TI TLE2072IP

TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
•
•
•
•
•
•
•
•
40 -V/µs Slew Rate Typ
Low Noise
17 nV/√Hz Max at f = 10 kHz
11.6 nV/√Hz Typ at f = 10 kHz
High Gain-Bandwidth Product . . . 10 MHz
± 30 -mA Minimum Short-Circuit Output
Current
Wide Supply Range . . . ± ± Input Range Includes the Positive Supply
Macromodel Included
Fast Settling Time Using 10-V Step
400 ns to 10 mV Typ
1.5 µs to 1 mV Typ
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
50
45
40
Gain-Bandwidth Product – MHz
Hz
V n – Equivalent Input Noise Voltage – nV/
Vn
13
VCC ± = ± 15 V
VIC = 0
RS = 20 Ω
TA = 25°C
35
30
25
20
15
10
f = 100 kHz
VIC = 0
VO = 0
RL = 2 kΩ
CL = 100 pF
12
11
VCC ± = ± 15 V
10
VCC ± = ± 5 V
9
8
5
0
10
100
1k
7
– 75 – 55 – 35 –15
10 k
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
f – Frequency – Hz
description
The TLE2072 and TLE2072A are low-noise, high-performance, internally compensated JFET-input dual
operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. These devices
combine low noise with outstanding output drive capability, high slew rate, and wide bandwidth.
AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
FORM
(Y)
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
0°C to 70°C
3.5 mV
6 mV
TLE2072ACD
TLE2072CD
—
—
TLE2072ACP
TLE2072CP
—
TLE2072Y
– 40°C to 85°C
3.5 mV
6 mV
TLE2072AID
TLE2072ID
—
—
TLE2072AIP
TLE2072IP
—
– 55°C to 125°C
3.5 mV
6 mV
TLE2072AMFK
TLE2072MFK
TLE2072AMJG
TLE2072MJG
—
—
—
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2072ACDR). Chip-form versions
are tested at TA = 25°C. For chip-form orders, contact your local TI sales office.
Copyright  1994, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-STD-883, Class B, all parameters are
tested unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–1
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
description (continued)
The design features a 28-V/µs minimum slew rate, which results in a high-power bandwidth. A low audio-band
noise of 28 nV/√Hz is typical with a 55 nV/√Hz maximum at 10 Hz. Settling time to 0.1% of a 10-V step
(1-kΩ/100-pF load) is approximately 400 ns. Gain-bandwidth product is typically 10 MHz with an 8 MHz
minimum. As such, the TLE2072 and TLE2072A offer significant speed and noise advantages at a low 1.5-mA
typical supply current per channel.
The input current characteristics traditionally associated with JFET-input amplifiers have been maintained. Input
offset voltage is graded to a 6 mV and 3.5 mV maximum for the TLE2072 and TLE2072A, respectively. Typically,
temperature coefficient of input offset voltage is 2.4 µV/°C and typical CMRR and kSVR are 98 dB and 99 dB,
respectively. Device performance is relatively independent of supply voltage over the wide ± 2.25-V to ± 19-V
range. The input common-mode voltage range extends from the positive supply down to VCC – + 4 V without
significant degradation to dynamic performance. Maximum peak output voltage swing is from VCC + – 1 V to
VCC – + 1 V under light current loading conditions. The output is capable of sourcing and sinking currents to at
least 30 mA and can sustain shorts to either supply. Care must be taken to ensure that maximum power
dissipation is not exceeded.
Both the TLE2072 and TLE2072A are available in a wide variety of packages, including both the
industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix
devices are characterized for operation from 0°C to 70°C, the I-suffix devices over the – 40°C to 85°C range,
and the M-suffix devices over the full military temperature range of – 55°C to 125°C.
1
8
2
7
3
6
4
5
VCC +
2OUT
2IN –
2IN+
NC
1IN –
NC
1IN+
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC –
NC
2IN+
NC
1OUT
1IN –
1IN +
VCC –
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
V CC +
NC
D, JG, OR P PACKAGE
(TOP VIEW)
NC – No internal connection
symbol
IN +
+
IN –
–
OUT
5–2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
NC
2OUT
NC
2IN –
NC
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TLE2072Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2072. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(8)
(1)
(7)
1IN +
(3)
(2)
1IN –
2OUT
VCC+
(8)
+
(1)
1OUT
–
+
(7)
–
(5)
2IN +
(6)
2IN –
(4)
VCC –
90
(2)
(6)
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 × 4 MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(3)
(5)
(4)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF THE CHIP.
80
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–3
5–4
IN +
IN –
Q2
Q1
D1
Q5
Q4
Q7
Q6
Q3
Q9
Q8
Q10
R1
equivalent schematic (each channel)
R3
Q11
Q12
C1
R2
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
C2
R4
D2
VCC –
R7
C3
Q15
R5
Q14
Q13
Q17
C4
Q18
Q16
R6
VCC +
R9
C5
Q21
R8
Q19
Q20
R10
Q22
Q23
Q26
Q25
Q24
R11
Q27
D3
C6
Q29
Q28
R12
Q31
Q30
R13
Transistors
Resistors
Diodes
Capacitors
R14
OUT
57
37
5
11
ACTUAL DEVICE
COMPONENT COUNT
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT
DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V
Differential input voltage range, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC –
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + to VCC –
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA
Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 80 mA
Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values except differential voltages are with respect to the midpoint between VCC + and VCC – .
2. Differential voltages are at IN+ with respect to IN –.
3. The output can be shorted to either supply. Temperatures and/or supply voltages must be limited to ensure that the maximum
dissipation rate is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
344 mW
200 mW
recommended operating conditions
Supply voltage, VCC±
Common-mode input voltage
voltage, VIC
VCC ± = ± 5 V
VCC ± = ±15 V
Operating free-air temperature, TA
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
± 2.25
± 19
± 2.25
± 19
± 2.25
± 19
– 0.9
5
– 0.8
5
– 0.8
5
– 10.9
15
– 10.8
15
– 10.8
15
0
70
– 40
85
– 55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
5–5
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
25°C
VIC = 0,
0
RS = 50 Ω
VO = 0,
0
F ll range
Full
g
IO = – 200 µA
VOM +
M i
Maximum
positive
i i peak
k
output voltage swing
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 2
2.3
3 V RL = 2 kΩ
RL = 10 kΩ
ri
ci
Input resistance
Input capacitance
0.65
3.5
5.3
Full range
3.7
25°C
3.5
Full range
3.4
25°C
1.5
Full range
1.5
25°C
– 3.8
Full range
– 3.7
25°C
– 3.5
Full range
– 3.4
25°C
– 1.5
Full range
– 1.5
25°C
80
Full range
79
25°C
90
Full range
89
25°C
95
Full range
94
25
µV/°C
5
100
5
100
pA
1.4
nA
15
175
15
175
pA
5
nA
5
to
– 1.9
5
to
–1
5
to
– 1.9
4.1
3.8
4.1
3.7
3.9
3.5
3.9
2.3
1.5
2.3
1.5
– 4.2
– 3.8
– 4.2
– 3.7
– 4.1
– 3.5
– 4.1
– 2.4
– 1.5
– 2.4
– 1.5
91
80
91
79
100
90
100
106
95
106
94
11
11
Differential
25°C
2.5
2.5
25°C
80
80
VIC = VICRmin,
VO = 0,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio(∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
ICC
Supply
pp y current
(both channels)
VO = 0
0,
No load
25°C
70
Full range
68
25°C
82
Full range
80
25°C
2.7
Full range
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
89
25°C
Common-mode
Common
mode
rejection ratio
V
– 3.4
Common
mode
CMRR
V
3.4
1012
f = 1 MHz
V
5
to
– 0.9
1012
Open-loop output
impedance
mV
2.3
5
to
– 0.9
3.8
UNIT
25
25°C
zo
5–6
MAX
5
5
to
–1
25°C
VIC = 0
VIC = 0,
See Figure 5
6
TYP
2.3
Full range
RS = 50 Ω
MIN
1.4
25°C
Input bias current
TLE2072AC
MAX
7.8
Full range
25°C
VICR
0.9
25°C
VO = 0,
0
TYP
Full range
Full range
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d iinput
voltage
g range
g
TLE2072C
MIN
89
70
Ω
pF
Ω
89
dB
68
99
82
99
dB
80
2.9
3.6
3.6
2.7
2.9
3.6
3.6
mA
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
(continued)
PARAMETER
ax
Crosstalk attenuation
IOS
Short circuit output
Short-circuit
current
TEST CONDITIONS
VIC = 0,
RL = 2 kΩ
VO = 0
VID = 1 V
VID = – 1 V
TA†
TLE2072C
MIN
TYP
25°C
25°C
TLE2072AC
MAX
MIN
TYP
120
120
– 35
– 35
45
45
MAX
UNIT
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±5 V
PARAMETER
TEST CONDITIONS
TA†
TLE2072C
MIN
25°C
SR +
Positive
rate
P i i slew
l
SR –
Negative
rate
N
i slew
l
ts
Vn
VN(PP)
Settling time
VO(PP) = ± 2.3
2 3 V,
V
AVD = – 1,
1
RL = 2 kΩ
kΩ,
CL = 100 pF,
See Figure 1
AVD = – 1,
2-V
2
V step,
RL = 1 kΩ,
CL = 100 pF
To 10 mV
MIN
TYP
MAX
To 1 mV
f = 10 kHz
f = 10 Hz to
10 kHz
f = 0.1 Hz to
10 Hz
25°C
UNIT
35
22
V/µs
V/
22
38
38
22
V/µs
V/
22
0.25
0.25
0.4
0.4
µs
25°C
f = 10 Hz
RS = 20 Ω,
Ω
S Fi
See
Figure 3
TLE2072AC
MAX
35
25°C
Full
range
Equivalent input noise
voltage
Peak-to-peak
P k
p k equivalent
q i l
input noise voltage
Full
range
TYP
28
55
28
55
11.6
17
11.6
17
6
6
0.6
0.6
nV/√Hz
V
µV
25°C
In
Equivalent input noise
current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic distortion
plus noise
VO(PP) = 5 V,
f = 1 kHz,
kHz
RS = 25 Ω
AVD = 10,
RL = 2 kΩ
kΩ,
25°C
0 013%
0.013%
0 013%
0.013%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 2
25°C
94
9.4
94
9.4
MHz
BOM
Maximum output
output-swing
swing
bandwidth
VO(PP) = 4 V,
RL = 2 kΩ ,
AVD = – 1,
CL = 25 pF
25°C
28
2.8
28
2.8
MHz
φm
Phase margin
g at unity
y
gain
VI = 10 mV,,
CL = 25 pF,
RL = 2 kΩ,,
See Figure 2
25°C
56°
56°
fA /√Hz
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–7
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
VO = 0,
0
25°C
VO = 0,
0
VOM +
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 10 V
RL = 2 kΩ
RL = 10 kΩ
ri
ci
Input resistance
Input capacitance
3.5
5.3
Full range
13.6
25°C
13.5
Full range
13.4
25°C
11.5
Full range
11.5
25°C
– 13.8
Full range
– 13.7
25°C
– 13.5
Full range
– 13.4
25°C
– 11.5
Full range
– 11.5
25°C
80
Full range
79
25°C
90
Full range
89
25°C
95
Full range
94
µV/°C
6
100
6
100
pA
1.4
nA
20
175
20
175
pA
5
nA
15
to
– 11.9
15
to
– 11
15
to
– 11.9
14.1
13.8
14.1
13.6
13.9
13.5
13.9
12.3
11.5
12.3
11.5
– 14.2
– 13.8
– 14.2
– 13.7
– 14
–13.5
– 14
– 12.4
– 11.5
– 12.4
– 11.5
96
80
96
79
109
90
109
118
95
118
94
7.5
7.5
Differential
25°C
2.5
2.5
25°C
80
80
VIC = VICRmin,
VO = 0,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
ICC
Supply
pp y current
(both channels)
VO = 0
0,
No load
25°C
80
Full range
79
25°C
82
Full range
81
25°C
2.7
Full range
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
89
25°C
Common-mode
Common
mode
rejection ratio
V
– 13.4
1012
CMRR
V
13.4
1012
f = 1 MHz
V
15
to
– 10.9
25°C
Open-loop output
impedance
mV
25
15
to
– 10.9
13.8
UNIT
2.4
Common
mode
zo
5–8
0.7
5
15
to
– 11
25°C
VIC = 0
VIC = 0,
See Figure 5
MAX
25
Full range
IO = – 200 µA
6
TYP
1.4
25°C
F ll range
Full
g
MIN
2.4
Full range
RS = 50 Ω
TLE2072AC
MAX
7.8
Full range
Input bias current
M i
Maximum
positive
i i peak
k
output voltage swing
1.1
Full range
25°C
VICR
TYP
25°C
VIC = 0,
0
RS = 50 Ω
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d input
i
voltage
g range
g
TLE2072C
MIN
98
80
Ω
pF
Ω
98
dB
79
99
82
99
dB
81
3.1
3.6
3.6
2.7
3.1
3.6
3.6
mA
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
(continued)
PARAMETER
ax
IOS
Crosstalk attenuation
Short-circuit output current
TA†
TEST CONDITIONS
VIC = 0,
RL = 2 kΩ
VO = 0
VID = 1 V
VID = – 1 V
TLE2072C
MIN
TYP
– 30
30
25°C
25°C
TLE2072AC
MAX
MIN
TYP
– 45
– 30
– 45
48
30
48
120
MAX
120
UNIT
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±15 V
PARAMETER
SR +
SR –
ts
Positive
rate
P i i slew
l
Negative
rate
N
i slew
l
Settling time
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
P
kt
k
equivalent input noise
voltage
VO(PP) = 10 V,
V
AVD = – 1
1,
RL = 2 kΩ
kΩ,
CL = 100 pF,
See Figure 1
AVD = – 1,
10-V
10
V step,
RL = 1 kΩ,
CL = 100 pF
MIN
TYP
25°C
28
40
Full
range
25
25°C
30
Full
range
25
To 10 mV
TLE2072AC
MAX
MIN
TYP
28
40
MAX
45
30
45
V/µs
V/
25
0.4
0.4
1.5
1.5
µs
To 1 mV
f = 10 kHz
f = 10 Hz to
10 kHz
f = 0.1 Hz to
10 Hz
UNIT
V/µs
V/
25
25°C
f = 10 Hz
RS = 20 Ω,
Ω,
See Figure 3
TLE2072C
TA†
TEST CONDITIONS
25°C
28
55
28
55
11.6
17
11.6
17
6
6
0.6
0.6
nV/√Hz
V
µV
25°C
In
Equivalent input noise
current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic
distortion plus noise
VO(PP) = 20 V, AVD = 10,
f = 1 kHz,
kHz
RL = 2 kΩ
kΩ,
RS = 25 Ω
25°C
0 008%
0.008%
0 008%
0.008%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
25°C
8
10
8
10
MHz
BOM
Maximum output
output-swing
swing
bandwidth
VO(PP) = 20 V, AVD = – 1,
RL = 2 kΩ,
CL = 25 pF
25°C
478
637
478
637
kHz
φm
Phase margin
g at unity
y
gain
VI = 10 mV,,
CL = 25 pF,
25°C
RL = 2 kΩ,
See Figure 2
RL = 2 kΩ,,
See Figure 2
57°
fA /√Hz
57°
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–9
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
25°C
VIC = 0,
0
RS = 50 Ω,
Ω
VO = 0,
0
F ll range
Full
g
IO = – 200 µA
M i
Maximum
positive
i i peak
k
VOM +
output voltage swing
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 2
2.3
3 V RL = 2 kΩ
RL = 10 kΩ
ri
ci
Input resistance
Input capacitance
0.65
3.5
6.4
Full range
3.7
25°C
3.5
Full range
3.4
25°C
1.5
Full range
1.5
25°C
– 3.8
Full range
– 3.7
25°C
– 3.5
Full range
– 3.4
25°C
– 1.5
Full range
– 1.5
25°C
80
Full range
79
25°C
90
Full range
89
25°C
95
Full range
94
25
µV/°C
5
100
5
100
pA
5
nA
15
175
15
175
pA
10
nA
5
to
– 1.9
5
to
–1
5
to
– 1.9
4.1
3.8
4.1
3.7
3.9
3.5
3.9
2.3
1.5
2.3
1.5
– 4.2
– 3.8
– 4.2
– 3.7
– 4.1
– 3.5
– 4.1
– 2.4
– 1.5
– 2.4
– 1.5
91
80
91
79
100
90
100
106
95
106
94
11
11
Differential
25°C
2.5
2.5
25°C
80
80
VIC = VICRmin,
VO = 0,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
ICC
Supply
pp y current
(both channels)
VO = 0
0,
No load
25°C
70
Full range
68
25°C
82
Full range
80
25°C
2.7
Full range
† Full range is – 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
89
25°C
Common-mode
Common
mode
rejection ratio
V
– 3.4
1012
CMRR
V
3.4
1012
f = 1 MHz
V
5
to
– 0.8
25°C
Open-loop output
impedance
mV
2.4
5
to
– 0.8
3.8
UNIT
25
Common
mode
zo
5–10
MAX
10
5
to
–1
25°C
VIC = 0
VIC = 0,
See Figure 5
6
TYP
2.4
Full range
RS = 50 Ω
MIN
5
25°C
Input bias current
TLE2072AI
MAX
9.1
Full range
25°C
VICR
0.9
Full range
VO = 0,
0
TYP
Full range
25°C
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d input
i
voltage
g range
g
TLE2072I
MIN
89
70
Ω
pF
Ω
89
dB
68
99
82
99
dB
80
2.9
3.6
3.6
2.7
2.9
3.6
3.6
mA
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
(continued)
PARAMETER
ax
IOS
Crosstalk attenuation
Short-circuit output current
TA†
TEST CONDITIONS
VIC = 0,
RL = 2 kΩ
VO = 0
VID = 1 V
VID = – 1 V
TLE2072I
MIN
TYP
25°C
25°C
TLE2072AI
MAX
MIN
TYP
120
120
– 35
– 35
45
45
MAX
UNIT
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±5 V
PARAMETER
TEST CONDITIONS
TA†
TLE2072I
MIN
25°C
SR +
Positive
rate
P i i slew
l
SR –
Negative
rate
N
i slew
l
ts
Settling time
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
P
kt
k
equivalent input
noise voltage
2.3
V,
VO(PP) = ± 2
3V
AVD = – 1
1,
RL = 2 kΩ
kΩ,
CL = 100 pF,
See Figure 1
Full
range
AVD = – 1,
2-V
2
V step,
RL = 1 kΩ,
CL = 100 pF
To 10 mV
TLE2072AI
MAX
MIN
35
TYP
MAX
V/µs
V/
20
38
38
20
V/µs
V/
20
0.25
0.25
0.4
0.4
µs
25°C
To 1 mV
f = 10 Hz
f = 10 kHz
RS = 20 Ω,
Ω,
See Figure 3
f = 10 Hz to
10 kHz
25°C
28
55
28
55
11.6
17
11.6
17
6
6
06
0.6
06
0.6
nV/√Hz
V
µV
25°C
f = 0.1 Hz to
10 Hz
UNIT
35
20
25°C
Full
range
TYP
In
Equivalent input noise
current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic
distortion plus noise
VO(PP) = 5 V,
f = 1 kHz,
kHz
RS = 25 Ω
AVD = 10,
RL = 2 kΩ
kΩ,
25°C
0 013%
0.013%
0 013%
0.013%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 2
25°C
94
9.4
94
9.4
MHz
BOM
Maximum output
outputswing bandwidth
VO(PP) = 4 V,
RL = 2 kΩ ,
AVD = – 1,
CL = 25 pF
25°C
28
2.8
28
2.8
MHz
φm
Phase margin
g at unity
y
gain
VI = 10 mV,,
CL = 25 pF,
RL = 2 kΩ,,
See Figure 2
25°C
56°
56°
fA /√Hz
† Full range is 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–11
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
VO = 0,
0
25°C
VO = 0,
0
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 10 V
RL = 2 kΩ
RL = 10 kΩ
ri
ci
Input resistance
Input capacitance
3.5
6.4
Full range
13.7
25°C
13.5
Full range
13.4
25°C
11.5
Full range
11.5
25°C
– 13.8
Full range
– 13.7
25°C
– 13.5
Full range
– 13.4
25°C
– 11.5
Full range
– 11.5
25°C
80
Full range
79
25°C
90
Full range
89
25°C
95
Full range
94
µV/°C
6
100
6
100
pA
5
nA
20
175
20
175
pA
10
nA
15
to
– 11.9
15
to
– 11
15
to
– 11.9
14.1
13.8
14.1
13.7
13.9
13.5
13.9
12.3
11.5
12.3
11.5
– 14.2
– 13.8
– 14.2
– 13.7
– 14
–13.5
– 14
– 12.4
– 11.5
– 12.4
– 11.5
96
80
96
79
109
90
109
118
95
118
94
7.5
7.5
Differential
25°C
2.5
2.5
25°C
80
80
VIC = VICRmin,
VO = 0,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
ICC
Supply
pp y current
(both channels)
VO = 0
0,
No load
25°C
80
Full range
79
25°C
82
Full range
80
25°C
2.7
Full range
† Full range is – 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
89
25°C
Common-mode
Common
mode
rejection ratio
V
– 13.4
1012
CMRR
V
13.4
1012
f = 1 MHz
V
15
to
– 10.8
25°C
Open-loop output
impedance
mV
25
15
to
– 10.8
13.8
UNIT
2.4
Common
mode
zo
5–12
0.7
10
15
to
– 11
25°C
VIC = 0
VIC = 0,
See Figure 5
MAX
25
Full range
IO = – 200 µA
6
TYP
5
25°C
F ll range
Full
g
MIN
2.4
Full range
RS = 50 Ω
TLE2072AI
MAX
9.1
Full range
Input bias current
M i
Maximum
positive
i i peak
k
VOM +
output voltage swing
1.1
Full range
25°C
VICR
TYP
25°C
VIC = 0,
0
RS = 50 Ω,
Ω
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d input
i
voltage
g range
g
TLE2072I
MIN
98
80
Ω
pF
Ω
98
dB
79
99
82
99
dB
80
3.1
3.6
3.6
2.7
3.1
3.6
3.6
mA
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
(continued)
PARAMETER
ax
IOS
TA†
TEST CONDITIONS
Crosstalk attenuation
Short-circuit output current
VIC = 0,
RL = 2 kΩ
VO = 0
VID = 1 V
VID = – 1 V
TLE2072I
MIN
TYP
– 30
MIN
TYP
– 45
– 30
– 45
30
48
30
48
25°C
25°C
TLE2072AI
MAX
120
MAX
120
UNIT
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±15 V
PARAMETER
SR +
Positive
rate
P i i slew
l
SR –
Negative
rate
N
i slew
l
ts
Settling time
Vn
Equivalent input
noise voltage
VN(PP)
Peak-to-peak
P
kt
k
equivalent input
noise voltage
TEST CONDITIONS
VO(PP) = ± 10 V,
V
AVD = – 1
1,
RL = 2 kΩ
kΩ,
CL = 100 pF,
See Figure 1
AVD = – 1,
10-V
10
V step,
RL = 1 kΩ,
CL = 100 pF
MIN
TYP
25°C
28
40
Full
range
22
25°C
30
Full
range
22
To 10 mV
TLE2072AI
MAX
MIN
TYP
28
40
MAX
45
30
45
V/µs
V/
22
0.4
0.4
1.5
1.5
µs
To 1 mV
f = 10 kHz
f = 0 Hz to
10 kHz
f = 0.1 Hz to
10 Hz
UNIT
V/µs
V/
22
25°C
f = 10 Hz
RS = 20 Ω,
Ω,
See Figure 3
TLE2072I
TA†
25°C
28
55
28
55
11.6
17
11.6
17
6
6
0.6
0.6
nV/√Hz
V
µV
25°C
In
Equivalent input
noise current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic
distortion plus noise
VO(PP) = 20 V, AVD = 10,
f = 1 kHz,
kHz
RL = 2 kΩ
kΩ,
RS = 25 Ω
25°C
0 008%
0.008%
0 008%
0.008%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
25°C
8
10
8
10
MHz
BOM
Maximum output
outputswing bandwidth
VO(PP) = 20 V, AVD = – 1,
RL = 2 kΩ,
CL = 25 pF
25°C
478
637
478
637
kHz
φm
Phase margin
g at unity
y
gain
VI = 10 mV,,
CL = 25 pF,
25°C
RL = 2 kΩ,
See Figure 2
RL = 2 kΩ,,
See Figure 2
57°
fA /√Hz
57°
† Full range is – 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–13
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
25°C
VIC = 0,
0
RS = 50 Ω,
Ω
VO = 0,
0
F ll range
Full
g
IO = – 200 µA
M i
Maximum
positive
i i peak
k
VOM +
output voltage swing
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 2
2.3
3 V RL = 2 kΩ
RL = 10 kΩ
ri
ci
zo
Input resistance
Input capacitance
Open-loop output
impedance
5–14
0.65
3.5
8
3.8
Full range
3.6
25°C
3.5
Full range
3.3
25°C
1.5
Full range
1.4
25°C
– 3.8
Full range
– 3.6
25°C
– 3.5
Full range
– 3.3
25°C
– 1.5
Full range
– 1.4
25°C
80
Full range
78
25°C
90
Full range
88
25°C
95
Full range
93
25∗
µV/°C
5
100
5
100
pA
20
nA
15
175
15
175
pA
65
nA
5
to
– 1.9
5
to
–1
5
to
– 1.9
4.1
3.8
4.1
3.6
3.9
3.5
3.9
3.3
2.3
1.5
2.3
– 4.2
– 3.8
– 4.2
– 3.6
– 4.1
– 3.5
– 4.1
– 3.3
– 2.4
– 1.5
V
– 2.4
– 1.4
91
80
91
78
100
90
100
88
106
95
dB
106
93
1012
25°C
11
11
Differential
25°C
2.5
2.5
25°C
80
80
• DALLAS, TEXAS 75265
V
1.4
1012
POST OFFICE BOX 655303
V
5
to
– 0.8
25°C
Common-mode
Common
mode
rejection ratio
mV
2.3
Common
mode
f = 1 MHz
UNIT
25∗
5
to
– 0.8
25°C
70
VIC = VICRmin,
VO = 0,
RS = 50 Ω
Full range
68
∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
† Full range is – 55°C to 125°C.
CMRR
MAX
65
5
to
–1
25°C
VIC = 0
VIC = 0,
See Figure 5
6
TYP
2.3
Full range
RS = 50 Ω
MIN
20
25°C
Input bias current
TLE2072AM
MAX
10.5
Full range
25°C
VICR
0.9
Full range
VO = 0,
0
TYP
Full range
25°C
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d input
i
voltage
g range
g
TLE2072M
MIN
89
70
68
89
Ω
pF
Ω
dB
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
(continued)
PARAMETER
TA†
TEST CONDITIONS
kSVR
Supply-voltage rejection
ratio (∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
ICC
Supply current
(both channels)
VO = 0
0,
No load
ax
Crosstalk attenuation
VIC = 0,
RL = 2 kΩ
25°C
IOS
Short circuit output
Short-circuit
current
VO = 0
VID = 1 V
VID = – 1 V
25°C
TLE2072M
MIN
Full range
80
25°C
2.7
TYP
TLE2072AM
MAX
MIN
TYP
MAX
80
2.9
Full range
3.6
2.7
UNIT
dB
2.9
3.6
3.6
3.6
120
120
– 35
– 35
45
45
mA
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±5 V
PARAMETER
TEST CONDITIONS
TA†
TLE2072M
MIN
25°C
SR +
Positive
rate
P i i slew
l
SR –
Negative
rate
N
i slew
l
ts
Settling time
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
P
kt
k
equivalent input
noise voltage
VO(PP) = ± 2.3
2 3 V,
V
AVD = – 1
1,
RL = 2 kΩ
kΩ,
CL = 100 pF,
See Figure 1
Full
range
AVD = – 1,
2-V
2
V step,
RL = 1 kΩ,
CL = 100 pF
To 10 mV
MIN
TYP
MAX
To 1 mV
f = 10 kHz
f = 10 Hz to
10 kHz
25°C
18∗
V/µs
V/
18∗
38
38
18∗
V/µs
V/
18∗
0.25
0.25
0.4
0.4
µs
28
11.6
55∗
17∗
28
11.6
6
6
06
0.6
06
0.6
55∗
17∗
nV/√Hz
V
µV
25°C
f = 0.1 Hz to
10 Hz
UNIT
35
25°C
f = 10 Hz
RS = 20 Ω,
Ω,
See Figure 3
TLE2072AM
MAX
35
25°C
Full
range
TYP
In
Equivalent input noise
current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic
distortion plus noise
VO(PP) = 5 V,
f = 1 kHz,
kHz
RS = 25 Ω
AVD = 10,
RL = 2 kΩ
kΩ,
25°C
0 013%
0.013%
0 013%
0.013%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 2
25°C
94
9.4
94
9.4
MHz
BOM
Maximum output
output-swing
swing
bandwidth
VO(PP) = 4 V,
RL = 2 kΩ ,
AVD = – 1,
CL = 25 pF
25°C
28
2.8
28
2.8
MHz
VI = 10 mV,
RL = 2 kΩ,
25°C
56°
CL = 25 pF,
See Figure 2
∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
† Full range is – 55°C to 125°C.
φm
Phase margin at unity
gain
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
fA /√Hz
56°
5–15
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
IIO
Input offset current
IIB
TA†
TEST CONDITIONS
VO = 0,
0
25°C
VO = 0,
0
VOM +
IO = – 2 mA
IO = – 20 mA
IO = 200 µA
VOM –
M i
Maximum
negative
i peak
k
output voltage swing
IO = 2 mA
IO = 20 mA
RL = 600 Ω
AVD
Large signal
L
Large-signal
i
l diff
differential
i l
voltage amplification
VO = ± 10 V
RL = 2 kΩ
RL = 10 kΩ
ri
ci
Input resistance
Input capacitance
3.5
8
Full range
13.6
25°C
13.5
Full range
13.3
25°C
11.5
Full range
11.4
25°C
– 13.8
Full range
– 13.6
25°C
– 13.5
Full range
– 13.3
25°C
– 11.5
Full range
– 11.4
25°C
80
Full range
78
25°C
90
Full range
89
25°C
95
Full range
93
µV/°C
6
100
6
100
pA
20
nA
20
175
20
175
pA
65
nA
15
to
– 11.9
15
to
– 11
15
to
– 11.9
14.1
13.8
14.1
13.6
13.9
13.5
13.9
13.3
12.3
11.5
12.3
– 14.2
– 13.8
– 14.2
– 13.6
– 14
–13.5
– 14
– 13.3
– 12.4
– 11.5
– 12.4
96
80
96
78
109
90
109
89
118
95
118
7.5
7.5
Differential
25°C
2.5
2.5
25°C
80
80
VIC = VICRmin,
VO = 0,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (∆VCC± /∆VIO)
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
25°C
80
Full range
78
25°C
82
Full range
80
∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
† Full range is – 55°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
93
25°C
Common-mode
Common
mode
rejection ratio
V
– 11.4
1012
CMRR
V
11.4
1012
f = 1 MHz
V
15
to
– 10.8
25°C
Open-loop output
impedance
mV
25∗
15
to
– 10.8
13.8
UNIT
2.4
Common
mode
zo
5–16
0.7
65
15
to
– 11
25°C
VIC = 0
VIC = 0,
See Figure 5
MAX
25∗
Full range
IO = – 200 µA
6
TYP
20
25°C
F ll range
Full
g
MIN
2.4
Full range
RS = 50 Ω
TLE2072AM
MAX
10.5
Full range
Input bias current
M i
Maximum
positive
i i peak
k
output voltage swing
1.1
Full range
25°C
VICR
TYP
25°C
VIC = 0,
0
RS = 50 Ω
VIC = 0,
0
See Figure 4
Common mode
C
Common-mode
d input
i
voltage
g range
g
TLE2072M
MIN
98
80
98
78
99
82
80
99
Ω
pF
Ω
dB
dB
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ICC
Supply current
(both channels)
VO = 0
0,
No load
ax
Crosstalk attenuation
VIC = 0,
RL = 2 kΩ
IOS
Short circuit output
Short-circuit
current
VO = 0
VID = 1 V
VID = – 1 V
TLE2072M
TLE2072AM
TA†
MIN
TYP
MAX
MIN
TYP
MAX
25°C
2.7
3.1
3.6
2.7
3.1
3.6
Full range
3.6
25°C
25°C
3.6
120
120
– 30
– 45
– 30
– 45
30
48
30
48
UNIT
mA
dB
mA
operating characteristics at specified free-air temperature, VCC± = ±15 V
PARAMETER
SR +
TEST CONDITIONS
Positive
rate
P i i slew
l
VO(PP) = 10 V,
V AVD = – 1,
1
RL = 2 kΩ
kΩ,
CL = 100 pF,
pF
See Figure 1
SR –
ts
Negative
rate
N
i slew
l
Settling time
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
P
kt
k
equivalent input
noise voltage
AVD = – 1,
10-V
10
V step,
RL = 1 kΩ,
CL = 100 pF
TLE2072M
TA†
MIN
TYP
25°C
28
40
Full
range
20
25°C
30
Full
range
20
TLE2072AM
MAX
MIN
TYP
28
40
MAX
V/µs
V/
20
45
30
45
V/µs
V/
20
To 10 mV
0.4
0.4
1.5
1.5
µs
25°C
To 1 mV
f = 10 Hz
f = 10 kHz
RS = 20 Ω,
Ω,
See Figure 3
f = 10 Hz to
10 kHz
UNIT
28
25°C
11.6
55∗
17∗
28
11.6
6
6
06
0.6
06
0.6
55∗
17∗
nV/√Hz
V
µV
25°C
f = 0.1 Hz to
10 Hz
In
Equivalent input noise
current
VIC = 0,
f = 10 kHz
25°C
2.8
2.8
THD + N
Total harmonic
distortion plus noise
VO(PP) = 20 V, AVD = 10,
f = 1 kHz,
kHz
RL = 2 kΩ
kΩ,
RS = 25 Ω
25°C
0 008%
0.008%
0 008%
0.008%
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
25°C
8∗
10
8∗
10
MHz
BOM
Maximum
output-swing
bandwidth
VO(PP) = 20 V, AVD = – 1,
RL = 2 kΩ,
CL = 25 pF
25°C
478∗
637
478∗
637
kHz
φm
Phase margin
g at unity
y
gain
VI = 10 mV,,
CL = 25 pF,
25°C
RL = 2 kΩ,
See Figure 2
RL = 2 kΩ,,
See Figure 2
57°
fA /√Hz
57°
∗On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
† Full range is – 55°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–17
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
electrical characteristics at VCC± = ±15 V, TA = 25°C
PARAMETER
VIO
IIO
Input offset voltage
IIB
Input bias current
VICR
C
Common-mode
d iinput
p voltage
l g range
g
RS = 50 Ω
Maximum
positive
peak
M i
p
ii p
k output
p voltage
l g swing
i g
VOM +
VOM –
AVD
ri
VIC = 0,
Input offset current
VO = 0,
VIC = 0
0,
Maximum negative peak
output voltage swing
VO = 0
0,
MIN
RS = 50 Ω
See Figure 4
Input resistance
6
100
pA
20
175
pA
13.8
14.1
13.5
13.9
IO = – 20 mA
IO = 200 µA
11.5
12.3
– 13.8
– 14.2
– 13.5
– 14
RL = 600 Ω
80
96
RL = 2 kΩ
90
109
RL = 10 kΩ
95
118
V
V
V
dB
Ω
1012
Common mode
7.5
Differential
2.5
Input capacitance
VIC = 0,
See Figure 5
zo
Open-loop output impedance
f = 1 MHz
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio (∆VCC± /∆VIO)
VIC = VICRmin,
VO = 0,
VCC ± = ± 5 V to ±15 V,
RS = 50 Ω
ICC
Supply current (both channels)
pF
80
Ω
RS = 50 Ω
80
98
dB
VO = 0,
82
99
dB
VO = 0,
No load
VO = 0
VID = 1 V
VID = – 1 V
2.7
3.1
– 30
– 45
30
48
3.6
2 kΩ
10 kΩ
VCC +
VCC +
2 kΩ
–
+
VCC –
VO
RL
† Includes fixture capacitance
POST OFFICE BOX 655303
100 Ω
–
+
VO
VCC –
CL†
Figure 1. Slew-Rate Test Circuit
5–18
VI
RL
CL†
Figure 2. Unity-Gain Bandwidth and
Phase-Margin Test Circuit
• DALLAS, TEXAS 75265
mA
mA
PARAMETER MEASUREMENT INFORMATION
VI
mV
– 11 . 5 – 1 2 . 4
VIC = 0
Short circuit output current
Short-circuit
UNIT
6
IO = – 200 µA
IO = – 2 mA
VO = ± 10 V
MAX
1.1
15
to
11.9
IO = 2 mA
IO = 2 0 m A
L g ig l differential
Large-signal
diff
i l voltage
l g amplification
plifi i
TYP
15
to
– 11
ci
IOS
TLE2072Y
TEST CONDITIONS
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
PARAMETER MEASUREMENT INFORMATION
2 kΩ
VCC +
Ground Shield
–
+
RS
RS
VCC +
–
+
VO
VO
VCC –
Picoammeters
VCC –
Figure 3. Noise-Voltage Test Circuit
Figure 4. Input-Bias and OffsetCurrent Test Circuit
VCC +
IN –
–
Cid
IN +
Cic
VO
+
Cic
VCC –
Figure 5. Internal Input Capacitance
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
input bias and offset current
At the picoampere bias-current level typical of the TLE2072 and TLE2072A, accurate measurement of the bias
becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses
a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with
no device in the socket. The device is then inserted in the socket and a second test is performed that measures
both the socket leakage and the device input bias current. The two measurements are then subtracted
algebraically to determine the bias current of the device.
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
αVIO
Input offset voltage
Distribution
Temperature coefficient
Distribution
IIO
Input offset current
vs Free-air temperature
8, 9
IIB
Input bias current
vs Free-air temperature
p
vs Supply voltage
8,, 9
10
VICR
VID
Common-mode input voltage range
vs Free-air temperature
Differential input voltage
vs Output voltage
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6
7
11
12, 13
5–19
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS
Table of Graphs (Continued)
FIGURE
VOM +
Maximum
p
positive
peak
p voltage
M i
ii p
k output
l g
vs Output current
vs Free-air temperature
p
vs S
Supply
l voltage
l
14
16, 17
18
VOM –
Maximum
negative
g i p
peak
p voltage
M i
k output
l g
vs Output current
vs Free-air temperature
p
vs S
Supply
l voltage
l
15
16, 17
18
VO(PP)
VO
Maximum peak-to-peak output voltage
vs Frequency
19
Output voltage
vs Settling time
20
AVD
Differential
plifi i
Diff
i l voltage
l g amplification
vs Load resistance
vs Free-air temperature
p
vs Frequency
F
21
22, 23
24, 25
CMRR
Common-mode rejection ratio
vs Frequency
q
y
vs Free-air temperature
26
27
kSVR
Supply-voltage rejection ratio
vs Frequency
q
y
vs Free-air temperature
28
29
ICC
Supply
S pply current
vs Supply voltage
vs Free-air temperature
p
vs Diff
Differential
i l iinput voltage
l
IOS
Short-circuit
p current
Sh
i i output
vs Supply voltage
vs Elapsed
p
time
vs F
Free-air
i temperature
SR
Slew
rate
Sl
vs Free
Free-air
air temperature
vs Load resistance
vs Diff
Differential
i l iinput voltage
l
Vn
Equivalent input noise voltage
vs Frequency
41
Input-referred noise voltage
vs Noise bandwidth
Over a 10-second time interval
42
43
Third-octave spectral noise density
vs Frequency bands
44
THD + N
Total harmonic distortion plus noise
vs Frequency
B1
Unity-gain bandwidth
vs Load capacitance
47
Gain-bandwidth product
vs Free-air temperature
p
vs Supply voltage
48
49
Gain margin
vs Load capacitance
50
Ph
Phase
margin
gi
Free-air
vs Free
air temperature
vs Supply
pp y voltage
g
vs Load
L d capacitance
i
51
52
53
Phase shift
vs Frequency
Large-signal pulse response, noninverting
vs Time
54
Vn
φm
5–20
30
31
32, 33
34
35
36
37, 38
39
40
45, 46
24, 25
Small-signal pulse response
vs Time
55
zo
Closed-loop output impedance
vs Frequency
56
ax
Crosstalk attenuation
vs Frequency
57
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
DISTRIBUTION OF TLE2072
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2072 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
20
30
600 Units Tested From One Wafer Lot
VCC = ± 15 V
TA = 25°C
P Package
Percentage of Units – %
16
27
Percentage of Amplifiers – %
18
14
12
10
8
6
4
2
24
310 Amplifiers
VCC = ± 15 V
TA = – 55°C to 125°C
P Package
21
18
15
12
9
6
3
0
–4
– 2.4
– 0.8
2.4
0.8
0
– 30 – 24 –18 –12 – 6
4
Figure 6
1
IIO
0.1
IIB
0.01
45
65
85 105 125
IIB
I IO – Input Bias and Input Offset Currents – nA
IIB and IIO
IIB
I IO – Input Bias and Input Offset Currents – nA
IIB and IIO
VCC ± = ± 5 V
VIC = 0
VO = 0
25
12
18
24
30
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
100
0.001
– 75 – 55 – 35 – 15 – 5
6
Figure 7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
10
0
αVIO – Temperature Coefficient – µV/°C
VIO
V IO – Input Offset Voltage – mV
100
10
VCC ± = ± 15 V
VIC = 0
VO = 0
IIB
1
0.1
IIO
0.01
0.001
– 75 – 55 – 35 – 15
TA – Free-Air Temperature – °C
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
Figure 8
Figure 9
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–21
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
INPUT BIAS CURRENT
vs
SUPPLY VOLTAGE
COMMON-MODE INPUT VOLTAGE RANGE
vs
FREE-AIR TEMPERATURE
10 6
VIC – Common-Mode Input Voltage Range – V
VIC
VCC + + 0.5
VICmax = VCC +
IIIB
IB – Input Bias Current – pA
10 5
TA = 125°C
VICmin
10 4
10 3
10 2
TA = 25°C
10 1
TA = – 55°C
10 0
0
5
10
15
20
25
30
35
40
45
RS = 50 Ω
VCC +
VICmax
VCC + – 0.5
VCC – + 3.5
VICmin
VCC – + 3
VCC – + 2.5
VCC – + 2
– 75 – 55 – 35 – 15
Figure 10
200
400
0
RL = 600 Ω
RL = 2 kΩ
RL = 10 kΩ
RL = 10 kΩ
– 100
RL = 2 kΩ
– 200
– 300
– 400
–5 –4
RL = 600 Ω
–3
– 2 – 10
VCC ± = ± 15 V
VIC = 0
RS = 50 Ω
TA = 25°C
300
100
0
65
85 105 125
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
V
VID
ID – Differential Input Voltage – uV
µV
V
VID
ID – Differential Input Voltage – uV
µV
300
45
Figure 11
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
VCC ± = ± 5 V
VIC = 0
RS = 50 Ω
TA = 25°C
25
TA – Free-Air Temperature – °C
VCC – Total Supply Voltage (Referred to VCC – ) – V
400
5
1
2
3
4
5
200
RL = 600 Ω
RL = 2 kΩ
100
0
RL = 10 kΩ
RL = 10 kΩ
– 100
RL = 2 kΩ
– 200
RL = 600 Ω
– 300
– 400
– 15
– 10
VO – Output Voltage – V
–5
0
5
10
VO – Output Voltage – V
Figure 12
Figure 13
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
15
13.5
12
TA = – 55°C
10.5
9
7.5
TA = 25°C
6
TA = 125°C
4.5
TA = 85°C
3
VCC ± = ± 15 V
1.5
0
0
– 5 –10 –15 – 20 – 25 – 30 – 35 – 40 – 45 – 50
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
V OM – – Maximum Negative Peak Output Voltage – V
VVOM
OM+ – Maximum Positive Peak Output Voltage – V
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
–15
–13.5
TA = – 55°C
–12
–10.5
TA = 25°C
–9
–7.5
–6
TA = 85°C
– 4.5
TA = 125°C
–3
VCC ± = ± 15 V
–1.5
0
0
5
IO – Output Current – mA
IO = – 20 mA
1
VCC ± = ± 5 V
–1
IO = 20 mA
–3
IO = 2 mA
–4
–5
– 75 – 55 – 35 –15
IO = 200 µA
5
25
30
35
40
45
50
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
| V OM | – Maximum Peak Output Voltage – V
VOM – Maximum Peak Output Voltage – V
V
OM
IO = – 2 mA
3
–2
25
15
IO = – 200 µA
4
0
20
Figure 15
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
2
15
IO – Output Current – mA
Figure 14
5
10
45
65
85 105 125
IO = 200 µA
IO = – 200 µA
14.5
14
IO = 2 mA
IO = – 2 mA
13.5
13
IO = 20 mA
12.5
IO = – 20 mA
12
11.5
11
10.5
VCC ± = ± 15 V
10
– 75 – 55 – 35 –15
TA – Free-Air Temperature – °C
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
Figure 16
Figure 17
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–23
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
V O(PP) – Maximum Peak-to-Peak Output Voltage – V
VO(PP)
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
25
VOM
VOM – Maximum Peak Output Voltage – V
TA = 25°C
20
15
IO = – 200 µA
10
5
IO = – 2 mA
IO = – 20 mA
0
–5
IO = 20 mA
–10
IO = 2 mA
IO = 200 µA
–15
– 20
– 25
0
2.5
5
7.5
10 12.5 15 17.5 20 22.5 25
30
VCC ± = ± 15 V
RL = 2 kΩ
25
20
TA = – 55°C
15
TA = 25°C,
125°C
10
VCC ± = ± 5 V
5
TA = – 55°C
0
100 k
1M
f – Frequency – Hz
|VCC ± | – Supply Voltage – V
Figure 18
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
125
12.5
10
10 mV
120
5
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
7.5
1 mV
2.5
VCC ± = ± 15 V
RL = 1 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
Rising
0
Falling
– 2.5
–5
ÁÁ
ÁÁ
1 mV
– 7.5
10 mV
– 10
– 12.5
0
0.5
1
1.5
2
VIC = 0
RS = 50 Ω
TA = 25°C
115
110
VCC ± = ± 15 V
105
VCC ± = ± 5 V
100
95
90
0.1
ts – Settling Time – µs
1
10
RL – Load Resistance – kΩ
Figure 20
Figure 21
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–24
10 M
Figure 19
OUTPUT VOLTAGE
vs
SETTLING TIME
VO
VO – Output Voltage – V
TA = 25°C,
125°C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
125
110
107
VCC ± = ± 15 V
VO = ± 10 V
RL = 10 kΩ
121
ÁÁ
ÁÁ
ÁÁ
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
RL = 10 kΩ
104
101
RL = 2 kΩ
98
95
92
86
VCC ± = ± 5 V
VO = ± 2.3 V
80
–75 – 55 – 35 –15
113
5
25
45
65
RL = 2 kΩ
109
105
101
Á
Á
Á
RL = 600 Ω
89
83
117
RL = 600 Ω
97
93
89
85
–75 – 55 – 35 –15
85 105 125
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
TA – Free-Air Temperature – °C
Figure 22
Figure 23
SMALL-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
140
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
ÁÁ
ÁÁ
ÁÁ
Gain
100
80
20°
40°
60°
Phase Shift
60
80°
40
100°
20
120°
0
140°
– 20
160°
Phase Shift
AVD
Avd – Small-Signal Differential
Voltage Amplification – dB
120
0°
180°
– 40
1
10
100
1k
10 k 100 k 1 M
10 M 100 M
f – Frequency – Hz
Figure 24
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–25
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
SMALL-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
30
80°
Phase Shift
100°
CL = 25 pF
10
120°
Gain
ÁÁ
ÁÁ
0
140°
Phase Shift
AVD
Avd – Small-Signal Differential
Voltage Amplification – dB
CL = 100 pF
20
CL = 100 pF
VCC ± = ± 15 V
VIC = 0
RC = 2 kΩ
TA = 25°C
– 10
CL = 25 pF
180°
100
– 20
1
4
10
160°
40
f – Frequency – MHz
Figure 25
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
CMRR – Common-Mode Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
100
VCC ± = ± 15 V
90
VCC ± = ± 5 V
80
70
60
50
40
30
VIC = 0
VO = 0
RS = 50 Ω
TA = 25°C
20
10
0
10
100
1k
10 k
100 k
1M
10 M
97
VCC ± = ± 15 V
94
91
88
VCC ± = ± 5 V
85
82
79
76
73
VIC = VICRmin
VO = 0
RS = 50 Ω
70
–75 – 55 – 35 –15
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
f – Frequency – Hz
Figure 26
Figure 27
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
120
kXXXX
SVR – Supply-Voltage Rejection Ratio – dB
kXXXX
SVR – Supply-Voltage Rejection Ratio – dB
120
kSVR +
100
80
60
kSVR –
40
∆ VCC ± = ± 5 V to ± 15 V
VIC = 0
VO = 0
RS = 50 Ω
TA = 25°C
20
0
– 20
10
100
1k
10 k
100 k
1M
114
kSVR +
108
102
96
90
kSVR –
84
78
72
66
∆ VCC ± = ± 5 V to ± 15 V
VIC = 0
VO = 0
RS = 50 Ω
60
–75 – 55 – 35 –15
10 M
Figure 28
25
45
65
85 105 125
Figure 29
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
3.5
4
VIC = 0
VO = 0
No Load
3.8
3.4
VIC = 0
VO = 0
No Load
3.3
IICC
CC – Supply Current – mA
3.6
IICC
CC – Supply Current – mA
5
TA – Free-Air Temperature – °C
f – Frequency – Hz
3.4
TA = 125°C
3.2
3
TA = 25°C
2.8
2.6
TA = – 55°C
3.2
3
2.8
2.7
2.2
2.6
0
2.5
5
7.5
10 12.5 15 17.5 20 22.5 25
VCC ± = ± 5 V
2.9
2.4
2
VCC ± = ± 15 V
3.1
2.5
–75 –55 –35 –15
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
|VCC ±| – Supply Voltage – V
Figure 30
Figure 31
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–27
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
SUPPLY CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
SUPPLY CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
14
25
VCC + = 5 V
VCC – = 0
VIC = 4.5 V
TA = 25°C
Open Loop
No Load
10
VCC ± = ± 15 V
VIC = 0
TA = 25°C
Open Loop
No Load
20
IICC
CC – Supply Current – mA
IICC
CC – Supply Current – mA
12
8
6
4
15
10
5
2
0
– 0.5
– 0.25
0
0.25
VID – Differential Input Voltage – V
0
–1.5
0.5
–1
Figure 32
48
40
VID = – 1 V
24
12
VO = 0
TA = 25°C
–12
– 24
VID = 1 V
– 48
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
50
– 36
0.5
1
VID = – 1 V
30
20
10
VCC ± = ± 15 V
VO = 0
TA = 25°C
0
–10
– 20
– 30
VID = 1 V
– 40
– 50
– 60
0
2.5
5
7.5
10 12.5 15 17.5 20 22.5 25
0
|VCC ± | – Supply Voltage – V
60
120
t – Elapsed Time – s
Figure 34
Figure 35
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–28
1.5
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
60
0
0
Figure 33
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
36
– 0.5
VID – Differential Input Voltage – V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
180
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
45
64
43
VID = – 1 V
VCC ± = ± 15 V
48
32
VCC ± = ± 5 V
16
0
– 16
VCC ± = ± 5 V
VID = 1 V
– 32
VCC ± = ± 15 V
– 48
– 64
41
V/µ s
SR – Slew Rate – V/xs
IIOS
OS – Short-Circuit Output Current – mA
80
VCC ± = ± 5 V
RL = 2 kΩ
CL = 100 pF
39
SR –
37
35
SR +
33
31
29
27
VO = 0
– 80
–75 – 55 – 35 –15
5
25
45
65
25
–75 – 55 – 35 –15
85 105 125
TA – Free-Air Temperature – °C
Figure 36
SR – Slew Rate – V/µ s
62
45
65
85 105 125
SLEW RATE
vs
LOAD RESISTANCE
50
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
40
Rising Edge
30
SR – Slew Rate – V/µ s
66
25
Figure 37
SLEW RATE
vs
FREE-AIR TEMPERATURE
70
5
TA – Free-Air Temperature – °C
58
54
50
SR –
46
42
SR +
20
10
VCC ± = ± 5 V
VO ± = ± 2.5 V
0
–10
AV = – 1
CL = 100 pF
TA = 25°C
– 20
38
– 30
34
– 40
30
–75 – 55 – 35 –15
Falling Edge
– 50
100
1k
5
25
45
65
85 105 125
VCC ± = ± 15 V
VO ± = ± 10 V
TA – Free-Air Temperature – °C
10 k
100 k
RL – Load Resistance – Ω
Figure 38
Figure 39
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–29
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
INPUT-REFERRED NOISE VOLTAGE
SPECTRAL DENSITY
vs
FREQUENCY
SLEW RATE
vs
DIFFERENTIAL INPUT VOLTAGE
50
Hz
AV = – 1
40
SR – Slew Rate – V/µ s
30
AV = 1
Rising Edge
20
VCC ± = ± 15 V
VO ± = ± 10 V (10% – 90%)
CL = 100 pF
TA = 25°C
10
0
–10
– 20
Falling Edge
– 30
AV = – 1
– 40
AV = 1
– 50
0.1
0.4
1
4
V n – Equivalent Input Noise Voltage – nV/
Vn
50
VCC ± = ± 15 V
VIC = 0
RS = 20 Ω
TA = 25°C
45
40
35
30
25
20
15
10
5
0
10
10
100
VID – Differential Input Voltage – V
Figure 40
1.2
Vn – Input-Referred Noise Voltage – µV
Vn
Vn – Input-Referred Noise Voltage – µV
Vn
INPUT-REFERRED NOISE VOLTAGE
OVER A 10-SECOND TIME INTERVAL
VCC ± = ± 15 V
VIC = 0
RS = 20 Ω
TA = 25°C
10
10 k
Figure 41
INPUT-REFERRED NOISE VOLTAGE
vs
NOISE BANDWIDTH
100
1k
f – Frequency – Hz
Peak-to-Peak
1
RMS
0.1
0.01
0.9
VCC ± = ± 15 V
f = 0.1 to 10 Hz
TA = 25°C
0.6
0.3
0
– 0.3
– 0.6
1
10
100
1k
10 k
100 k
0
1
2
3
4
5
6
7
8
9
t – Time – s
Noise Bandwidth – Hz
Figure 42
Figure 43
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS
THIRD-OCTAVE SPECTRAL NOISE DENSITY
vs
FREQUENCY BANDS
THD + N – Total Harmonic Distortion + Noise – %
Third-Octave Spectral Noise Density – dB
– 75
Start Frequency: 12.5 Hz
Stop Frequency: 20 kHz
VCC ± = ± 15 V
VIC = 0
TA = 25°C
– 80
– 85
– 90
– 95
–100
–105
–110
–115
10
15
20
25
30
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
40
35
45
1
AV = 100, RL = 600 Ω
0.1
AV = 100, RL = 2 kΩ
AV = 10, RL = 600 Ω
AV = 10, RL = 2 kΩ
0.01
VCC ± = ± 5 V
VO(PP) = 5 V
TA = 25°C
Filter: 10-Hz to 500-kHz Band Pass
0.001
10
100
Frequency Bands
Figure 44
B1
B1 – Unity-Gain Bandwidth – MHz
THD + N – Total Harmonic Distortion + Noise – %
13
Filter: 10-Hz to 500-kHz Band Pass
VCC ± = ± 15 V
VO(PP) = 20 V
TA = 25°C
AV = 100, RL = 600 Ω
AV = 100, RL = 2 kΩ
AV = 10, RL = 600 Ω
AV = 10, RL = 2 kΩ
0.001
10
100 k
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
1
0.01
10 k
Figure 45
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.1
1k
f – Frequency – Hz
VCC ± = ± 15 V
VIC = 0
VO = 0
RL = 2 kΩ
TA = 25°C
12
11
10
9
8
7
100
1k
10 k
100 k
0
f – Frequency – Hz
20
40
60
80
100
CL – Load Capacitance – pF
Figure 46
Figure 47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–31
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
13
f = 100 kHz
VIC = 0
VO = 0
RL = 2 kΩ
CL = 100 pF
12
11
VCC ± = ± 15 V
10
9
VCC ± = ± 5 V
8
7
–75 – 55 – 35 –15
Gain-Bandwidth Product – MHz
Gain-Bandwidth Product – MHz
13
f = 100 kHz
VIC = 0
VO = 0
RL = 2 kΩ
CL = 100 pF
TA = 25°C
12
11
10
9
8
7
5
25
45
65
85 105 125
0
5
TA – Free-Air Temperature – °C
Figure 48
20
25
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
10
90°
VCC ± = ± 15 V
VIC = 0
VO = 0
RL = 2 kΩ
TA = 25°C
80°
VIC = 0
VO = 0
RL = 2 kΩ
70°
φ m – Phase Margin
xm
Gain Margin – dB
15
Figure 49
GAIN MARGIN
vs
LOAD CAPACITANCE
8
10
VCC +± | – Supply Voltage – V
|VCC
6
4
VCC ± = ± 15 V
CL = 25 pF
60°
VCC ± = ± 5 V
50°
VCC ± = ± 15 V
40°
30°
CL = 100 pF
VCC ± = ± 5 V
20°
2
10°
0
0
20
40
60
80
100
0°
–75 – 55 – 35 –15
5
25
45
65
85 105 125
TA – Free-Air Temperature – °C
CL – Load Capacitance – pF
Figure 50
Figure 51
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
PHASE MARGIN
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
LOAD CAPACITANCE
90°
90°
80°
80°
70°
CL = 25 pF
60°
xm
φ m – Phase Margin
φ m – Phase Margin
xm
70°
50°
CL = 100 pF
40°
30°
VIC = 0
VO = 0
RL = 2 kΩ
TA = 25°C
20°
10°
60°
VCC ± = ± 15 V
50°
VCC ± = ± 5 V
40°
30°
VIC = 0
VO = 0
RL = 2 kΩ
TA = 25°C
20°
10°
0°
0°
0
4
8
12
16
20
0
20
|VCC ±| – Supply Voltage – V
40
60
80
100
CL – Load Capacitance – pF
Figure 52
Figure 53
NONINVERTING LARGE-SIGNAL
PULSE RESPONSE
SMALL-SIGNAL PULSE RESPONSE
100
15
TA = 25°C,
125°C
VO
VO – Output Voltage – mV
VO
VO – Output Voltage – V
10
TA = – 55°C
5
TA = – 55°C
0
TA = 25°C,
125°C
–5
VCC ± = ± 15 V
AV = 1
RL = 2 kΩ
CL = 100 pF
– 10
– 15
50
0
VCC ± = ± 15 V
AV = – 1
RL = 2 kΩ
CL = 100 pF
TA = 25°C
– 50
–100
0
1
2
3
t – Time – µs
4
5
0
Figure 54
0.4
0.8
t – Time – µs
1.2
1.6
Figure 55
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–33
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
TYPICAL CHARACTERISTICS†
CLOSED-LOOP OUTPUT IMPEDANCE
vs
FREQUENCY
CROSSTALK ATTENUATION
vs
FREQUENCY
140
VCC ± = ± 15 V
TA = 25°C
10
1
a
axx – Crosstalk Attenuation – dB
zo – Closed-Loop Output Impedance – Ω
zo
X
100
AV = 100
0.1
AV = 10
0.01
AV = 1
0.001
10
100
1k
10 k
100 k
1M
10 M
120
100
80
60
40
20
10
VCC ± = ± 15 V
VIC = 0
RL = 2 kΩ
TA = 25°C
100
1k
10 k
f – Frequency – Hz
f – Frequency – Hz
Figure 56
Figure 57
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
5–34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100 k
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice Parts model generation software. The Boyle
macromodel (see Note 4) and subcircuit in Figure 58 were generated using the TLE2072 typical electrical and
operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•
•
•
•
•
•
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 4: G.R. Boyle, B.M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
DIN
3
EGND +
VCC +
92
9
FB
–
+
91
90
RSS
ISS
RO2
–
+ DIP
+
VB
RP
VIP
VIN
HLIM
–
+
2
10
+
–
–
VC
R2
IN –
C2
J1
J2
–
7
6
DP
53
+
IN+
VLIM
1
11
DC
GA
12
GCM
–
8
C1
RD1
VCC –
RD2
54
4
–
RO1
DE
5
+
VE
OUT
.SUBCKT TLE2072 1 2 3 4 5
C1
11
12
2.2E–12
C2
6
7
10.00E–12
DC
5
53
DX
DE
54
5
DX
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,0) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP
+ VLN 0 5.607E6 –6E6 6E6 6E6 –6E6
GA
6
0
11 12 333.0E–6
GCM
0
6
10 99 7.43E–9
ISS
3
10
DC 400.0E–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX
J2
12
1
10 JX
R2
6
9
100.0E3
RD1
4
11
3.003E3
RD2
4
12
3.003E3
R01
8
5
80
R02
7
99
80
RP
3
4
27.30E3
RSS
10
99
500.0E3
VB
9
0
DC 0
VC
3
53
DC 2.20
VE
54
4
DC 2.20
VLIM
7
8
DC 0
VLP
91
0
DC 45
VLN
0
92
DC 45
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=15.00E–12 BETA=554.5E–6
+ VTO=–.6)
.ENDS
Figure 58. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5–35
TLE2072, TLE2072A, TLE2072Y
EXCALIBUR LOW-NOISE HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
SLOS124A – JUNE 1993 – REVISED AUGUST 1994
5–36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.
TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.
Copyright  1996, Texas Instruments Incorporated