PWM timers
2 × I2Cs,
2 × SPIs,
timers
3 × ADCs, 2 × DACs,
2
USB OTG FS,
2 × I Cs, USB, 1 × SDIO, FSMC (1001 × SPI,
2 × CANs,
CAN,
(2)
1 × I2C,
and 144-pin packages ) 1 × PWM timer,
USB, CAN, 1 × PWM timer
2 × ADCs,
2 × ADCs
1 × PWM
2 × DACs
timer
2 × ADCs
5 × USARTs,
4 × 16-bit timers,
2 × basic timers,
3 × SPIs,
2 × I2S,
1 × I2C,
USB OTG FS,
2 × CANs,
1 × PWM timer,
2 × ADCs,
2 × DACs,
Ethernet
36 pins
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required
by the application.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Doc ID 15274 Rev 4
11/95
Description
STM32F105xx, STM32F107xx
2.3
Overview
Figure 1.
STM32F105xx and STM32F107xx connectivity line block diagram
TPIU
SW/JTAG
ETM
Trace/Trig
Ibus
Cortex-M3 CPU
GP DMA1
Ethernet MAC
10/100
NRST
VDDA
VSSA
@VDD
OSC_IN
OSC_OUT
C_O
IWDG
PCLK1
PCLK2
HCLK
FCLK
PLL3
Standby
interface
VBAT =1.8 V to 3.6 V
@VBAT
XTAL 32kHz
AHB
Bac kup
register
RTC
AWU
OSC32_IN
OSC32_OUT
TAMPER-RTC/
ALARM/SECOND OUT
Backup interface
USB OTG FS
AHB to
APB2
AHB to
APB1
PD[15:0]
GPIO port D
PE[15:0]
GPIO port E
APB2 : F max = 72 MHz
GPIO port C
APB1 : Fmax = 36 MHz
EXT.IT
WKUP
PC[15:0]
TIM1
SPI1
WWDG
USART1
TIM2
4 Channels , ETR
as AF
TIM3
4 Channels , ETR
as AF
TIM4
4 Channels , ETR
as AF
TIM5
4 Channel s, ETR
as A F
RX,TX, CTS, RTS,
CK as AF
USART2
USART3
UART4
UART5
RX,TX, CTS, RTS,
CK as AF
RX,TX as AF
RX,TX as AF
SPI2
2x(8x16b
it)
/ I2S2(1)
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
SPI3
2x(8x16b
it)
/ I2S3
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
I2C1
SCL,SDA, SMBA
as AF
I2C2(1)
SCL,SDA,SMBA
as AF
bx CAN1
CAN1_TX as AF
CAN1_RX as AF
SRAM 512B
Temp sensor
VREF–
VREF+
POR / PDR
XTAL osc
3-25 MHz
DPRAM 2 KB DPRAM 2 KB
GPIO
P port B
16 ADC12_INs
common to
ADC1 & ADC2
Supply
supervision
Int
@VDDA
DMA Ethernet
PB[ 15:0]
RX,TX, CTS, RTS,
CK as AF
POR
Reset
PLL2
Reset &
clock
control
VSS
PVD
PLL3
GP DMA2
GPIO
P port A
MOSI,MISO,
SCK,NSS as AF
RC HS
PLL
PA[ 15:0]
4 Channels
4 compl. Channels
BKIN, ETR input as AF
@VDDA
7 channels
SRAM 1.25 KB
80 AF
64 bit
RC LS
5 channels
VDD = 2 to 3.6 V
@VDD
Bus Matri x
NVIC
SOF
VBUS
ID
DM
DP
Flash 256 KB
SRAM
64 KB
System
MII_TXD[3:0]/RMII_TXD[1:0]
MII_TX_CLK/RMII_TX_CLK
MII_TX_EN/RMII_TX_EN
MII_RXD[3:0]/RMII_RXD[1:0]
MII_RX_ER/RMII_RX_ER
MII_RX_CLK/RMII_REF_CLK
MII_RX_DV/RMII_CRS_DV
MII_CRS
MII_COL/RMII_COL
MDC
MDIO
PPS_OUT
Voltage reg.
3.3 V to 1.8 V
Dbus
Fmax : 72 MHz
Power
VDD18
Interface
as AF
NJTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
as A F
Flashl obl
TRACECLK
TRACED[0:3]
bx CAN2
12bi t ADC1 IF
12bit ADC2
IF
CAN2_TX a
s AF
CAN2_RX as AF
TIM6
IF 12bit DAC1
IF
DAC_OUT1 as AF
TIM7
12bit DAC 2
DAC_OUT2 as AF
@VDDA
@VDDA
ai15411
1. TA = –40 °C to +85 °C (suffix 6, see Table 60) or –40 °C to +105 °C (suffix 7, see Table 60), junction temperature up to
105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
12/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.3.1
Description
ARM® Cortex™-M3 core with embedded Flash and SRAM
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
With its embedded ARM core, STM32F105xx and STM32F107xx connectivity line family is
compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
2.3.2
Embedded Flash memory
64 to 256 Kbytes of embedded Flash is available for storing programs and data.
2.3.3
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
2.3.4
Embedded SRAM
20 to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states.
2.3.5
Nested vectored interrupt controller (NVIC)
The STM32F105xx and STM32F107xx connectivity line embeds a nested vectored interrupt
controller able to handle up to 67 maskable interrupt channels (not including the 16 interrupt
lines of Cortex™-M3) and 16 priority levels.
●
Closely coupled NVIC gives low latency interrupt processing
●
Interrupt entry vector table address passed directly to the core
●
Closely coupled NVIC core interface
●
Allows early processing of interrupts
●
Processing of late arriving higher priority interrupts
●
Support for tail-chaining
●
Processor state automatically saved
●
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
Doc ID 15274 Rev 4
13/95
Description
2.3.6
STM32F105xx, STM32F107xx
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 20 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7
Clocks and startup
System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG
FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency,
the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum
frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed
frequency of the low speed APB domain is 36 MHz. Refer to Figure 48: USB OTG FS +
Ethernet solution on page 89.
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In order to achieve audio class performance, an audio crystal can be used. In this
case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to
96 kHz with less than 0.5% accuracy error. Refer to Figure 49: USB OTG FS + I2S (Audio)
solution on page 89.
To configure the PLLs, please refer to Table 61 on page 90, which provides PLL
configurations according to the application type.
2.3.8
Boot modes
At startup, boot pins are used to select one of three boot options:
●
Boot from User Flash
●
Boot from System Memory
●
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1, USART2 (remapped), CAN2 (remapped) or USB OTG FS in device mode
(DFU: device firmware upgrade). For remapped signals refer to Table 5: Pin definitions.
The USART peripheral operates with the internal 8 MHz oscillator (HSI), however the CAN
and USB OTG FS can only function if an external 8 MHz, 14.7456 MHz or 25 MHz clock
(HSE) is present.
For full details about the boot loader, please refer to AN2662.
14/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.3.9
2.3.10
Description
Power supply schemes
●
VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
●
VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
●
VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
Power supply supervisor
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.3.11
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
●
MR is used in the nominal regulation mode (Run)
●
LPR is used in the Stop modes.
●
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.
2.3.12
Low-power modes
The STM32F105xx and STM32F107xx connectivity line supports three low-power modes to
achieve the best compromise between low power consumption, short startup time and
available wakeup sources:
●
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
●
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB
OTG FS wakeup.
Doc ID 15274 Rev 4
15/95
Description
STM32F105xx, STM32F107xx
●
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
2.3.13
DMA
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-toperipheral transfers. The two DMA controllers support circular buffer management,
removing the need for user code intervention when the controller reaches the end of the
buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic
and advanced control timers TIMx, DAC, I2S and ADC.
In the STM32F107xx, there is a DMA controller dedicated for use with the Ethernet (see
Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support for
more information).
2.3.14
RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit
registers used to store 84 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, and they are not reset when the device
wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features
a 32-bit programmable counter for long term measurement using the Compare register to
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default
configured to generate a time base of 1 second from a clock at 32.768 kHz.
For more information, please refer to AN2604: “STM32F101xx and STM32F103xx RTC
calibration”, available from www.st.com.
16/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.3.15
Description
Timers and watchdogs
The STM32F105xx and STM32F107xx devices include an advanced-control timer, four
general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Table 4 compares the features of the general-purpose and basic timers.
Table 4.
Timer feature comparison
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA request Capture/compare Complementary
generation
channels
outputs
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
Yes
TIMx
(TIM2,
TIM3,
TIM4,
TIM5)
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
Advanced-control timer (TIM1)
The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for:
●
Input capture
●
Output compare
●
PWM generation (edge or center-aligned modes)
●
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same
architecture. The advanced control timer can therefore work together with the TIM timers via
the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded
in the STM32F105xx and STM32F107xx connectivity line devices. These timers are based
on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent
channels each for input capture/output compare, PWM or one pulse mode output. This
gives up to 16 input captures / output compares / PWMs on the largest packages. They can
work together with the Advanced Control timer via the Timer Link feature for synchronization
or event chaining.
The counter can be frozen in debug mode.
Doc ID 15274 Rev 4
17/95
Description
STM32F105xx, STM32F107xx
Any of the standard timers can be used to generate PWM outputs. Each of the timers has
independent DMA request generations.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
2.3.16
●
A 24-bit down counter
●
Autoreload capability
●
Maskable system interrupt generation when the counter reaches 0.
●
Programmable clock source
I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A
hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.3.17
Universal synchronous/asynchronous receiver transmitters (USARTs)
The STM32F105xx and STM32F107xx connectivity line embeds three universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and
two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other
available interfaces communicate at up to 2.25 Mbit/s.
18/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Description
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller except for UART5.
2.3.18
Serial peripheral interface (SPI)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC/SDHC(a) modes.
All SPIs can be served by the DMA controller.
2.3.19
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be
operated in master or slave mode. These interfaces can be configured to operate with 16/32
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to
96 kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency with less than 0.5% accuracy error owing to the advanced clock
controller (see Section 2.3.7: Clocks and startup).
Please refer to the “Audio frequency precision” tables provided in the “Serial peripheral
interface (SPI)” section of the STM32F10xxx reference manual.
2.3.20
Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral not available on STM32F105xx devices.
The STM32F107xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard media-independent
interface (MII) or a reduced media-independent interface (RMII). The STM32F107xx
requires an external physical interface device (PHY) to connect to the physical LAN bus
(twisted-pair, fiber, etc.). the PHY is connected to the STM32F107xx MII port using as many
as 17 signals (MII) or 9 signals (RMII) and can be clocked using the 25 MHz (MII) or 50 MHz
(RMII) output from the STM32F107xx.
The STM32F107xx includes the following features:
●
Supports 10 and 100 Mbit/s rates
●
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F105xx/STM32F107xx reference manual for
details)
●
Tagged MAC frame support (VLAN support)
●
Half-duplex (CSMA/CD) and full-duplex operation
●
MAC control sublayer (control frames) support
a. SDHC = Secure digital high capacity.
Doc ID 15274 Rev 4
19/95
Description
2.3.21
STM32F105xx, STM32F107xx
●
32-bit CRC generation and removal
●
Several address filtering modes for physical and multicast address (multicast and group
addresses)
●
32-bit status code for each transmitted or received frame
●
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes, that is 4 Kbytes in total
●
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 with
the timestamp comparator connected to the TIM2 trigger input
●
Triggers interrupt when system time becomes greater than target time
Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to
1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total)
are not shared with any other peripheral.
2.3.22
Universal serial bus on-the-go full-speed (USB OTG FS)
The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG fullspeed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG FS
peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It
has software-configurable endpoint setting and supports suspend/resume. The USB OTG
full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL
connected to the HSE oscillator. The major features are:
2.3.23
●
1.25 KB of SRAM used exclusively by the endpoints (not shared with any other
peripheral)
●
4 bidirectional endpoints
●
HNP/SNP/IP inside (no need for any external resistor)
●
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
●
the SOF output can be used to synchronize the external audio DAC clock in
isochronous mode
●
in accordance with the USB 2.0 Specification, the supported transfer speeds are:
–
in Host mode: full speed and low speed
–
in Device mode: full speed
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
20/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
2.3.24
Description
Remap capability
This feature allows the use of a maximum number of peripherals in a given application.
Indeed, alternate functions are available not only on the default pins but also on other
specific pins onto which they are remappable. This has the advantage of making board
design and port usage much more flexible.
For details refer to Table 5: Pin definitions; it shows the list of remappable alternate functions
and the pins onto which they can be remapped. See the STM32F10xxx reference manual
for software considerations.
2.3.25
ADCs (analog-to-digital converters)
Two 12-bit analog-to-digital converters are embedded into STM32F105xx and
STM32F107xx connectivity line devices and each ADC shares up to 16 external channels,
performing conversions in single-shot or scan modes. In scan mode, automatic conversion
is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
●
Simultaneous sample and hold
●
Interleaved sample and hold
●
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the standard timers (TIMx) and the advanced-control timer (TIM1)
can be internally connected to the ADC start trigger and injection trigger, respectively, to
allow the application to synchronize A/D conversion and timers.
2.3.26
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
●
two DAC converters: one for each output channel
●
8-bit or 12-bit monotonic output
●
left or right data alignment in 12-bit mode
●
synchronized update capability
●
noise-wave generation
●
triangular-wave generation
●
dual DAC channel independent or simultaneous conversions
●
DMA capability for each channel
●
external triggers for conversion
●
input voltage reference VREF+
Doc ID 15274 Rev 4
21/95
Description
STM32F105xx, STM32F107xx
Eight DAC trigger inputs are used in the STM32F105xx and STM32F107xx connectivity line
family. The DAC channels are triggered through the timer update outputs that are also
connected to different DMA channels.
2.3.27
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.28
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
2.3.29
Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F10xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer running debugger software. TPA
hardware is commercially available from common development tool vendors. It operates
with third party debugger software tools.
22/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Pinouts and pin description
STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD_2
VSS_2
NC
PA 13
PA 12
PA 11
PA 10
PA 9
PA 8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
3
Pinouts and pin description
ai14391
Doc ID 15274 Rev 4
23/95
Pinouts and pin description
STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 3.
STM32F105xx, STM32F107xx
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_2
VSS_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP
PA1
PA2
ai14392
24/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 5.
Pinouts and pin description
Pin definitions
LQFP64
Pin name
Type(1)
I / O level(2)
Alternate functions(4)
LQFP100
Pins
Main
function(3)
(after reset)
1
-
PE2
I/O
FT
PE2
TRACECK
2
-
PE3
I/O
FT
PE3
TRACED0
3
-
PE4
I/O
FT
PE4
TRACED1
4
-
PE5
I/O
FT
PE5
TRACED2
5
-
PE6
I/O
FT
PE6
TRACED3
6
1
VBAT
S
VBAT
7
2
PC13-TAMPERRTC(5)
I/O
PC13(6)
TAMPER-RTC
8
3
PC14-OSC32_IN(5) I/O
PC14(6)
OSC32_IN
9
4
PC15OSC32_OUT(5)
I/O
PC15(6)
OSC32_OUT
10
-
VSS_5
S
VSS_5
11
-
VDD_5
S
VDD_5
12
5
OSC_IN
I
OSC_IN
13
6
OSC_OUT
O
OSC_OUT
14
7
NRST
I/O
NRST
15
8
PC0
I/O
PC0
ADC12_IN10
16
9
PC1
I/O
PC1
ADC12_IN11/ ETH_MDC
17
10
PC2
I/O
PC2
ADC12_IN12/ ETH_MII_TXD2
18
11
PC3
I/O
PC3
ADC12_IN13/ ETH_MII_TX_CLK
19
12
VSSA
S
VSSA
20
-
VREF-
S
VREF-
21
-
VREF+
S
VREF+
22
13
VDDA
S
VDDA
23
14
PA0-WKUP
I/O
Default
PA0
WKUP/USART2_CTS(7)
ADC12_IN0/TIM2_CH1_ETR
TIM5_CH1/
ETH_MII_CRS_WKUP
24
15
PA1
I/O
PA1
USART2_RTS(7)/ ADC12_IN1/
TIM5_CH2 /TIM2_CH2(7)/
ETH_MII_RX_CLK/
ETH_RMII_REF_CLK
25
16
PA2
I/O
PA2
USART2_TX(7)/
TIM5_CH3/ADC12_IN2/
TIM2_CH3 (7)/ ETH_MDIO
Doc ID 15274 Rev 4
Remap
25/95
Pinouts and pin description
Pin definitions (continued)
Pin name
Type(1)
LQFP64
LQFP100
Pins
I / O level(2)
Table 5.
STM32F105xx, STM32F107xx
Alternate functions(4)
Main
function(3)
(after reset)
Default
Remap
USART2_RX(7)/
TIM5_CH4/ADC12_IN3 /
TIM2_CH4(7)/ ETH_MII_COL
26
17
PA3
I/O
PA3
27
18
VSS_4
S
VSS_4
28
19
VDD_4
S
VDD_4
29
20
PA4
I/O
PA4
SPI1_NSS(7)/DAC_OUT1 /
USART2_CK(7) / ADC12_IN4
30
21
PA5
I/O
PA5
SPI1_SCK(7) /
DAC_OUT2 / ADC12_IN5
31
22
PA6
I/O
PA6
SPI1_MISO(7)/ADC12_IN6 /
TIM3_CH1(7)
TIM1_BKIN
TIM1_CH1N
SPI3_NSS
32
23
PA7
I/O
PA7
SPI1_MOSI(7)/ADC12_IN7 /
TIM3_CH2(7)/ ETH_MII_RX_DV/
ETH_RMII_CRS_DV
33
24
PC4
I/O
PC4
ADC12_IN14 / ETH_MII_RXD0 /
ETH_RMII_RXD0
34
25
PC5
I/O
PC5
ADC12_IN15 / ETH_MII_RXD1 /
ETH_RMII_RXD1
35
26
PB0
I/O
PB0
ADC12_IN8/TIM3_CH3/
ETH_MII_RXD2
TIM1_CH2N
36
27
PB1
I/O
PB1
ADC12_IN9 / TIM3_CH4(7)/
ETH_MII_RXD3
TIM1_CH3N
37
28
PB2
I/O FT
PB2/BOOT1
38
-
PE7
I/O FT
PE7
TIM1_ETR
39
-
PE8
I/O FT
PE8
TIM1_CH1N
40
-
PE9
I/O FT
PE9
TIM1_CH1
41
-
PE10
I/O FT
PE10
TIM1_CH2N
42
-
PE11
I/O FT
PE11
TIM1_CH2
43
-
PE12
I/O FT
PE12
TIM1_CH3N
44
-
PE13
I/O FT
PE13
TIM1_CH3
45
-
PE14
I/O FT
PE14
TIM1_CH4
46
-
PE15
I/O FT
PE15
47
48
26/95
29
30
PB10
PB11
I/O FT
I/O FT
PB10
PB11
TIM1_BKIN
I2C2_SCL/USART3_TX(7)/
ETH_MII_RX_ER
I2C2_SDA/USART3_RX(7)/
ETH_MII_TX_EN/
ETH_RMII_TX_EN
Doc ID 15274 Rev 4
TIM2_CH3
TIM2_CH4
STM32F105xx, STM32F107xx
Pin definitions (continued)
Alternate functions(4)
LQFP64
Main
function(3)
(after reset)
LQFP100
Type(1)
Pins
I / O level(2)
Table 5.
Pinouts and pin description
Pin name
49
31
VSS_1
S
VSS_1
50
32
VDD_1
S
VDD_1
51
33
PB12
I/O FT
Default
PB12
SPI2_NSS/I2S2_WS/
I2C2_SMBA / USART3_CK(7)/
TIM1_BKIN(7) / CAN2_RX/
ETH_MII_TXD0/
ETH_RMII_TXD0
Remap
52
34
PB13
I/O FT
PB13
SPI2_SCK / I2S2_CK /
USART3_CTS(7)/ TIM1_CH1N /
CAN2_TX / ETH_MII_TXD1/
ETH_RMII_TXD1
53
35
PB14
I/O FT
PB14
SPI2_MISO / TIM1_CH2N /
USART3_RTS(7)
54
36
PB15
I/O FT
PB15
SPI2_MOSI / I2S2_SD /
TIM1_CH3N(7)
55
-
PD8
I/O FT
PD8
USART3_TX/
ETH_MII_RX_DV
56
-
PD9
I/O FT
PD9
USART3_RX/
ETH_MII_RX_D0
57
-
PD10
I/O FT
PD10
USART3_CK/
ETH_MII_RX_D1
58
-
PD11
I/O FT
PD11
USART3_CTS/
ETH_MII_RX_D2
59
-
PD12
I/O FT
PD12
TIM4_CH1 /
USART3_RTS/
ETH_MII_RX_D3
60
-
PD13
I/O FT
PD13
TIM4_CH2
61
-
PD14
I/O FT
PD14
TIM4_CH3
62
-
PD15
I/O FT
PD15
TIM4_CH4
63
37
PC6
I/O FT
PC6
I2S2_MCK/
TIM3_CH1
64
38
PC7
I/O FT
PC7
I2S3_MCK
TIM3_CH2
65
39
PC8
I/O FT
PC8
TIM3_CH3
66
40
PC9
I/O FT
PC9
TIM3_CH4
67
41
PA8
I/O FT
PA8
USART1_CK/OTG_FS_SOF /
TIM1_CH1(7)/MCO
68
42
PA9
I/O FT
PA9
USART1_TX(7)/ TIM1_CH2(7)/
OTG_FS_VBUS
69
43
PA10
I/O FT
PA10
USART1_RX(7)/
TIM1_CH3(7)/OTG_FS_ID
Doc ID 15274 Rev 4
27/95
Pinouts and pin description
Pin definitions (continued)
Alternate functions(4)
LQFP64
Main
function(3)
(after reset)
LQFP100
Type(1)
Pins
I / O level(2)
Table 5.
STM32F105xx, STM32F107xx
Pin name
70
44
PA11
I/O FT
PA11
USART1_CTS / CAN1_RX /
TIM1_CH4(7)/OTG_FS_DM
71
45
PA12
I/O FT
PA12
USART1_RTS / OTG_FS_DP /
CAN1_TX(7) / TIM1_ETR(7)
72
46
PA13
I/O FT JTMS-SWDIO
73
-
74
47
VSS_2
S
VSS_2
75
48
VDD_2
S
VDD_2
76
49
PA14
I/O FT JTCK-SWCLK
77
50
PA15
I/O FT
JTDI
SPI3_NSS / I2S3_WS
TIM2_CH1_ETR / PA15
SPI1_NSS
78
51
PC10
I/O FT
PC10
UART4_TX
USART3_TX/ SPI3_SCK
79
52
PC11
I/O FT
PC11
UART4_RX
USART3_RX/
SPI3_MISO
80
53
PC12
I/O FT
PC12
UART5_TX
USART3_CK/
SPI3_MOSI
81
5
PD0
I/O FT
OSC_IN(8)
Default
Remap
PA13
Not connected
PA14
CAN1_RX
(8)
82
6
PD1
I/O FT OSC_OUT
83
54
PD2
I/O FT
PD2
84
-
PD3
I/O FT
PD3
USART2_CTS
85
-
PD4
I/O FT
PD4
USART2_RTS
86
-
PD5
I/O FT
PD5
USART2_TX
87
-
PD6
I/O FT
PD6
USART2_RX
88
-
PD7
I/O FT
PD7
USART2_CK
89
55
PB3
I/O FT
JTDO
SPI3_SCK / I2S3_CK
PB3 / TRACESWO/
TIM2_CH2 / SPI1_SCK
90
56
PB4
I/O FT
NJTRST
SPI3_MISO
PB4 / TIM3_CH1/
SPI1_MISO
91
57
PB5
I/O
PB5
I2C1_SMBA / SPI3_MOSI /
ETH_PPS_OUT / I2S3_SD
TIM3_CH2/SPI1_MOSI/
CAN2_RX
92
58
PB6
I/O FT
PB6
I2C1_SCL(7)/TIM4_CH1(7)
USART1_TX/CAN2_TX
PB7
I2C1_SDA(7)/TIM4_CH2(7)
USART1_RX
TIM3_ETR / UART5_RX
93
59
PB7
94
60
BOOT0
95
61
PB8
I/O FT
PB8
TIM4_CH3(7)/ ETH_MII_TXD3
I2C1_SCL/CAN1_RX
96
62
PB9
I/O FT
PB9
TIM4_CH4(7)
I2C1_SDA / CAN1_TX
28/95
I/O FT
CAN1_TX
I
BOOT0
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Pin definitions (continued)
Alternate functions(4)
Default
TIM4_ETR
LQFP64
Main
function(3)
(after reset)
LQFP100
Type(1)
Pins
I / O level(2)
Table 5.
Pinouts and pin description
Pin name
97
-
PE0
I/O FT
PE0
98
-
PE1
I/O FT
PE1
99
63
VSS_3
S
VSS_3
100 64
VDD_3
S
VDD_3
Remap
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant. All I/Os are VDD capable.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
available from the STMicroelectronics website: www.st.com.
8. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are
available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug
configuration section in the STM32F10xxx reference manual.
Doc ID 15274 Rev 4
29/95
Memory mapping
4
STM32F105xx, STM32F107xx
Memory mapping
The memory map is shown in Figure 4.
Figure 4.
Memory map
Reserved
AHB
0x5000 0000 - 0x5000 03FF
Reserved
0x4003 0000 - 0x4FFF FFFF
Ethernet
Reserved
0x4002 8000 - 0x4002 9FFF
0xE000 0000
0xDFFF FFFF
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
APB2
512-Mbyte
block 6
Not used
0xC000 0000
0xBFFF FFFF
512-Mbyte
block 5
Not used
0xB000 0000
0xAFFF FFFF
0x4002 3000 - 0x4002 33FF
Reserved
0x4002 2400 - 0x4002 2FFF
Flash interface
0x4002 2000 - 0x4002 23FF
Reserved
RCC
Reserved
0x4002 1400 - 0x4002 1FFF
0x4002 1000 - 0x4002 13FF
0x4002 0800 - 0x4002 0FFF
0x4002 0400 - 0x4002 07FF
0x4002 0000 - 0x4002 03FF
0x8000 0000
0x7FFF FFFF
APB1
512-Mbyte
block 3
Not used
0x6000 0000
0x5FFF FFFF
512-Mbyte
block 2
Peripherals
0x4000 0000
0x3FFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
0x1FFF FFFF
512-Mbyte
block 0
Code
0x0000 0000
Reserved
SRAM (aliased
by bit-banding)
Option bytes
System memory
Reserved
Flash
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
30/95
USART1
Reserved
SPI1
TIM1
ADC2
ADC1
Reserved
Port E
Port D
Port C
Port B
Port A
EXTI
AFIO
Reserved
DAC
PWR
512-Mbyte
block 4
Not used
Doc ID 15274 Rev 4
0x4002 3400 - 0x4002 7FFF
CRC
DMA2
DMA1
Reserved
0xFFFF FFFF
0x5000 0400 - 0x5FFF FFFF
USB OTG FS
0x4001 3C00 - 0x4001 FFFF
0x4001 3800 - 0x4001 3BFF
0x4001 3400 - 0x4001 37FF
0x4001 3000 - 0x4001 33FF
0x4001 2C00 - 0x4001 2FFF
0x4001 2800 - 0x4001 2BFF
0x4001 2400 - 0x4001 27FF
0x4001 1C00 - 0x4001 23FF
0x4001 1800 - 0x4001 1BFF
0x4001 1400 - 0x4001 17FF
0x4001 1000 - 0x4001 13FF
0x4001 0C00 - 0x4001 0FFF
0x4001 0800 - 0x4001 0BFF
0x4001 0400 - 0x4001 07FF
0x4001 0000 - 0x4001 3FFF
0x4000 7800 - 0x4000 FFFF
0x4000 7400 - 0x4000 77FF
0x4000 7000 - 0x4000 73FF
BKP
0x4000 6C00 - 0x4000 6FFF
bxCAN2
0x4000 6800 - 0x4000 6BFF
bxCAN1
Reserved
0x4000 5C00 - 0x4000 63FF
I2C2
0x4000 5800 - 0x4000 5BFF
I2C1
0x4000 5400 - 0x4000 57FF
UART5
UART4
0x4000 5000 - 0x4000 53FF
USART3
0x4000 4800 - 0x4000 4BFF
USART2
0x4000 4400 - 0x4000 47FF
Reserved
0x4000 4000 - 0x4000 43FF
0x4000 6400 - 0x4000 67FF
0x4000 4C00 - 0x4000 4FFF
SPI3/I2S3
0x4000 3C00 - 0x4000 3FFF
SPI2/I2S2
0x4000 3800 - 0x4000 3BFF
Reserved
0x4000 3400 - 0x4000 37FF
IWDG
0x4000 3000 - 0x4000 33FF
WWDG
0x4000 2C00 - 0x4000 2FFF
RTC
0x4000 2800 - 0x4000 2BFF
Reserved
TIM7
0x4000 1800 - 0x4000 27FF
0x4000 1400 - 0x4000 17FF
TIM6
0x4000 1000 - 0x4000 13FF
TIM5
0x4000 0C00 - 0x4000 0FFF
TIM4
0x4000 0800 - 0x4000 0BFF
TIM3
0x4000 0400 - 0x4000 07FF
TIM2
0x4000 0000 - 0x4000 03FF
0x3FFF FFFF
0x2001 0000
0x2000 FFFF
0x2000 0000
0x1FFF F800 - 0x1FFF FFFF
0x1FFF B000 - 0x1FFF F7FF
0x1FFF AFFF
0x0804 0000
0x0803 FFFF
0x0800 0000
0x07FF FFFF
0x0004 0000
0x0003 FFFF
0x0000 0000
ai15412b
STM32F105xx, STM32F107xx
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3U).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2U).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
Figure 5.
Pin loading conditions
Figure 6.
Pin input voltage
STM32F10xxx pin
STM32F10xxx pin
C = 50 pF
VIN
ai15664
Doc ID 15274 Rev 4
ai15665
31/95
Electrical characteristics
5.1.6
STM32F105xx, STM32F107xx
Power supply scheme
Figure 7.
Power supply scheme
VBAT
Backup circuitry
(OSC32K,RTC,
Wake-up logic
Backup registers)
OUT
GP I/Os
IN
Level shifter
Po wer swi tch
1.8-3.6V
IO
Logic
Kernel logic
(CPU,
Digital
& Memories)
VDD
VDD
1/2/3/4/5
5 × 100 nF
+ 1 × 4.7 µF
VDD
VDDA
VREF
10 nF
+ 1 µF
Regulator
VSS
1/2/3/4/5
10 nF
+ 1 µF
VREF+
ADC
VREF-
Analog:
RCs, PLL,
...
VSSA
ai14125d
Caution:
In Figure 7, the 4.7 µF capacitor must be connected to VDD3.
5.1.7
Current consumption measurement
Figure 8.
Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
32/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
5.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 6.
Voltage characteristics
Symbol
Ratings
Min
Max
–0.3
4.0
Input voltage on five volt tolerant pin(2)
VSS / 0.3
+5.5
Input voltage on any other pin(2)
VSS /"0.3
VDD+0.3
External main supply voltage (including VDDA
and VDD)(1)
VDD–VSS
VIN
|FVDDx|
|VSSX /"VSS|
Variations between different VDD power pins
50
Variations between all the different ground pins
50
Electrostatic discharge voltage (human body
model)
VESD(HBM)
Unit
V
mV
see Section 5.3.11:
Absolute maximum ratings
(electrical sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. IINJ(PIN) must never be exceeded (see Table 7: Current characteristics). This is implicitly insured if VIN
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited
externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is
induced by VIN < VSS.
Table 7.
Current characteristics
Symbol
IVDD
IVSS
IIO
IINJ(PIN) (2)(3)
Ratings
Total current into VDD/VDDA power lines (source)(1)
Total current out of VSS ground lines (sink)
(1)
Output current sunk by any I/O and control pin
150
25
/ 25
Injected current on NRST pin
±5
Injected current on HSE OSC_IN and LSE OSC_IN pins
pin(4)
Total injected current (sum of all I/O and control pins)(4)
Unit
150
Output current source by any I/Os and control pin
Injected current on any other
UIINJ(PIN)(2)
Max.
mA
±5
±5
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC
characteristics.
4. When several inputs are submitted to a current injection, the maximum UIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on
characterization with UIINJ(PIN) maximum current injection on four I/O port pins of the device.
Doc ID 15274 Rev 4
33/95
Electrical characteristics
Table 8.
STM32F105xx, STM32F107xx
Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Operating conditions
5.3.1
General operating conditions
Symbol
Unit
–65 to +150
°C
150
°C
Maximum junction temperature
5.3
Table 9.
Value
General operating conditions
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
0
72
fPCLK1
Internal APB1 clock frequency
0
36
fPCLK2
Internal APB2 clock frequency
0
72
Standard operating voltage
2
3.6
2
3.6
2.4
3.6
1.8
3.6
VDD
VDDA
(1)
VBAT
PD
Analog operating voltage
(ADC not used)
Analog operating voltage
(ADC used)
Backup operating voltage
444
Maximum power dissipation
–40
85
Low power dissipation
–40
105
Ambient temperature for 7
suffix version
Maximum power dissipation
–40
105
Low power dissipation(4)
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
(4)
1. When the ADC is used, refer to Table 51: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
34/95
Doc ID 15274 Rev 4
V
V
434
Ambient temperature for 6
suffix version
Junction temperature range
MHz
V
Power dissipation at TA = 85 °C LQFP100
for suffix 6 or TA = 105 °C for
LQFP64
suffix 7(3)
TA
TJ
Must be the same potential
as VDD(2)
Unit
mW
°C
°C
°C
STM32F105xx, STM32F107xx
5.3.2
Electrical characteristics
Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Table 10.
Operating conditions at power-up / power-down
Symbol
Parameter
tVDD
5.3.3
Conditions
Min
Max
VDD rise time rate
0
¢
VDD fall time rate
20
¢
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 11 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 9.
Table 11.
Embedded reset and power control block characteristics
Symbol
VPVDhyst(2)
PVD hysteresis
VPOR/PDR
Power on/power down
reset threshold
(2)
TRSTTEMPO
Typ
Max
Unit
PLS[2:0]=000 (rising edge)
2.1
2.18
2.26
V
PLS[2:0]=000 (falling edge)
2
2.08
2.16
V
PLS[2:0]=001 (rising edge)
2.19
2.28
2.37
V
PLS[2:0]=001 (falling edge)
2.09
2.18
2.27
V
PLS[2:0]=010 (rising edge)
2.28
2.38
2.48
V
PLS[2:0]=010 (falling edge)
2.18
2.28
2.38
V
PLS[2:0]=011 (rising edge)
2.38
2.48
2.58
V
PLS[2:0]=011 (falling edge)
2.28
2.38
2.48
V
PLS[2:0]=100 (rising edge)
2.47
2.58
2.69
V
PLS[2:0]=100 (falling edge)
2.37
2.48
2.59
V
PLS[2:0]=101 (rising edge)
2.57
2.68
2.79
V
PLS[2:0]=101 (falling edge)
2.47
2.58
2.69
V
PLS[2:0]=110 (rising edge)
2.66
2.78
2.9
V
PLS[2:0]=110 (falling edge)
2.56
2.68
2.8
V
PLS[2:0]=111 (rising edge)
2.76
2.88
3
V
PLS[2:0]=111 (falling edge)
2.66
2.78
2.9
V
Conditions
Programmable voltage
detector level selection
VPVD
VPDRhyst
Min
Parameter
(2)
100
mV
Falling edge
1.8(1)
1.88
1.96
V
Rising edge
1.84
1.92
2.0
V
PDR hysteresis
40
Reset temporization
1
2.5
mV
4.5
ms
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design, not tested in production.
Doc ID 15274 Rev 4
35/95
Electrical characteristics
5.3.4
STM32F105xx, STM32F107xx
Embedded reference voltage
The parameters given in Table 12 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 9.
Table 12.
Symbol
VREFINT
Embedded internal reference voltage
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.16
1.20
1.26
V
–40 °C < TA < +85 °C
1.16
1.20
1.24
V
5.1
17.1(2)
µs
10
mV
100
ppm/°C
ADC sampling time when
TS_vrefint(1) reading the internal reference
voltage
Internal reference voltage
VRERINT(2) spread over the temperature
range
TCoeff(2)
VDD = 3 V ±10 mV
Temperature coefficient
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
5.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 8: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
●
All I/O pins are in input mode with a static value at VDD or VSS (no load)
●
All peripherals are disabled except when explicitly mentioned
●
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
●
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
●
When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Table 13, Table 14 and Table 15 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 9.
36/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 13.
Electrical characteristics
Maximum current consumption in Run mode, code with data processing
running from Flash
Max(1)
Symbol
Parameter
Conditions
fHCLK
TA = 105 °C
72 MHz
68
68.4
48 MHz
49
49.2
36 MHz
38.7
38.9
24 MHz
27.3
27.9
16 MHz
20.2
20.5
8 MHz
10.2
10.8
72 MHz
32.7
32.9
48 MHz
25
25.2
External clock(3), all 36 MHz
peripherals disabled 24 MHz
20.3
20.6
14.8
15.1
16 MHz
11.2
11.7
8 MHz
6.6
7.2
External clock(2), all
peripherals enabled
IDD
Unit
TA = 85 °C
Supply current in
Run mode
mA
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 14.
Maximum current consumption in Run mode, code with data processing
running from RAM
Max(1)
Symbol
Parameter
Conditions
IDD
Unit
TA = 85 °C
TA = 105 °C
72 MHz
65.5
66
48 MHz
45.4
46
36 MHz
35.5
36.1
24 MHz
25.2
25.6
16 MHz
18
18.5
8 MHz
10.5
11
72 MHz
31.4
31.9
48 MHz
27.8
28.2
External clock(3), all 36 MHz
peripherals disabled 24 MHz
17.6
18.3
13.1
13.8
16 MHz
10.2
10.9
8 MHz
6.1
7.8
External clock(2), all
peripherals enabled
Supply
current in
Run mode
fHCLK
mA
1. Based on characterization, tested in production at VDD max, fHCLK max..
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Doc ID 15274 Rev 4
37/95
Electrical characteristics
Table 15.
STM32F105xx, STM32F107xx
Maximum current consumption in Sleep mode, code running from Flash or RAM
Max(1)
Symbol
Parameter
Conditions
External clock(2), all
peripherals enabled
Supply current in
Sleep mode
IDD
External clock(3), all
peripherals disabled
fHCLK
Unit
TA = 85 °C
TA = 105 °C
72 MHz
48.4
49
48 MHz
33.9
34.4
36 MHz
26.7
27.2
24 MHz
19.3
19.8
16 MHz
14.2
14.8
8 MHz
8.7
9.1
72 MHz
10.1
10.6
48 MHz
8.3
8.75
36 MHz
7.5
8
24 MHz
6.6
7.1
16 MHz
6
6.5
8 MHz
2.5
3
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 16.
Typical and maximum current consumptions in Stop and Standby modes
Typ(1)
Symbol
Parameter
Conditions
VDD/VBAT VDD/VBAT VDD/VBAT TA =
TA = Unit
= 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C
Regulator in Run mode, low-speed
and high-speed internal RC
oscillators and high-speed oscillator
Supply current OFF (no independent watchdog)
in Stop mode Regulator in Low Power mode, low-
IDD
speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
Low-speed internal RC oscillator and
independent watchdog ON
Supply current Low-speed internal RC oscillator
ON, independent watchdog OFF
in Standby
mode
Low-speed internal RC oscillator and
independent watchdog OFF, lowspeed oscillator and RTC OFF
Backup
IDD_VBAT domain supply Low-speed oscillator and RTC ON
current
1.1
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
38/95
Max
Doc ID 15274 Rev 4
32
33
600
1300
25
26
590
1280
3
3.8
-
-
2.8
3.6
-
-
1.9
2.1
5(2)
6.5(2)
1.2
1.4
2.1(2)
2.3(2)
µA
STM32F105xx, STM32F107xx
Figure 9.
Electrical characteristics
Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values
Consumption (µA)
2.5
1.8 V
2V
2.4 V
3.3 V
3.6 V
2
1.5
1
0.5
0
–40 °C
25 °C
70 °C
85 °C
105 °C
Temperature (°C)
ai17329
Figure 10. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values
900.00
800.00
Consumption (µA)
700.00
600.00
500.00
3.6 V
400.00
3.3 V
300.00
3V
200.00
2.7 V
2.4 V
100.00
0.00
–40 °C
25 °C
85 °C
Temperature (°C)
Doc ID 15274 Rev 4
105 °C
ai17122
39/95
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 11. Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values
900.00
Consumption (µA)
800.00
700.00
600.00
500.00
3.6 V
400.00
3.3 V
300.00
3V
200.00
2.7 V
2.4 V
100.00
0.00
–40 °C
25 °C
85 °C
105 °C
Temperature (°C)
ai17123
Figure 12. Typical current consumption in Standby mode versus temperature at
different VDD values
4.50
4.00
Consumption (µA)
3.50
3.00
2.50
3.6 V
2.00
3.3 V
1.50
3V
2.7 V
1.00
2.4 V
0.50
0.00
–40 °C
25 °C
85 °C
105 °C
Temperature (°C)
ai17124
Typical current consumption
The MCU is placed under the following conditions:
●
All I/O pins are in input mode with a static value at VDD or VSS (no load).
●
All peripherals are disabled except if it is explicitly mentioned.
●
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 48 MHz and 2 wait states above).
●
Ambient temperature and VDD supply voltage conditions summarized in Table 9.
●
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4
40/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 17.
Electrical characteristics
Typical current consumption in Run mode, code with data processing
running from Flash
Typ(1)
Symbol
Parameter
Conditions
(3)
External clock
IDD
Supply
current in
Run mode
Running on high
speed internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
fHCLK
All peripherals All peripherals
disabled
enabled(2)
72 MHz
47.3
28.3
48 MHz
32
19.6
36 MHz
24.6
15.4
24 MHz
16.8
10.6
16 MHz
11.8
7.4
8 MHz
5.9
3.7
4 MHz
3.7
2.9
2 MHz
2.5
2
1 MHz
1.8
1.53
500 kHz
1.5
1.3
125 kHz
1.3
1.2
36 MHz
23.9
14.8
24 MHz
16.1
9.7
16 MHz
11.1
6.7
8 MHz
5.6
3.8
4 MHz
3.1
2.1
2 MHz
1.8
1.3
1 MHz
1.16
0.9
500 kHz
0.8
0.67
125 kHz
0.6
0.5
Unit
mA
mA
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Doc ID 15274 Rev 4
41/95
Electrical characteristics
Table 18.
STM32F105xx, STM32F107xx
Typical current consumption in Sleep mode, code running from Flash or
RAM
Typ(1)
Symbol Parameter
Conditions
All peripherals All peripherals
enabled(2)
disabled
72 MHz
28.2
6
48 MHz
19
4.2
36 MHz
14.7
3.4
24 MHz
10.1
2.5
16 MHz
6.7
2
8 MHz
3.2
1.3
4 MHz
2.3
1.2
2 MHz
1.7
1.16
1 MHz
1.5
1.1
500 kHz
1.3
1.05
125 kHz
1.2
1.05
36 MHz
13.7
2.6
24 MHz
9.3
1.8
16 MHz
Running on high
8 MHz
speed internal RC
(HSI), AHB prescaler 4 MHz
used to reduce the
2 MHz
frequency
1 MHz
6.3
1.3
2.7
0.6
1.6
0.5
1
0.46
0.8
0.44
500 kHz
0.6
0.43
125 kHz
0.5
0.42
External clock
(3)
Supply
current in
Sleep mode
IDD
fHCLK
Unit
mA
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed
under the following conditions:
●
all I/O pins are in input mode with a static value at VDD or VSS (no load)
●
all peripherals are disabled unless otherwise mentioned
●
the given value is calculated by measuring the current consumption
●
42/95
–
with all peripherals clocked off
–
with one peripheral clocked on (with only the clock applied)
ambient operating temperature and VDD supply voltage conditions summarized in
Table 6
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 19.
Electrical characteristics
Peripheral current consumption(1)
Peripheral
AHB
APB1
APB2
Typical consumption at 25 °C
ETH_MAC
5.2
OTG_FS
7.7
TIM2
1.5
TIM3
1.5
TIM4
1.5
TIM5
1.5
TIM6
0.6
TIM7
0.3
SPI2
0.2
USART2
0.5
USART3
0.5
UART4
0.5
UART5
0.5
I2C1
0.5
I2C2
0.5
CAN1
0.8
CAN2
0.8
DAC
0.4
GPIO A
0.5
GPIO B
0.5
GPIO C
0.5
GPIO D
0.5
GPIO E
0.5
(2)
2.1
ADC2(2)
2.0
TIM1
1.7
SPI1
0.4
USART1
0.9
ADC1
Unit
mA
mA
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit
in the ADC_CR2 register is set to 1.
Doc ID 15274 Rev 4
43/95
Electrical characteristics
5.3.6
STM32F105xx, STM32F107xx
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 20 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 9.
Table 20.
High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
8
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1)
Cin(HSE)
16
ns
20
OSC_IN input capacitance(1)
5
DuCy(HSE) Duty cycle
IL
V
pF
45
OSC_IN Input leakage current
VSS
VIN
VDD
55
%
±1
µA
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
The characteristics given in Table 21 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 9.
Table 21.
Low-speed external user clock characteristics
Symbol
Parameter
Conditions
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
0.7VDD
VLSEL
OSC32_IN input pin low level
voltage
VSS
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1)
450
tr(LSE)
tf(LSE)
Cin(LSE)
IL
Typ
Max
Unit
32.768
1000
kHz
VDD
V
0.3VDD
ns
OSC32_IN rise or fall
time(1)
50
OSC32_IN input capacitance(1)
5
DuCy(LSE) Duty cycle
30
OSC32_IN Input leakage current
VSS
VIN
1. Guaranteed by design, not tested in production.
44/95
Min
Doc ID 15274 Rev 4
VDD
pF
70
%
±1
µA
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 13. High-speed external clock source AC timing diagram
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tW(HSE)
tW(HSE)
t
THSE
External
clock source
fHSE_ext
OSC _IN
IL
STM32F10xxx
ai14127b
Figure 14. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE)
t
TLSE
External
clock source
fLSE_ext
STM32F10xxx
ai14140c
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 3 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 22. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Doc ID 15274 Rev 4
45/95
Electrical characteristics
Table 22.
STM32F105xx, STM32F107xx
HSE 3-25 MHz oscillator characteristics(1) (2)
Symbol
fOSC_IN
Parameter
Conditions
Oscillator frequency
Typ
3
RF
Feedback resistor
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
i2
HSE driving current
gm
Oscillator transconductance
tSU(HSE(4)
Min
RS = 30"Y
25
MHz
kY
30
pF
1
25
VDD is stabilized
Startup time
Unit
200
VDD = 3.3 V, VIN = VSS
with 30 pF load
Startup
Max
mA
mA/V
2
ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 15). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 15. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
fHSE
OSC_IN
8 MH z
resonator
CL2
REXT(1)
RF
Bias
controlled
gain
OSC_OU T
STM32F10xxx
ai14128b
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 23. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
46/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 23.
LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
RF
Feedback resistor
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
Typ
Max
Unit
5
I2
LSE driving current
gm
Oscillator Transconductance
tSU(LSE)(4)
Min
MY
RS = 30 kY
15
pF
VDD = 3.3 V, VIN = VSS
1.4
µA
5
startup time
VDD is stabilized
µA/V
3
s
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
Note:
For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 16). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 16. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 KH z
resonator
CL2
RF
Bias
controlled
gain
OSC32_OU T
STM32F10xxx
ai14129b
Doc ID 15274 Rev 4
47/95
Electrical characteristics
5.3.7
STM32F105xx, STM32F107xx
Internal clock source characteristics
The parameters given in Table 24 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 9.
High-speed internal (HSI) RC oscillator
Table 24.
Symbol
HSI oscillator characteristics (1)
Parameter
Conditions
Min
Frequency
fHSI
Typ
8
User-trimmed with the RCC_CR
register(2)
Accuracy of the HSI
oscillator
Factorycalibrated(4)
ACCHSI
tsu(HSI)(4)
HSI oscillator
startup time
IDD(HSI)(4)
HSI oscillator
power consumption
Max
Unit
MHz
1(3)
%
TA = –40 to 105 °C
–2
2.5
%
TA = –10 to 85 °C
–1.5
2.2
%
TA = 0 to 70 °C
–1.3
2
%
TA = 25 °C
–1.1
1.8
%
1
2
µs
100
µA
80
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 25.
LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)
(3)
IDD(LSI)(3)
Parameter
Frequency
Min
Typ
Max
Unit
30
40
60
kHz
85
µs
1.2
µA
LSI oscillator startup time
LSI oscillator power consumption
0.65
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Wakeup time from low-power mode
The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
48/95
●
Stop or Standby mode: the clock source is the RC oscillator
●
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 9.
Table 26.
Low-power mode wakeup timings
Symbol
tWUSLEEP(1)
tWUSTOP(1)
tWUSTDBY(1)
Parameter
Typ
Unit
Wakeup from Sleep mode
1.8
µs
Wakeup from Stop mode (regulator in run mode)
3.6
Wakeup from Stop mode (regulator in low power mode)
5.4
Wakeup from Standby mode
50
µs
µs
1. The wakeup times are measured from the wakeup event to the point in which the user application code
reads the first instruction.
5.3.8
PLL, PLL2 and PLL3 characteristics
The parameters given in Table 27 and Table 28 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 9.
Table 27.
PLL characteristics
Min(1)
Max(1)
Unit
PLL input clock(2)
3
12
MHz
Pulse width at high level
30
fPLL_OUT
PLL multiplier output clock
18
72
MHz
fVCO_OUT
PLL VCO output
36
144
MHz
tLOCK
PLL lock time
350
µs
Jitter
Cycle-to-cycle jitter
300
ps
Symbol
fPLL_IN
Parameter
ns
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
Table 28.
PLL2 and PLL3 characteristics
Symbol
fPLL_IN
Parameter
PLL input
clock(2)
Min(1)
Max(1)
Unit
3
5
MHz
Pulse width at high level
30
ns
fPLL_OUT
PLL multiplier output clock
40
74
MHz
fVCO_OUT
PLL VCO output
80
148
MHz
tLOCK
PLL lock time
350
µs
Jitter
Cycle-to-cycle jitter
400
ps
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
Doc ID 15274 Rev 4
49/95
Electrical characteristics
5.3.9
STM32F105xx, STM32F107xx
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 29.
Symbol
tprog
tERASE
tME
IDD
Vprog
Flash memory characteristics
Min(1)
Typ
Max(1)
Unit
16-bit programming time TA"?"–40 to +105 °C
40
52.5
70
µs
Page (1 KB) erase time
TA ?"–40 to +105 °C
20
40
ms
Mass erase time
TA ?"–40 to +105 °C
20
40
ms
Read mode
fHCLK = 72 MHz with 2 wait
states, VDD = 3.3 V
20
mA
Write / Erase modes
fHCLK = 72 MHz, VDD = 3.3 V
5
mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V
50
µA
3.6
V
Parameter
Conditions
Supply current
Programming voltage
2
1. Guaranteed by design, not tested in production.
Table 30.
Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
(2)
1 kcycle
10
at TA = 105 °C
kcycles(2)
at TA = 55 °C
Unit
Typ
Max
10
20
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.
5.3.10
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
50/95
Doc ID 15274 Rev 4
kcycles
Years
STM32F105xx, STM32F107xx
Electrical characteristics
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
●
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
●
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 31. They are based on the EMS levels and classes
defined in application note AN1709.
Table 31.
EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD ?"3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 75 MHz, conforms to
induce a functional disturbance
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD"?"3.3 V, LQFP100, TA = +25 °C,
fHCLK = 75 MHz, conforms to
IEC 61000-4-2
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Doc ID 15274 Rev 4
51/95
Electrical characteristics
STM32F105xx, STM32F107xx
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE
IEC61967-2 standard which specifies the test board and the pin loading.
Table 32.
Symbol
SEMI
5.3.11
EMI characteristics
Parameter
Peak level
Max vs. [fHSE/fHCLK]
Monitored
frequency band
Conditions
VDD ?"3.3 V, TA ?"25 °C,
LQFP100 package
compliant with IEC61967-2
Unit
8/48 MHz
8/72 MHz
0.1 to 30 MHz
9
9
30 to 130 MHz
26
13
130 MHz to 1GHz
25
31
SAE EMI Level
4
4
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 33.
ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class Maximum value(1)
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA ?"+25 °C conforming to
JESD22-A114
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA ?"+25 °C conforming to
JESD22-C101
II
500
Unit
V
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
●
A supply overvoltage is applied to each power supply pin
●
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 34.
Symbol
LU
52/95
Electrical sensitivities
Parameter
Static latch-up class
Conditions
TA ?"+105 °C conforming to JESD78A
Doc ID 15274 Rev 4
Class
II level A
STM32F105xx, STM32F107xx
5.3.12
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 35 are derived from tests
performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL
compliant.
Table 35.
I/O static characteristics
Symbol
VIL
VIH
Parameter
Conditions
Min
TTL ports
–0.5
0.8
Standard IO input high level voltage
2
VDD+0.5
IO FT(1) input high level voltage
2
5.5V
–0.5
0.35 VDD
0.65 VDD
VDD+0.5
Input low level voltage
VIL
Input low level voltage
VIH
Input high level voltage
Vhys
CMOS ports
Standard IO Schmitt trigger voltage
hysteresis(2)
IO FT Schmitt trigger voltage hysteresis(2)
Ilkg
RPU
RPD
CIO
Input leakage current (4)
All pins except for
Weak pull-up equivalent PA10
resistor(5)
PA10
Weak pull-down
equivalent resistor(5)
All pins except for
PA10
Typ
Max
Unit
V
V
200
mV
5% VDD(3)
mV
VSS VIN VDD
Standard I/Os
‒1
VIN= 5 V, I/O FT
3
VIN ?"VSS
VIN ?"VDD
PA10
I/O pin capacitance
30
40
50
8
11
15
30
40
50
8
11
15
5
µA
kY
kY
pF
1. FT = Five-volt tolerant.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required), their
characteristics consider the most strict CMOS-technology or TTL parameters:
●
●
For VIH:
–
if VDD is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included
–
if VDD is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included
For VIL:
–
if VDD is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included
–
if VDD is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included
Doc ID 15274 Rev 4
53/95
Electrical characteristics
STM32F105xx, STM32F107xx
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink
+20 mA (with a relaxed VOL).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
●
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 7).
●
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 7).
Output voltage levels
Unless otherwise specified, the parameters given in Table 36 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 9. All I/Os are CMOS and TTL compliant.
Table 36.
Symbol
Output voltage characteristics
Parameter
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL (1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH (2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(3)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(3)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Conditions
TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
Min
Max
Unit
0.4
V
VDD–0.4
0.4
V
2.4
1.3
V
VDD–1.3
0.4
V
VDD–0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
3. Based on characterization data, not tested in production.
54/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 17 and
Table 37, respectively.
Unless otherwise specified, the parameters given in Table 37 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
Table 37.
I/O AC characteristics(1)
MODEx[1:0]
Symbol
bit value(1)
Parameter
Conditions
Min
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V
10
tf(IO)out
Output high to low
level fall time
tr(IO)out
Output low to high
level rise time
tf(IO)out
Output high to low
level fall time
tr(IO)out
Output low to high
level rise time
Fmax(IO)out Maximum frequency
11
tf(IO)out
tr(IO)out
-
tEXTIpw
Unit
2
MHz
125(3)
CL = 50 pF, VDD = 2 V to 3.6 V
ns
125(3)
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V
01
Max
10
MHz
25(3)
CL = 50 pF, VDD = 2 V to 3.6 V
ns
25(3)
(2)
Output high to low
level fall time
Output low to high
level rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V
50
MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V
30
MHz
CL = 50 pF, VDD = 2 V to 2.7 V
20
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
12(3)
Pulse width of
external signals
detected by the EXTI
controller
10
ns
ns
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 17.
3. Guaranteed by design, not tested in production.
Doc ID 15274 Rev 4
55/95
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 17. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
EXT ERNAL
OUTPUT
ON 50pF
tr(I O)out
tr(I O)out
T
Maximum frequency is achieved if (tr + tf) "2/3)T and if the duty cycle is (45-55%)"
when loaded by 50pF
ai14131
5.3.13
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 35).
Unless otherwise specified, the parameters given in Table 38 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
Table 38.
Symbol
NRST pin characteristics
Parameter
Conditions
Min
Typ
Max
VIL(NRST)(1)
NRST Input low level voltage
–0.5
0.8
VIH(NRST)(1)
NRST Input high level voltage
2
VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
(1)
200
VIN ?"VSS
30
NRST Input filtered pulse
VNF(NRST)(1) NRST Input not filtered pulse
VDD > 2.7 V
300
40
Unit
V
mV
50
kY
100
ns
ns
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
56/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 18. Recommended NRST pin protection
VDD
External
reset circuit(1)
NRST(2)
RPU
Internal reset
Filter
0.1 µF
STM32F10xxx
ai14132c
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 38. Otherwise the reset will not be taken into account by the device.
5.3.14
TIM timer characteristics
The parameters given in Table 39 are guaranteed by design.
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 39.
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
TIMx(1) characteristics
Parameter
Timer resolution time
Conditions
fTIMxCLK = 72 MHz
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 72 MHz
Min
tTIMxCLK
13.9
ns
0
fTIMxCLK/2
MHz
0
36
MHz
16
bit
65536
tTIMxCLK
910
µs
65536 × 65536
tTIMxCLK
59.6
s
16-bit counter clock period
1
when internal clock is
fTIMxCLK = 72 MHz 0.0139
selected
fTIMxCLK = 72 MHz
Unit
1
Timer resolution
tMAX_COUNT Maximum possible count
Max
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4 and TIM5 timers.
Doc ID 15274 Rev 4
57/95
Electrical characteristics
5.3.15
STM32F105xx, STM32F107xx
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 40 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 9.
The STM32F105xx and STM32F107xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 40. Refer also to Section 5.3.12: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 40.
I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Unit
Parameter
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
(3)
0(4)
900(3)
20 + 0.1Cb
300
0
µs
th(SDA)
SDA data hold time
tr(SDA)
tr(SCL)
SDA and SCL rise time
1000
tf(SDA)
tf(SCL)
SDA and SCL fall time
300
th(STA)
Start condition hold time
4.0
0.6
tsu(STA)
Repeated Start condition
setup time
4.7
0.6
tsu(STO)
Stop condition setup time
4.0
0.6
os
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
1.3
os
Cb
Capacitive load for each bus
line
400
ns
300
µs
400
pF
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be
higher than 4 MHz to achieve the maximum fast mode I2C frequency.
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
58/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 19. I2C bus AC waveforms and measurement circuit
VDD
VDD
4 .7 kΩ
4 .7 kΩ
100 Ω
STM32F10xxx
SDA
I²C bus
100 Ω
SCL
S TART REPEATED
S TART
S TART
tsu(STA)
SDA
tf(SDA)
tr(SDA)
th(STA)
SCL
tw(SCKH)
tsu(SDA)
tr(SCK)
tsu(STA:STO)
S TOP
th(SDA)
tw(SCKL)
tsu(STO)
tf(SCK)
ai14133c
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 41.
SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kY
400
0x801E
300
0x8028
200
0x803C
100
0x00B4
50
0x0168
20
0x0384
1. RP = External pull-up resistance, fSCL =
I 2C
speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ‒5%. For other speed ranges, the
tolerance on the achieved speed ‒2%. These variations depend on the accuracy of the external
components used to design the application.
Doc ID 15274 Rev 4
59/95
Electrical characteristics
STM32F105xx, STM32F107xx
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 42 for SPI or in Table 43 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 9.
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 42.
Symbol
fSCK
1/tc(SCK)
SPI characteristics(1)
Parameter
Conditions
SPI clock frequency
Min
Max
Master mode
18
Slave mode
18
8
ns
70
%
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
tsu(NSS)(2)
NSS setup time
Slave mode
4 tPCLK
th(NSS)(2)
NSS hold time
Slave mode
2 tPCLK
tw(SCKH)
tw(SCKL)(2)
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
50
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
Master mode
5
Slave mode
5
th(MI) (2)
th(SI)(2)
Data input hold time
Master mode
5
Slave mode
4
ta(SO)(2)(3)
Data output access
time
Slave mode, fPCLK = 20 MHz
0
3 tPCLK
tdis(SO)(2)(4)
Data output disable
time
Slave mode
2
10
tv(SO) (2)(1)
Data output valid time
Slave mode (after enable edge)
(2)(1)
Data output valid time
Master mode (after enable edge)
(2)
tv(MO)
th(SO)(2)
th(MO)(2)
Data output hold time
Unit
MHz
60
ns
25
5
Slave mode (after enable edge)
15
Master mode (after enable edge)
2
1. Remapped SPI1 characteristics to be determined.
2. Based on characterization, not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
60/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 20. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 21. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 15274 Rev 4
61/95
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 22. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
CPHA= 0
CPOL=0
SCK Input
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
62/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 43.
Electrical characteristics
I2S characteristics (1)
Symbol
Parameter
Conditions
Master
Min
Max
TBD
TBD
0
TBD
fCK
1/tc(CK)
I2S clock frequency
tr(CK)
tf(CK)
I2S clock rise and fall time
capacitive load
CL = 50 pF
tv(WS) (2)
WS valid time
Master
TBD
th(WS) (2)
WS hold time
Master
TBD
WS setup time
Slave
TBD
WS hold time
Slave
TBD
tw(CKH)
tw(CKL) (2)
CK high and low time
Master fPCLK= TBD,
presc = TBD
TBD
tsu(SD_MR) (2)
tsu(SD_SR) (2)
Data input setup time
Master receiver
Slave receiver
TBD
TBD
th(SD_MR)(2)(3)
th(SD_SR) (2)(3)
Data input hold time
Master receiver
Slave receiver
TBD
TBD
Data input hold time
Master fPCLK = TBD
Slave fPCLK = TBD
TBD
TBD
tsu(WS)
th(WS)
(2)
(2)
(2)
th(SD_MR) (2)
th(SD_SR) (2)
tv(SD_ST)
(2)(3)
Data output valid time
th(SD_ST) (2)
Data output hold time
tv(SD_MT) (2)(3)
Data output valid time
th(SD_MT) (2)
Data output hold time
Slave
MHz
TBD
ns
Slave transmitter
(after enable edge)
TBD
fPCLK = TBD
TBD
Slave transmitter
(after enable edge)
Unit
TBD
Master transmitter
(after enable edge)
TBD
fPCLK = TBD
TBD
Master transmitter
(after enable edge)
TBD
TBD
1. TBD = to be determined.
2. Based on design simulation and/or characterization results, not tested in production.
3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
Doc ID 15274 Rev 4
63/95
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 23. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 24. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
64/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed).
Table 44.
USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 45.
USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
3.6
VDI(3) Differential input sensitivity
I(USBDP, USBDM)
0.2
VCM(3)
Differential common mode
range
Includes VDI range
0.8
2.5
VSE(3)
Single ended receiver
threshold
1.3
2.0
VOL
Static output level low
RL of 1.5 kY to 3.6 V(4)
VOH
Static output level high
RL of 15 kY to VSS(4)
Output
levels
RPD
RPU
Pull-down resistance on
PA11, PA12
Pull-down resistance on
PA9
V
V
0.3
2.8
V
3.6
17
21
24
0.65
1.1
2.0
VIN = VDD
Pull-up resistance on PA12
VIN = VSS
1.5
1.8
2.1
Pull-up resistance on PA9
VIN = VSS
0.25
0.37
0.55
kY
1. All the voltages are measured from the local ground potential.
2. The STM32F105xx and STM32F107xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers
Figure 25. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
data lines
VCRS
VS S
tf
tr
ai14137
Doc ID 15274 Rev 4
65/95
Electrical characteristics
STM32F105xx, STM32F107xx
USB OTG FS electrical characteristics(1)
Table 46.
Driver characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
tr
Rise time(2)
CL = 50 pF
4
20
ns
tf
Fall time(2)
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
trfm
Rise/ fall time matching
VCRS
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
Ethernet characteristics
Table 47 showns the Ethernet operating voltage.
Table 47.
Ethernet DC electrical characteristics
Symbol
Input level
Parameter
VDD
Ethernet operating voltage
Min.(1)
Max.(1)
Unit
3.0
3.6
V
1. All the voltages are measured from the local ground potential.
Table 48 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 26 shows the corresponding timing diagram.
Figure 26. Ethernet SMI timing diagram
tMDC
ETH_MDC
td(MDIO)
ETH_MDIO(O)
tsu(MDIO)
th(MDIO)
ETH_MDIO(I)
ai15666c
Table 48.
Symbol
Dynamics characteristics: Ethernet MAC signals for SMI(1)
Rating
Typ
Max
Unit
tMDC
MDC cycle time (1.71 MHz, AHB = 72 MHz)
582.8
583.3
584
ns
td(MDIO)
MDIO write data valid time
305.2
305.9
306.5
ns
tsu(MDIO) Read data setup time
TBD
TBD
TBD
ns
th(MDIO)
TBD
TBD
TBD
ns
Read data hold time
1. TBD stands for to be determined.
66/95
Min
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Table 49 gives the list of Ethernet MAC signals for the RMII and Figure 27 shows the
corresponding timing diagram.
Figure 27. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 49.
Dynamics characteristics: Ethernet MAC signals for RMII(1)
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
TBD
TBD
TBD
ns
tih(RXD)
Receive data hold time
TBD
TBD
TBD
ns
tsu(CRS)
Carrier sense set-up time
TBD
TBD
TBD
ns
tih(CRS)
Carrier sense hold time
TBD
TBD
TBD
ns
td(TXEN)
Transmit enable valid delay time
0
9.6
21.9
ns
td(TXD)
Transmit data valid delay time
0
9.9
21
ns
1. TBD stands for to be determined.
Table 50 gives the list of Ethernet MAC signals for MII and Figure 27 shows the
corresponding timing diagram.
Figure 28. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
Doc ID 15274 Rev 4
67/95
Electrical characteristics
Table 50.
STM32F105xx, STM32F107xx
Dynamics characteristics: Ethernet MAC signals for MII(1)
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
TBD
TBD
TBD
ns
tih(RXD)
Receive data hold time
TBD
TBD
TBD
ns
tsu(DV)
Data valid setup time
TBD
TBD
TBD
ns
tih(DV)
Data valid hold time
TBD
TBD
TBD
ns
tsu(ER)
Error setup time
TBD
TBD
TBD
ns
tih(ER)
Error hold time
TBD
TBD
TBD
ns
td(TXEN)
Transmit enable valid delay time
13.4
15.5
17.7
ns
td(TXD)
Transmit data valid delay time
12.9
16.1
19.4
ns
1. TBD stands for to be determined.
CAN (controller area network) interface
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.16
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 51 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 9.
Note:
It is recommended to perform a calibration after each power-up.
Table 51.
ADC characteristics
Symbol
Parameter
Conditions
Min
VDDA
Power supply
2.4
VREF+
Positive reference voltage
2.4
Typ
160(1)
Max
Unit
3.6
V
VDDA
V
220(1)
µA
IVREF
Current on the VREF input pin
fADC
ADC clock frequency
0.6
14
MHz
fS(2)
Sampling rate
0.05
1
MHz
823
kHz
17
1/fADC
VREF+
V
50
kY
RADC(2) Sampling switch resistance
1
kY
CADC(2) Internal sample and hold capacitor
8
pF
fTRIG(2) External trigger frequency
VAIN
68/95
0 (VSSA or VREFtied to ground)
Conversion voltage range(3)
RAIN(2) External input impedance
tCAL(2)
fADC = 14 MHz
Calibration time
See Equation 1 and
Table 52 for details
fADC = 14 MHz
Doc ID 15274 Rev 4
5.9
µs
83
1/fADC
STM32F105xx, STM32F107xx
Table 51.
Electrical characteristics
ADC characteristics (continued)
Symbol
Parameter
tlat(2)
Injection trigger conversion latency
tlatr(2)
Regular trigger conversion latency
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time (including
sampling time)
Conditions
Min
Typ
fADC = 14 MHz
Max
Unit
0.214
µs
3
fADC = 14 MHz
fADC = 14 MHz
(4)
1/fADC
0.143
µs
2(4)
1/fADC
0.107
17.1
µs
1.5
239.5
1/fADC
1
µs
18
µs
0
fADC = 14 MHz
0
1
14 to 252 (tS for sampling +12.5 for
successive approximation)
1/fADC
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 51.
Equation 1: RAIN max formula
TS
R AIN > ------------------------------------------------------------- – R ADC
N+2
f ADC · C ADC · ln * 2
+
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 52.
RAIN max for fADC = 14 MHz(1)
Ts (cycles)
tS (µs)
RAIN max (kY)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Based on characterization, not tested in production.
Doc ID 15274 Rev 4
69/95
Electrical characteristics
Table 53.
Symbol
STM32F105xx, STM32F107xx
ADC accuracy - limited test conditions(1)
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
Typ
Max(2)
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kY,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
±0.8
±1.5
Typ
Max(3)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Based on characterization, not tested in production.
Table 54.
ADC accuracy(1) (2)
Symbol
Parameter
ET
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kY,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
3. Based on characterization, not tested in production.
Note:
70/95
ADC accuracy vs. negative injection current: Injecting a negative current on any of the
standard (non-robust) analog input pins should be avoided as this significantly reduces the
accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and UIINJ(PIN) in
Section 5.3.12 does not affect the ADC accuracy.
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 29. ADC accuracy characteristics
V
V
[1LSBIDEAL = REF+ (or DDA depending on package)]
4096
4096
EG
4095
4094
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4093
(2)
ET
7
(1)
6
5
4
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
(3)
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
ai14395b
Figure 30. Typical connection diagram using the ADC
STM32F10xxx
VDD
RAIN(1)
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
AINx
VAIN
Cparasitic
VT
0.6 V
IL±1 µA
12-bit
converter
CADC(1)
ai14139d
1. Refer to Table 51 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
Doc ID 15274 Rev 4
71/95
Electrical characteristics
STM32F105xx, STM32F107xx
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 31 or Figure 32,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 31. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F10xxx
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai14380c
1. VREF+ and VREF– inputs are available only on 100-pin packages.
Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F10xxx
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai14381c
1. VREF+ and VREF– inputs are available only on 100-pin packages.
72/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Electrical characteristics
5.3.17
DAC electrical specifications
Table 55.
DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VDDA
Analog supply voltage
2.4
3.6
V
VREF+
Reference supply voltage
2.4
3.6
V
Ground
0
0
V
Resistive load with buffer ON
5
VSSA
RLOAD
(1)
Comments
VREF+ must always be below VDDA
kY
RO(1)
Impedance output with buffer
OFF
15
kY
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MY
CLOAD(1)
Capacitive load
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer ON
0.2
V
DAC_OUT Higher DAC_OUT voltage
max(1)
with buffer ON
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer OFF
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(1)
IDDVREF+
DAC DC current consumption
in quiescent mode (Standby
mode)
IDDA
DAC DC current consumption
in quiescent mode (Standby
mode)
DNL(2)
INL(2)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
VDDA – 0.2
0.5
V
mV
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x155) to (0xEAB) at
VREF+ = 2.4 V
It gives the maximum output
excursion of the DAC.
VREF+ – 1LSB
V
220
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
380
µA
With no load, middle code (0x800)
on the inputs
480
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
±0.5
LSB
Given for the DAC in 10-bit
configuration.
±2
LSB
Given for the DAC in 12-bit
configuration.
±1
LSB
Given for the DAC in 10-bit
configuration.
±4
LSB
Given for the DAC in 12-bit
configuration.
Doc ID 15274 Rev 4
73/95
Electrical characteristics
Table 55.
Symbol
Offset(2)
Gain
error(2)
STM32F105xx, STM32F107xx
DAC characteristics (continued)
Parameter
Min
Unit
Comments
±10
mV
Given for the DAC in 12-bit
configuration
±3
LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
±12
LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain error
±0.5
%
Given for the DAC in 12bit
configuration
4
µs
CLOAD
RLOAD
50 pF,
5 kY
1
MS/s
CLOAD
RLOAD
50 pF,
5 kY
6.5
10
µs
CLOAD 50 pF, RLOAD 5 kY
input code between lowest and
highest possible ones.
–67
–40
dB
No RLOAD, CLOAD = 50 pF
3
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
Wakeup time from off state
tWAKEUP(2) (Setting the ENx bit in the
DAC Control register)
PSRR+ (1)
Max
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
Settling time (full scale: for a
10-bit input code transition
(2) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±1LSB
Update
rate(2)
Typ
Power supply rejection ratio
(to VDDA) (static DC
measurement
1. Guaranteed by design, not tested in production.
2. Guaranteed by characterization, not tested in production.
Figure 33. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
12-bit
digital to
analog
converter
DACx_OUT
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
74/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
5.3.18
Electrical characteristics
Temperature sensor characteristics
Table 56.
TS characteristics
Symbol
TL(1)
Parameter
tSTART(2)
TS_temp(3)(2)
Typ
Max
Unit
‒1
‒2
°C
4.0
4.3
4.6
mV/°C
1.34
1.43
1.52
V
10
µs
17.1
µs
VSENSE linearity with temperature
Avg_Slope(1) Average slope
V25(1)
Min
Voltage at 25 °C
Startup time
4
ADC sampling time when reading the
temperature
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
Doc ID 15274 Rev 4
75/95
Package characteristics
STM32F105xx, STM32F107xx
6
Package characteristics
6.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
76/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Package characteristics
Figure 35. Recommended footprint(1)(2)
Figure 34. LQFP100, 100-pin low-profile quad flat
package outline(1)
0.25 mm
0.10 inch
GAGE PLANE
k
75
51
D
L
D1
76
50
0.5
L1
D3
51
75
C
0.3
76
50
16.7
14.3
b
E3 E1 E
100
26
1.2
25
1
100
26
Pin 1
1
identification
12.3
25
ccc
C
16.7
e
A1
ai14906
A2
A
SEATING PLANE
C
1L_ME
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Table 57.
LQPF100 – 100-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Typ
Min
A
Max
Typ
Min
1.60
A1
0.05
0.15
Max
0.063
0.002
0.0059
A2
1.40
1.35
1.45
0.0551
0.0531
0.0571
b
0.22
0.17
0.27
0.0087
0.0067
0.0106
0.09
0.20
0.0035
0.0079
c
D
16.00
15.80
16.20
0.6299
0.622
0.6378
D1
14.00
13.80
14.20
0.5512
0.5433
0.5591
D3
12.00
E
16.00
15.80
16.20
0.6299
0.622
0.6378
E1
14.00
13.80
14.20
0.5512
0.5433
0.5591
E3
12.00
e
0.50
L
0.60
0.0177
0.0295
L1
1.00
k
3.5°
0°
7°
ccc
0.4724
0.4724
0.0197
0.45
0.75
0.0236
0.0394
0°
7°
0.08
3.5°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15274 Rev 4
77/95
Package characteristics
STM32F105xx, STM32F107xx
Figure 37. Recommended footprint(1)(2)
Figure 36. LQFP64 – 64 pin low-profile quad flat
package outline(1)
A
33
48
A2
0.3
A1
E
49
b
E1
12.7
32
0.5
10.3
e
10.3
64
17
1.2
1
D1
16
c
7.8
L1
D
L
12.7
ai14909
ai14398b
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Table 58.
LQFP64 – 64 pin low-profile quad flat package mechanical data
inches(1)
mm
Dim.
Min
Typ
A
Max
Min
1.60
A1
0.05
A2
1.35
b
0.17
c
0.09
Max
0.0630
0.15
0.0020
0.0059
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.20
0.0035
0.0079
D
12.00
0.4724
D1
10.00
0.3937
E
12.00
0.4724
E1
10.00
0.3937
e
0.50
0.0197
s
0°
3.5°
7°
0°
3.5°
7°
L
0.45
0.60
0.75
0.0177
0.0236
0.0295
L1
N
1.00
0.0394
Number of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
78/95
Typ
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
6.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 34.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × SJA)
Where:
●
TA max is the maximum ambient temperature in flC,
●
SJA is the package junction-to-ambient thermal resistance, in flC/W,
●
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
●
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = U"(VOL × IOL) + U((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 59.
Package thermal characteristics
Symbol
SJA
6.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Doc ID 15274 Rev 4
79/95
Package characteristics
6.2.2
STM32F105xx, STM32F107xx
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 60: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 59 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 60: Ordering information scheme).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
80/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Package characteristics
Using the values obtained in Table 59 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 60: Ordering information scheme).
Figure 38. LQFP100 PD max vs. TA
700
PD (mW)
600
500
Suffix 6
400
Suffix 7
300
200
100
0
65
75
85
95
105
115
125
135
TA (°C)
Doc ID 15274 Rev 4
81/95
Part numbering
7
STM32F105xx, STM32F107xx
Part numbering
Table 60.
Ordering information scheme
Example:
STM32
F 105 R C
T
6
xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
105 = connectivity, USB OTG FS
107= connectivity, USB OTG FS & Ethernet
Pin count
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and real
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
82/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Appendix A
A.1
Applicative block diagrams
Applicative block diagrams
USB OTG FS interface solutions
Figure 39. USB OTG FS device mode
STM32F105xx/STM32F107xx
OTG PHY
USB
OTG
Full-speed
core
DM
HNP
V BUS
VSS
ID
USB Micro-B connector
DP
USB
Full-speed
transceiver
To host
DP
DM
VBUS
VSS
SRP
VDD(1)
5 V to VDD
Regulator(2)
ai15653b
1. VDD ranges between 2 V and 3.6 V.
2. Use a regulator if you want to build a bus-powered device.
Doc ID 15274 Rev 4
83/95
Applicative block diagrams
STM32F105xx, STM32F107xx
Figure 40. Host connection
STM32F105xx/STM32F107xx
OTG PHY
USB
OTG
Full-speed
core
DM
HNP
V BUS
VSS
ID
USB Std-A connector
DP
USB
full-speed/
low-speed
transceiver
VDD(2)
SRP
GPIO
GPIO + IRQ
Current-limited
power distribution 5 V
switch
OVRCR
STMPS2141STR(1)
flag
EN
ai15654b
1. STMPS2141STR needed only if the application has to support bus-powered devices.
2. VDD ranges between 2 V and 3.6 V.
84/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Applicative block diagrams
Figure 41. OTG connection (any protocol)
STM32F105xx/STM32F107xx
OTG PHY
DM
ID
USB
OTG
Full-speed
core
HNP
V BUS
VSS
ID
USB Micro-AB connector
DP
USB
full-speed/
low-speed
transceiver
VDD(2)
SRP
GPIO
GPIO + IRQ
Current-limited
power distribution 5 V
switch
OVRCR
STMPS2141STR(1)
flag
EN
ai15655b
1. STMPS2141STR needed only if the application has to support bus-powered devices.
2. VDD ranges between 2 V and 3.6 V.
A.2
Ethernet interface solutions
Figure 42. MII mode using a 25 MHz crystal
STM32F107xx
MCU
Ethernet
MAC 10/100
HCLK(1)
IEEE1588 PTP
Timer
input
trigger Timestamp
TIM2
comparator
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
MII_CRS
MII_COL
Ethernet
PHY 10/100
MII
= 15 pins
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
MII + MDC
= 17 pins
MDIO
MDC
PPS_OUT(2)
XTAL
25 MHz
OSC
HCLK
PLL
PHY_CLK 25 MHz
XT1
ai15656
1. HCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP, optional signal.
Doc ID 15274 Rev 4
85/95
Applicative block diagrams
STM32F105xx, STM32F107xx
Figure 43. RMII with a 50 MHz oscillator
Ethernet
PHY 10/100
STM32F107xx
MCU
Ethernet
MAC 10/100
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK(1)
RMII_CRX_DV
RMII
= 7 pins
RMII + MDC
= 9 pins
RMII_REF_CLK
IEEE1588 PTP
Timer
input
trigger Timestamp
TIM2
comparator
MDIO
MDC
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
OSC
50 MHz
PLL
HCLK
PHY_CLK
50 MHz
XT1
50 MHz
ai15657
1. HCLK must be greater than 25 MHz.
Figure 44. RMII with a 25 MHz crystal and PHY with PLL
STM32F107xx
MCU
Ethernet
MAC 10/100
Ethernet
PHY 10/100
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK(1)
RMII_CRX_DV
RMII_REF_CLK
IEEE1588 PTP
Timer
input
trigger Timestamp
TIM2
comparator
RMII
= 7 pins
REF_CLK
MDIO
RMII + MDC
= 9 pins
MDC
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
XTAL
25 MHz
OSC
PLL
HCLK
PLL
PHY_CLK 25 MHz
XT1
ai15658
1. HCLK must be greater than 25 MHz.
86/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Applicative block diagrams
Figure 45. RMII with a 25 MHz crystal
STM32F107xx
MCU
RMII_TX_EN
Ethernet
MAC 10/100
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK
RMII_CRX_DV
IEEE1588 PTP 50 MHz
Timer
input
trigger Time stamp
TIM2
comparator
XTAL
25 MHz
Ethernet
PHY 10/100
RMII_REF_CLK
RMII
= 7 pins
50 MHz
MDIO
RMII + MDC
= 9 pins
MDC
50 MHz
OSC
PLLS
XT1/XT2
NS DP83848(1)
ai15659b
1. The NS DP83848 is recommended as the input jitter requirement of this PHY. It is compliant with the output
jitter specification of the MCU.
Doc ID 15274 Rev 4
87/95
Applicative block diagrams
A.3
STM32F105xx, STM32F107xx
Complete audio player solutions
Two solutions are offered, illustrated in Figure 46 and Figure 47.
Figure 46 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 46. Complete audio player solution 1
STM32F105/STM32F107
XTAL
14.7456 MHz
Cortex-M3 core
72 MHz
SPI
LCD
touch
screen
GPIO
Control
buttons
Program memory
OTG
(host
mode) +
PHY
USB
Mass-storage
device
File
System
DAC +
Audio
ampli
I2S
Audio
CODEC
User
application
MMC/
SDCard
SPI
ai15660
Figure 47 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 47. Complete audio player solution 2
STM32F105/STM32F107
XTAL
14.7456 MHz
Cortex-M3 core
72 MHz
SPI
LCD
touch
screen
GPIO
Control
buttons
Program memory
USB
Mass-storage
device
SOF
MMC/
SDCard
OTG
+
PHY
File
System
I2S
User
application
SPI
Audio
CODEC
Audio
ampli
SOF synchronization of input/output
audio streaming
ai15661
88/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
A.4
Applicative block diagrams
USB OTG FS interface + Ethernet/I2S interface solutions
With the clock tree implemented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the Ethernet (MII/RMII) interfaces. Figure 48
illustrate the solution.
Figure 48. USB OTG FS + Ethernet solution
STM32F107
MCU
OSC
XTAL
25 MHz
Div
by 5
PLL2
x8
Cortex-M3 core
up to
72 MHz
Div
by 5
sel
PLL
x9
VCO
Out
x18
Div by 3
OTG
48 MHz
PLL3 Up to
x10 50 MHz
Ethernet MCO
PHY
PHY
MCLK
I2S
MCO
2% accuracy
error
SCLK
sel
ai15662b
With the clock tree implemented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the I2S (Audio) interfaces. Figure 49 illustrate the
solution.
Figure 49. USB OTG FS + I2S (Audio) solution
STM32F105/STM32F107
XTAL
14.7456 MHz
MCU
OSC
Div
by 4
PLL2
x12
Up to
71.88 MHz
Div
by 4
sel
MCO
MCO
PLL
x6.5
VCO
Out
x13
PLL3
VCO
Out
x40 Up to
147.456 MHz
Div by 3
Cortex-M3 core
OTG
47.9232 MHz
PHY
0.16% accuracy error
MCLK
I2S
Less than 0.5% accuracy
error on MCLK and SCLK
SCLK
ai15663b
Doc ID 15274 Rev 4
89/95
Applicative block diagrams
Table 61.
STM32F105xx, STM32F107xx
PLL configurations
Crystal
value in
PREDIV2 PLL2MUL
MHz
(XT1)
Application
PLLSRC
PREDIV1
PLLMUL
USB
I2Sn MCO (main
prescaler
clock
PLL3MUL clock
(PLLVCO
output)
input
output)
Ethernet only
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
NA
PLL3ON
x10
NA
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
/3
PLL3ON
x10
NA
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ basic audio
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
/3
PLL3ON
x10
PLL
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ Audio class
14.7456
I2S(1)
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
/3
PLL3ON
x20
PLL3
VCO
Out
NA
ETH PHY
must use its
own crystal
OTG only
8
NA
PLL2OFF
XT1
/1
PLLON x9
/3
PLL3OFF
NA
NA
OTG + basic
audio
8
NA
PLL2OFF
XT1
/1
PLLON x9
/3
PLL3OFF
PLL
NA
OTG + Audio
class I2S(1)
14.7456
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
/3
PLL3ON
x20
PLL3
VCO
Out
NA
Audio class I2S
14.7456
only(1)
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
NA
PLL3ON
x20
PLL3
VCO
out
NA
1. SYSCLK is set to be at 72 MHz except in this case where SYSCLK is at 71.88 MHz.
Table 62 give the IDD run mode values that correspond to the conditions specified in
Table 61.
90/95
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 62.
Symbol
IDD
Applicative block diagrams
Applicative current consumption in Run mode, code with data
processing running from Flash
parameter
Conditions(1)
Typ(2)
Max(2)
85 °C
105 °C
External clock, all peripherals enabled
except ethernet,
HSE = 8 MHz, fHCLK = 72 MHz, no
MCO
57
63
64
External clock, all peripherals enabled
except ethernet,
HSE = 14.74 MHz, fHCLK = 72 MHz, no
MCO
60.5
67
68
External clock, all peripherals enabled
except OTG,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 25 MHz
53
60.7
61
60.5
65.5
66
External clock, all peripherals enabled,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 50 MHz
64
69.7
70
External clock, all peripherals enabled,
HSE = 50 MHz(3), fHCLK = 72 MHz, no
MCO
62.5
67.5
68
External clock, only OTG enabled,
HSE = 8 MHz, fHCLK = 48 MHz, no
MCO
26.7
None
None
External clock, only ethernet enabled,
HSE = 25 MHz, fHCLK = 25 MHz, MCO
= 25 MHz
14.3
None
None
External clock, all peripherals enabled,
Supply current HSE = 25 MHz, f
HCLK = 72 MHz, MCO
in run mode
= 25 MHz
Unit
mA
1. VDD = 3.3 V.
2. Based on characterization, not tested in production.
3. External oscillator.
Doc ID 15274 Rev 4
91/95
Revision history
STM32F105xx, STM32F107xx
Revision history
Table 63.
Document revision history
Date
Revision
18-Dec-2008
1
Initial release.
2
I/O information clarified on page 1. Figure 4: STM32F105xxx and
STM32F107xxx connectivity line BGA100 ballout top view corrected.
Section 2.3.8: Boot modes updated.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default
column to Remap column, plus small additional changes in Table 5:
Pin definitions.
Consumption values modified in Section 5.3.5: Supply current
characteristics.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Table 20: High-speed external user clock characteristics and
Table 21: Low-speed external user clock characteristics modified.
Table 27: PLL characteristics modified and Table 28: PLL2 and PLL3
characteristics added.
20-Feb-2009
92/95
Changes
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Table 63.
Revision history
Document revision history (continued)
Date
19-Jun-2009
Revision
Changes
3
Section 2.3.8: Boot modes and Section 2.3.20: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support updated.
Section 2.3.24: Remap capability added.
Figure 1: STM32F105xx and STM32F107xx connectivity line block
diagram and Figure 4: Memory map updated.
In Table 5: Pin definitions:
– I2S3_WS, I2S3_CK and I2S3_SD default alternate functions
added
– small changes in signal names
– Note 5 modified
– ETH_MII_PPS_OUT and ETH_RMII_PPS_OUT replaced by
ETH_PPS_OUT
– ETH_MII_MDIO and ETH_RMII_MDIO replaced by ETH_MDIO
– ETH_MII_MDC and ETH_RMII_MDC replaced by ETH_MDC
Figures: Typical current consumption in Run mode versus frequency
(at 3.6 V) - code with data processing running from RAM, peripherals
enabled and Typical current consumption in Run mode versus
frequency (at 3.6 V) - code with data processing running from RAM,
peripherals disabled removed.
Table 13: Maximum current consumption in Run mode, code with
data processing running from Flash, Table 14: Maximum current
consumption in Run mode, code with data processing running from
RAM and Table 15: Maximum current consumption in Sleep mode,
code running from Flash or RAM are to be determined.
Figure 11 and Figure 12 show typical curves. PLL1 renamed to PLL.
IDD supply current in Stop mode modified in Table 16: Typical and
maximum current consumptions in Stop and Standby modes.
Figure 10: Typical current consumption in Stop mode with regulator
in Run mode versus temperature at different VDD values, Figure 12:
Typical current consumption in Standby mode versus temperature at
different VDD values and Figure 12: Typical current consumption in
Standby mode versus temperature at different VDD values updated.
Table 17: Typical current consumption in Run mode, code with data
processing running from Flash, Table 18: Typical current
consumption in Sleep mode, code running from Flash or RAM and
Table 19: Peripheral current consumption updated.
fHSE_ext modified in Table 20: High-speed external user clock
characteristics.
Min PLL input clock (fPLL_IN), fPLL_OUT min and fPLL_VCO min
modified in Table 27: PLL characteristics.
ACCHSI max values modified in Table 24: HSI oscillator
characteristics. Table 31: EMS characteristics and Table 32: EMI
characteristics updated. Table 42: SPI characteristics updated.
Modified: Figure 23: I2S slave timing diagram (Philips protocol)(1),
Figure 24: I2S master timing diagram (Philips protocol)(1) and
Figure 26: Ethernet SMI timing diagram.
BGA100 package removed.
Section 6.2: Thermal characteristics added. Small text changes.
Doc ID 15274 Rev 4
93/95
Revision history
STM32F105xx, STM32F107xx
Table 63.
Document revision history (continued)
Date
14-Sep-2009
94/95
Revision
Changes
4
Document status promoted from Preliminary data to full datasheet.
Number of DACs corrected in Table 3: STM32F105xx and
STM32F107xx family versus STM32F103xx family.
Note 4 added in Table 5: Pin definitions.
VRERINT and TCoeff added to Table 12: Embedded internal reference
voltage.
Values added to Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash, Table 14:
Maximum current consumption in Run mode, code with data
processing running from RAM and Table 15: Maximum current
consumption in Sleep mode, code running from Flash or RAM.
Typical IDD_VBAT value added in Table 16: Typical and maximum
current consumptions in Stop and Standby modes.
Figure 9: Typical current consumption on VBAT with RTC on vs.
temperature at different VBAT values added.
Values modified in Table 17: Typical current consumption in Run
mode, code with data processing running from Flash and Table 18:
Typical current consumption in Sleep mode, code running from Flash
or RAM.
fHSE_ext min modified in Table 20: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 22: HSE 3-25 MHz oscillator
characteristics and Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Note 1
modified below Figure 15: Typical application with an 8 MHz crystal.
Conditions removed from Table 26: Low-power mode wakeup
timings.
Standards modified in Section 5.3.10: EMC characteristics on
page 50, conditions modified in Table 31: EMS characteristics.
Jitter maximum values added to Table 27: PLL characteristics and
Table 28: PLL2 and PLL3 characteristics.
RPU and RPD modified in Table 35: I/O static characteristics.
Condition added for VNF(NRST) parameter in Table 38: NRST pin
characteristics. Note removed and RPD, RPU values added in
Table 45: USB OTG FS DC electrical characteristics.
Table 47: Ethernet DC electrical characteristics added.
Parameter values added to Table 48: Dynamics characteristics:
Ethernet MAC signals for SMI, Table 49: Dynamics characteristics:
Ethernet MAC signals for RMII and Table 50: Dynamics
characteristics: Ethernet MAC signals for MII.
CADC and RAIN parameters modified in Table 51: ADC
characteristics. RAIN max values modified in Table 52: RAIN max for
fADC = 14 MHz.
Table 55: DAC characteristics modified. Figure 33: 12-bit buffered
/non-buffered DAC added.
Table 62: Applicative current consumption in Run mode, code with
data processing running from Flash added.
Small text changes.
Doc ID 15274 Rev 4
STM32F105xx, STM32F107xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15274 Rev 4
95/95