FREESCALE MRF7S19170HR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S19170H
Rev. 0, 10/2006
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF7S19170HR3
MRF7S19170HSR3
Designed for CDMA base station applications with frequencies from 1930 to
1990 MHz. Suitable for CDMA and multicarrier amplifier applications. To be
used in Class AB and Class C for PCN - PCS/cellular radio and WLL
applications.
• Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ =
1400 mA, Pout = 50 Watts Avg., Full Frequency Band, 3GPP Test Model 1,
64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal
PAR = 7.5 dB @ 0.01% Probability on CCDF.
Power Gain — 17.2 dB
Drain Efficiency — 32%
Device Output Signal PAR — 6.2 dB @ 0.01% Probability on CCDF
ACPR @ 5 MHz Offset — - 37.5 dBc in 3.84 MHz Channel Bandwidth
• Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 170 Watts CW
Peak Tuned Output Power
• Pout @ 1 dB Compression Point w 170 Watts CW
Features
• 100% PAR Tested for Guaranteed Output Power Capability
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• Designed for Digital Predistortion Error Correction Systems
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
1930 - 1990 MHz, 50 W AVG., 28 V
SINGLE W - CDMA
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465B - 03, STYLE 1
NI - 880
MRF7S19170HR3
CASE 465C - 02, STYLE 1
NI - 880S
MRF7S19170HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDSS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 170 W CW
Case Temperature 72°C, 25 W CW
RθJC
0.25
0.31
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S19170HR3 MRF7S19170HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1A (Minimum)
Machine Model (per EIA/JESD22 - A115)
B (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 372 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 1400 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage (1)
(VDS = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test)
VGG(Q)
4
5.4
7.6
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 3.72 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.9
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
703
—
pF
Off Characteristics
On Characteristics
Dynamic Characteristics (2)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W Avg., f = 1932.5 MHz and f =
1987.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF.
ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
16
17.2
19
dB
Drain Efficiency
ηD
29
32
—
%
PAR
5.7
6.2
—
dB
ACPR
—
- 37.5
- 35
dBc
IRL
—
- 16
-9
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit
schematic.
2. Part internally matched both on input and output.
MRF7S19170HR3 MRF7S19170HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) — continued
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 1930 - 1990 MHz Bandwidth
Video Bandwidth
(Tone Spacing from 100 kHz to VBW)
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
MHz
—
25
—
Gain Flatness in 60 MHz Bandwidth @ Pout = 170 W CW
GF
—
0.5
—
dB
Deviation from Linear Phase in 60 MHz Bandwidth
@ Pout = 170 W CW
Φ
—
2.06
—
°
Delay
—
4.7
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 170 W CW,
f = 1960 MHz
ΔΦ
—
16
—
°
Gain Variation over Temperature
ΔG
—
0.015
—
dB/°C
ΔP1dB
—
0.01
—
dBm/°C
Group Delay @ Pout = 170 W CW, f = 1960 MHz
Output Power Variation over Temperature
MRF7S19170HR3 MRF7S19170HSR3
RF Device Data
Freescale Semiconductor
3
Z20
R1
VBIAS
VSUPPLY
+
C6
R2
C5
C4
C3
Z7
C8
R3
RF
INPUT Z1
Z2
Z3
Z4
Z5
Z6
C7
C1
C15
C16
C19
Z9
Z8
Z10 Z11 Z12 Z13
Z14
Z15
Z16 Z17
DUT
C2
C14
C13
C12
C10
Z18
RF
Z19 OUTPUT
C11
Z21
C9
Z1*
Z2*
Z3*
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
0.588″ x 0.083″ Microstrip
0.146″ x 0.083″ Microstrip
0.068″ x 0.083″ Microstrip
0.865″ x 0.098″ Microstrip
0.154″ x 0.098″ Microstrip
0.271″ x 0.787″ Microstrip
1.410″ x 0.080″ Microstrip
0.194″ x 0.787″ Microstrip
0.115″ x 1.360″ Microstrip
0.230″ x 1.360″ Microstrip
0.185″ x 1.120″ Microstrip
C17
Z12
Z13*
Z14*
Z15*
Z16*
Z17, Z18
Z19
Z20, Z21
PCB
C18
0.060″ x 0.420″ Microstrip
0.197″ x 0.083″ Microstrip
0.332″ x 0.083″ Microstrip
0.158″ x 0.083″ Microstrip
0.572″ x 0.083″ Microstrip
0.063″ x 0.220″ Microstrip
0.160″ x 0.083″ Microstrip
1.120″ x 0.080″ Microstrip
Taconic TLX - 0300, 0.030″, εr = 2.5
* Variable for tuning
Figure 1. MRF7S19170HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S19170HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
1.8 pF Chip Capacitors
100B1R8BW
ATC
C3, C8, C9, C10, C11
8.2 pF Chip Capacitors
100B8R2CW
ATC
C4
100 pF Chip Capacitor
100B101JW
ATC
C5
100 nF Chip Capacitor
200B104MW
ATC
C6, C15, C16, C17, C18
10 μF Chip Capacitors
C5750X5R1H106MT
TDK
C7
0.5 pF Chip Capacitor
100B0R5BW
ATC
C12
1.5 pF Chip Capacitor
100B1R5BW
ATC
C13
0.3 pF Chip Capacitor
100B0R3BW
ATC
C14
0.8 pF Chip Capacitor
100B0R8BW
ATC
C19
470 μF, 63 V Electrolytic Capacitor, Axial
516D477M063PS7B
Sprague
R1, R2
10 kΩ, 1/4 W Chip Resistors
CRCW12061001FKTA
Vishay
R3
10 Ω, 1/4 W Chip Resistor
CRCW120610R0FKTA
Vishay
MRF7S19170HR3 MRF7S19170HSR3
4
RF Device Data
Freescale Semiconductor
C19
R2
R1
C5
C4
C3
C6
C8
C15
C16
R3
C1 C2
CUT OUT AREA
C10
C7
C11
C14
C13 C12
C9
C17
C18
MRF7S19170H
Rev 0
Figure 2. MRF7S19170HR3(HSR3) Test Circuit Component Layout
MRF7S19170HR3 MRF7S19170HSR3
RF Device Data
Freescale Semiconductor
5
Gps, POWER GAIN (dB)
17
34
Gps
16
15
33
ηD
32
VDD = 28 Vdc, Pout = 50 W (Avg.), IDQ = 1400 mA
31
Single−Carrier W−CDMA, 3.84 MHz Channel
Bandwidth, PAR = 7.5 dB @ 0.01%
−1
Probability (CCDF)
14
IRL
13
12
−1.5
PARC
11
10
1880
−2
1900
1920
1940
1960
1980
2000
−10
−15
−20
−25
−2.5
2040
2020
−30
IRL, INPUT RETURN LOSS (dB)
35
PARC (dB)
18
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
43
ηD
16
15
42
Gps
41
VDD = 28 Vdc, Pout = 84 W (Avg.), IDQ = 1400 mA
Single−Carrier W−CDMA, 3.84 MHz Channel
Bandwidth, PAR = 7.5 dB @ 0.01% Probability (CCDF)
14
40
−10
13
−3
−15
12 PARC
−3.4
11
−3.8
IRL
10
1880
1900
1920
1940
1960
1980
2000
PARC (dB)
Gps, POWER GAIN (dB)
17
44
−20
−25
−4.2
2040
2020
−30
IRL, INPUT RETURN LOSS (dB)
18
ηD, DRAIN
EFFICIENCY (%)
Figure 3. Output Peak - to - Average Ratio Compression (PARC)
Broadband Performance @ Pout = 50 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. Output Peak - to - Average Ratio Compression (PARC)
Broadband Performance @ Pout = 84 Watts Avg.
19
Gps, POWER GAIN (dB)
18
IDQ = 2100 mA
1750 mA
17
1400 mA
1050 mA
16
700 mA
15
1
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−10
VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−20
−30
IDQ = 700 mA
2100 mA
−40
1050 mA
−50
1750 mA
1400 mA
−60
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
400
1
10
100
400
Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF7S19170HR3 MRF7S19170HSR3
6
RF Device Data
Freescale Semiconductor
−10
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 28 Vdc, IDQ = 1400 mA
f1 = 1955 MHz, f2 = 1965 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−20
−30
−40
3rd Order
−50
5th Order
7th Order
−60
1
100
0
−5
VDD = 28 Vdc, Pout = 170 W (PEP), IDQ = 1400 mA
Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1960 MHz
−10
−15
−20
−25
−30
IM3−U
IM3−L
−35
−40
IM5−U
IM5−L
−45
−50
IM7−U
−55
−60
IM7−L
10
1
400
100
Pout, OUTPUT POWER (WATTS) PEP
TWO−TONE SPACING (MHz)
Figure 7. Intermodulation Distortion Products
versus Output Power
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
OUTPUT COMPRESSION AT THE 0.01%
PROBABILITY ON THE CCDF (dB)
1
50
VDD = 28 Vdc, IDQ = 1400 mA
f = 1960 MHz, Input PAR = 7.5 dB
Ideal
0
−1
45
40
−1 dB = 45 W
−2
35
−2 dB = 62 W
−3
30
−3 dB = 84 W
−4
30
35
40
45
50
55
60
65
70
75
ηD, DRAIN EFFICIENCY (%)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
Actual
80
85
25
90
Pout, OUTPUT POWER (WATTS)
19
VDD = 28 Vdc, IDQ = 1400 mA, f = 1960 MHz
Single−Carrier W−CDMA, PAR = 7.5 dB, ACPR @
5 MHz Offset in 3.84 MHz Integrated Bandwidth
−30
Uncorrected, Upper and Lower
−40
DPD Corrected
No Memory Correction
−50
−60
TC = −30_C
18
Gps
17
75
25_C
25_C
60
85_C
16
85_C
15
VDD = 28 Vdc
IDQ = 1400 mA
f = 1960 MHz
ηD
13
41
42
43
44
45
46
47
48
49
50
Pout, OUTPUT POWER (dBm)
Figure 10. Digital Predistortion Correction versus
ACPR and Output Power
45
30
14
DPD Corrected
with Memory Correction
−70
40
90
−30_C
1
10
100
15
ηD, DRAIN EFFICIENCY (%)
−20
Gps, POWER GAIN (dB)
ACPR, UPPER AND LOWER RESULTS (dBc)
Figure 9. Output Peak - to - Average Ratio
Compression (PARC) versus Output Power
0
400
Pout, OUTPUT POWER (WATTS) CW
Figure 11. Power Gain and Drain Efficiency
versus CW Output Power
MRF7S19170HR3 MRF7S19170HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
109
18
MTTF FACTOR (HOURS x AMPS2)
IDQ = 1400 mA
f = 1960 MHz
Gps, POWER GAIN (dB)
17
16
15
VDD = 24 V
14
32 V
28 V
108
107
106
13
0
100
200
300
90
110
Pout, OUTPUT POWER (WATTS) CW
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
Figure 12. Power Gain versus Output Power
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 13. MTTF Factor versus Junction Temperature
W - CDMA TEST SIGNAL
100
−10
3.84 MHz
Channel BW
−20
10
−40
Output Signal
Input Signal
−50
0.1
(dB)
PROBABILITY (%)
−30
1
0.01
−70
W−CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ "5 MHz Offset.
PAR = 7.5 dB @ 0.01% Probability on
CCDF
0.001
0.0001
0
2
4
6
−60
−80
−ACPR in 3.84 MHz
Integrated BW
−90
8
10
PEAK−TO−AVERAGE (dB)
Figure 14. CCDF W - CDMA 3GPP, Test Model 1,
64 DPCH, 50% Clipping, Single - Carrier Test Signal
−ACPR in 3.84 MHz
Integrated BW
−100
−110
−9
−7.2 −5.4 −3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 15. Single - Carrier W - CDMA Spectrum
MRF7S19170HR3 MRF7S19170HSR3
8
RF Device Data
Freescale Semiconductor
Zo = 10 Ω
f = 2040 MHz
Zload
f = 1880 MHz
Zsource
f = 2040 MHz
f = 1880 MHz
VDD = 28 Vdc, IDQ = 1400 mA, Pout = 50 W CW Avg.
f
MHz
Zsource
W
Zload
W
1880
1.338 - j7.859
0.967 - j2.868
1900
1.515 - j7.609
0.942 - j2.725
1920
1.743 - j7.432
0.920 - j2.585
1940
2.007 - j7.352
0.893 - j2.449
1960
2.249 - j7.393
0.865 - j2.313
1980
2.410 - j7.553
0.841 - j2.192
2000
2.411 - j7.788
0.820 - j2.073
2020
2.244 - j7.995
0.802 - j1.957
2040
1.966 - j8.101
0.779 - j1.834
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 16. Series Equivalent Source and Load Impedance
MRF7S19170HR3 MRF7S19170HSR3
RF Device Data
Freescale Semiconductor
9
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
61
61
59
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
60
62
Ideal
P6dB = 54.33 dBm (271 W)
58
P3dB = 53.97 dBm (249 W)
57
56
P1dB = 53.25 dBm
(211 W)
55
Actual
54
53
VDD = 28 Vdc, IDQ = 1400 m, Pulsed CW
12 μsec(on), 10% Duty Cycle, f = 1960 MHz
52
51
32
33
34
35
36
37
38
39
40
41
42
59
P3dB = 54.9 dBm (310 W)
58
57
P1dB = 54.14 dBm
(259 W)
56
55
Actual
54
VDD = 32 Vdc, IDQ = 1400 mA, Pulsed CW
12 μsec(on), 10% Duty Cycle, f = 1960 MHz
53
52
43
44
33
34
35
Pin, INPUT POWER (dBm)
36
37
38
39
40
41
42
43
44
45
Pin, INPUT POWER (dBm)
NOTE: Measured in a Peak Tuned Load Pull Fixture
NOTE: Measured in a Peak Tuned Load Pull Fixture
Test Impedances per Compression Level
P3dB
Ideal
P6dB = 55.27 dBm (336 W)
60
Zsource
Ω
Zload
Ω
2.34 - j9.24
0.79 - j2.94
Figure 17. Pulsed CW Output Power
versus Input Power
Test Impedances per Compression Level
P3dB
Zsource
Ω
Zload
Ω
2.34 - j9.24
0.79 - j2.94
Figure 18. Pulsed CW Output Power
versus Input Power
MRF7S19170HR3 MRF7S19170HSR3
10
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
B
4
G
2X
1
Q
bbb
M
T A
M
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
4. RECOMMENDED BOLT CENTER DIMENSION OF
1.16 (29.57) BASED ON M3 SCREW.
M
B
(FLANGE)
3
K
2
bbb
D
T A
M
M
B
M
M
bbb
M
T A
M
B
M
ccc
M
T A
M
B
M
N
R
(INSULATOR)
ccc
M
T A
M
aaa
M
T A
M
B
S
(LID)
(LID)
M
(INSULATOR)
B
M
H
C
T
A
A
INCHES
MIN
MAX
1.335
1.345
0.535
0.545
0.147
0.200
0.495
0.505
0.035
0.045
0.003
0.006
1.100 BSC
0.057
0.067
0.175
0.205
0.872
0.888
0.871
0.889
.118
.138
0.515
0.525
0.515
0.525
0.007 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
33.91
34.16
13.6
13.8
3.73
5.08
12.57
12.83
0.89
1.14
0.08
0.15
27.94 BSC
1.45
1.70
4.44
5.21
22.15
22.55
19.30
22.60
3.00
3.51
13.10
13.30
13.10
13.30
0.178 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
F
E
DIM
A
B
C
D
E
F
G
H
K
M
N
Q
R
S
aaa
bbb
ccc
SEATING
PLANE
CASE 465B - 03
ISSUE D
NI - 880
MRF7S19170H
(FLANGE)
B
1
B
(FLANGE)
K
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
2
bbb
M
D
T A
M
B
M
M
bbb
M
T A
M
B
M
T A
M
B
ccc
M
N
ccc
R
(INSULATOR)
M
T A
M
S
(LID)
aaa
M
B
M
T A
M
B
(LID)
M
(INSULATOR)
M
H
C
F
E
T
A
A
SEATING
PLANE
(FLANGE)
CASE 465C - 02
ISSUE D
NI - 880S
MRF7S19170HS
DIM
A
B
C
D
E
F
H
K
M
N
R
S
aaa
bbb
ccc
INCHES
MIN
MAX
0.905
0.915
0.535
0.545
0.147
0.200
0.495
0.505
0.035
0.045
0.003
0.006
0.057
0.067
0.170
0.210
0.872
0.888
0.871
0.889
0.515
0.525
0.515
0.525
0.007 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
22.99
23.24
13.60
13.80
3.73
5.08
12.57
12.83
0.89
1.14
0.08
0.15
1.45
1.70
4.32
5.33
22.15
22.55
19.30
22.60
13.10
13.30
13.10
13.30
0.178 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
MRF7S19170HR3 MRF7S19170HSR3
RF Device Data
Freescale Semiconductor
11
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Oct. 2006
Description
• Initial Release of Data Sheet
MRF7S19170HR3 MRF7S19170HSR3
12
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
MRF7S19170HR3 MRF7S19170HSR3
Document
Number:
RF
Device
DataMRF7S19170H
Rev. 0, 10/2006
Freescale
Semiconductor
13