FREESCALE MW5IC2030GMBR1

Freescale Semiconductor
Technical Data
Document Number: MW5IC2030N
Rev. 8, 5/2006
RF LDMOS Wideband Integrated
Power Amplifiers
The MW5IC2030N wideband integrated circuit is designed with on - chip
matching that makes it usable from 1930 to 1990 MHz. This multi - stage
structure is rated for 26 to 28 Volt operation and covers all typical cellular base
station modulation formats.
Final Application
• Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 160 mA,
IDQ2 = 230 mA, Pout = 5 Watts Avg., Full Frequency Band, IS - 95 CDMA
(Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth =
1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF.
Power Gain — 23 dB
Drain Efficiency — 20%
ACPR @ 885 kHz Offset — - 49 dBc in 30 kHz Channel Bandwidth
Driver Application
• Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 220 mA, IDQ2 =
240 mA, Pout = 1 Watt Avg., Full Frequency Band, IS - 95 CDMA (Pilot,
Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth =
1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF.
Power Gain — 24 dB
ACPR @ 885 kHz Offset — - 63 dBc in 30 kHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 27 Vdc, 1990 MHz, 30 Watts CW
Output Power
• Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 0 to 43 dBm CW
Pout.
• On - Chip Matching (50 Ohm Input, >4 Ohm Output)
• Integrated Temperature Compensation Capability with Enable/Disable
Function
• On - Chip Current Mirror gm Reference FET for Self Biasing Application (1)
• Integrated ESD Protection
• 200°C Capable Plastic Package
• N Suffix Indicates Lead - Free Terminations. RoHS Compliant.
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel
VDS1
VRD2
VRG2
RFin
VDS2/RFout
VRD1
VRG1/VGS1
Quiescent Current
Temperature Compensation
VGS2
Figure 1. Functional Block Diagram
MW5IC2030NBR1
MW5IC2030GNBR1
1930 - 1990 MHz, 30 W, 26 V
GSM/GSM EDGE, W - CDMA, PHS
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1329 - 09
TO - 272 WB - 16
PLASTIC
MW5IC2030NBR1
CASE 1329A - 03
TO - 272 WB - 16 GULL
PLASTIC
MW5IC2030GNBR1
GND
VDS1
VRD2
VRG2
GND
1
2
3
4
5
16
15
GND
NC
RFin
6
14
VDS2/
RFout
VRD1
VRG1/VGS1
VGS2
NC
GND
7
8
9
10
11
13
12
NC
GND
(Top View)
Note: Exposed backside flag is source
terminal for transistors.
Figure 2. Pin Connections
1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1987.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 0.5, +15
Vdc
Storage Temperature Range
Tstg
- 65 to +175
°C
Operating Junction Temperature
TJ
200
°C
Input Power
Pin
20
dBm
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RθJC
°C/W
CDMA Application
(Pout = 5 W CW)
Stage 1, 27 Vdc, IDQ = 160 mA
Stage 2, 27 Vdc, IDQ = 230 mA
4.89
1.75
PHS Application
(Pout = 12.6 W CW)
Stage 1, 26 Vdc, IDQ = 300 mA
Stage 2, 26 Vdc, IDQ = 1300 mA
4.85
1.61
Table 3. ESD Protection Characteristics
Test Conditions
Class
Human Body Model
1B (Minimum)
Machine Model
A (Minimum)
Charge Device Model
3 (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
CDMA Functional Tests (In Freescale 1900 MHz Test Fixture, 50 οhm system) VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout =
5 W Avg., 1960 MHz, Single - Carrier N - CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth
@ ± 885 kHz Offset. PAR = 9.8 dB @ 0.01 Probability on CCDF.
Power Gain
Gps
21.5
23
—
dB
Drain Efficiency
ηD
18
20
—
%
Input Return Loss
Adjacent Channel Power Ratio
Gain Flatness in 30 MHz BW, 1930 - 1990 MHz
IRL
—
- 18
- 10
dB
ACPR
—
- 49
- 47
dBc
GF
—
0.2
0.3
dB
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW5IC2030NBR1 MW5IC2030GNBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture) VDD = 26 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 W, f = 1960 MHz
Pout @ 1 dB Compression Point, CW
P1dB
—
30
—
W
Φ
—
±1
—
°
Delay
—
2.25
—
ns
Part - to - Part Phase Variation
ΔΦ
—
±10
—
°
Part - to - Part Gain Variation (Per Lot or Reel)
ΔG
—
±1.5
—
dB
—
10
—
%
Deviation from Linear Phase in 30 MHz BW
(Characterized from 1930 - 1990 MHz)
Delay
Reference FET to RF FET Scaling Ratio Delta (Stages 1 and 2)
Typical PHS Performances (In Freescale Test Fixture, 50 οhm system) VDD = 26 Vdc, IDQ1 = 260 mA, IDQ2 = 1100 mA, Pout =
12.6 W, 1900 MHz, PHS Signal Mask
Power Gain
Gps
—
24
—
dB
Drain Efficiency
ηD
—
25
—
%
Input Return Loss
IRL
—
- 15
—
dB
ACPR
—
- 72
—
dBc
Adjacent Channel Power Ratio
(600 kHz Offset in 192 kHz BW)
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
3
Z10
VD1
+
C19
C9
C6
VRD2
C12
1
16
2
NC 15
Z9
3
VBIAS R2
R3
R6
RF
INPUT
C5
4
C13
C8
+
VD2
C20
Z8
RF
OUTPUT
5
Z1
Z3
Z2
6
C2 C3
Z6
7
VRG1/VGS1
C14
VBIAS1
C11
R4
C15
+
VBIAS2
C10
Z1
Z2
Z3
Z4
Z5
Z6
+
8
9
C18
Z11
R2
Z5
C1
C7
VRD1
R1
Z4
14
Quiescent Current
Temperature
Compensation
NC 10 NC
NC 13
11
R5
C16
0.465″
0.518″
0.282″
0.221″
0.489″
0.471″
x 0.041″ Microstrip
x 0.041″ Microstrip
x 0.235″ Microstrip
x 0.081″ Microstrip
x 0.041″ Microstrip
x 0.025″ Microstrip
C4
Z7
12
C17
Z7
Z8
Z9
Z10
Z11
PCB
0.200″ x 0.025″ Microstrip
0.274″ x 0.050″ Microstrip
0.615″ x 0.050″ Microstrip
0.450″ x 0.025″ Microstrip
0.340″ x 0.014″ Microstrip
Rogers 4350, 0.020″, εr = 3.5
Figure 3. MW5IC2030NBR1(GNBR1) Test Circuit Schematic
Table 6. MW5IC2030NBR1(GNBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
1.8 pF High Q Chip Capacitor (0603)
600S1R8AT - 250 - T
ATC
C2
1.5 pF High Q Chip Capacitor (0603)
600S1R5AT - 250 - T
ATC
C3
3.9 pF High Q Chip Capacitor (0603)
600S3R9AT - 250 - T
ATC
C4
6.8 pF High Q Chip Capacitor (0805)
600S6R8AT - 250 - T
ATC
C5, C6
100 pF Class 1 NPO Chip Capacitors (0805)
GRM215CB1H101CZ01D
Murata
C7
4.7 pF Class 1 NPO Chip Capacitor (0805)
GRM215CB1H4R7CZ01D
Murata
C8, C9, C10, C11
0.1 μF X7R Chip Capacitors (1206)
C1206C104K5RACT
Kemet
C12, C13, C14, C15, C16
0.01 μF Class 2 X7R Chip Capacitors (0805)
C0805C103K5RACT
Kemet
C17, C18
22 μF, 35 V Electrolytic Capacitors
ECE - 1AVKS220
Panasonic
C19, C20
330 μF, 50 V Electrolytic Capacitors
ECA - 1HM331
Panasonic
R1, R3
1 kW, 5% Chip Resistors (0805)
R2
499 W, 1% Chip Resistor (0805)
R4, R5, R6
100 kW, 5% Chip Resistors (0805)
MW5IC2030NBR1 MW5IC2030GNBR1
4
RF Device Data
Freescale Semiconductor
RD2
C19
VD1
VD2
MW5IC2030M
Rev 3
C20
RG2
C9
R3
C8
C6
C12
C5
R6
C13
C3
CUTOUT AREA
C7
C17
C18
C2
C1
C15
C16
C14
C4
R5
R4
C10
RD1
R2
C11
R1
VG2
NC
VG1RG1
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 4. MW5IC2030NBR1(GNBR1) Test Circuit Component Layout
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
5
32
Gps
G ps , POWER GAIN (dB)
22
31
30
29
21
VDD = 27 Vdc, Pout = 10 W (Avg.)
IDQ1 = 160 mA, IDQ2 = 230 mA
100 kHz Tone Spacing
ηD
28
−26
IRL
20
−28
−30
19
−32
−34
18
1880
IMD
1900
1920
1940
1960
1980
2000
2020
−36
2040
IRL, INPUT RETURN LOSS (dB)
23
ηD, DRAIN EFFICIENCY (%)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
−16
−17
−18
−19
−20
−21
f, FREQUENCY (MHz)
9
Gps
G ps , POWER GAIN (dB)
23
8
7
ηD
6
VDD = 27 Vdc, Pout = 1 W (Avg.)
IDQ1 = 160 mA, IDQ2 = 230 mA
100 kHz Tone Spacing
22
5
−46
21
−47
IRL
−48
20
−49
IMD
−50
19
1880
1900
1920
1940
1960
1980
2000
2020
−51
2040
−16
−17
−18
−19
−20
−21
IRL, INPUT RETURN LOSS (dB)
24
ηD, DRAIN EFFICIENCY (%)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 5. Two - Tone Broadband Performance @ Pout = 10 Watts Avg.
f, FREQUENCY (MHz)
Figure 6. Two - Tone Broadband Performance @ Pout = 1 Watt Avg.
G ps , POWER GAIN (dB)
25
24
IDQ1 = 160 mA
IDQ2 = 230 mA
IMD, INTERMODULATION DISTORTION (dBc)
26
IDQ1 = 200 mA
IDQ2 = 300 mA
23
22
IDQ1 = 120 mA
IDQ2 = 175 mA
21
VDD = 27 Vdc
20 f1 = 1960 MHz, f2 = 1960.1 MHz
Two−Tone Measurements
19
0.1
1
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Two - Tone Power Gain versus
Output Power
100
−10
−15 VDD = 27 Vdc
−20 IDQ1 = 160 mA, IDQ2 = 230 mA
−25 f1 = 1960 MHz, f2 = 1960.1 MHz
−30 Two−Tone Measurements
−35
−40
−45
−50
−55
−60
−65
−70
−75
−80
0.1
1
3rd Order
5th Order
7th Order
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 8. Intermodulation Distortion Products
versus Output Power
MW5IC2030NBR1 MW5IC2030GNBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
50
VDD = 27 Vdc, Pout = 30 W (PEP), IDQ1 = 160 mA,
IDQ2 = 230 mA, Two−Tone Measurements
(f1 + f2/2) = Center Frequency of 1960 MHz
−30
3rd Order
−35
5th Order
−40
−45
−50
7th Order
−55
P3dB = 44.91 dBm (31 W)
48
P1dB = 44.69 dBm (29.5 W)
47
46
45
44
Actual
−30_C
43
25_C
42
41
85_C
40
39
−60
0.1
1
10
100
15
16
17
18
TWO−TONE SPACING (MHz)
−35
−40
IM3
−45
ACPR
5
−50
0
−55
30
31
32
33
34
35
36
37
TC = −30_C
25
26 27
−30_C
24
23
38
39
40
22
25
21
20
ηD
20
17
41
0
15
VDD = 27 Vdc
IDQ1 = 160 mA
IDQ2 = 230 mA
f = 1960 MHz
1
10
5
0
10
100
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus Output Power
40
24
0
30
22
24 V
28 V
S21 (dB)
21
32 V
−5
S21
23
VDD = 12 V
35
30
19
25
19
40
85_C
85_C
Pout, OUTPUT POWER (dBm)
20
45
25_C
25_C
Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power
Gain, and Drain Efficiency versus Output Power
G ps , POWER GAIN (dB)
24
Gps
18
29
23
25
G ps , POWER GAIN (dB)
2−Carrier W−CDMA, 10 MHz
Carrier Spacing, 3.84 MHz Channel
Bandwidth, PAR = 8.5 dB @ 0.01%
Probability (CCDF)
ηD
22
50
26
−30
Gps
10
21
27
IM3 (dBc), ACPR (dBc)
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
−25
VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, f = 1960 MHz
15
20
Figure 10. Pulse CW Output Power versus
Input Power
30
20
19
Pin, INPUT POWER (dBm)
Figure 9. Intermodulation Distortion Products
versus Tone Spacing
25
VDD = 27 Vdc
IDQ1 = 160 mA, IDQ2 = 230 mA
Pulsed CW, 8 μsec(on),
1 msec(off)
f = 1960 MHz
ηD, DRAIN EFFICIENCY (%)
−25
Ideal
49
20
−10
10
−15
0
−20
S11 (dB)
−20
Pout , OUTPUT POWER (dBm)
IMD, INTERMODULATION DISTORTION (dBc)
−15
S11
18
−10
17
15
0
20
40
VDD = 27 Vdc, Pout = 30 W
IDQ1 = 160 mA, IDQ2 = 230 mA
−20
IDQ1 = 160 mA, IDQ2 = 230 mA
f = 1960 MHz
16
−25
60
−30
1000
1500
2000
2500
Pout, OUTPUT POWER (WATTS) CW
f, FREQUENCY (MHz)
Figure 13. Power Gain versus Output Power
Figure 14. Broadband Frequency Response
−30
−35
3000
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
25
25_C
24
23
85_C
22
21
VDD = 27 Vdc, Pout = 5 W (CW), IDQ1 = 160 mA, IDQ2 = 230 mA
f1 = 1960 MHz, f2 = 1960.1 MHz, Two−Tone Measurements
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
20
1920
1930
1940
1950
1960
1970
1980
1990
2000
−60
4
20
TC = −30_C
2
10
Source EVM = 0.60%
0
Figure 16. EVM and Drain Efficiency versus
Output Power
TC = −30_C
85_C
25_C
SR @ 400 kHz
−70
25_C
−75
−30_C
85_C
SR @ 600 kHz
−85
0
10
100
Figure 17. Spectral Regrowth at 400 kHz and 600 kHz
versus Output Power
−40
−45
−50
−55
VDD = 27 Vdc
IDQ1 = 160 mA, IDQ2 = 230 mA
f = 1960 MHz
N−CDMA IS−95 (Pilot, Sync, Paging,
Traffic Codes 8 Through 13)
−60
ACPR
−65
−70
ALT2
−75
ALT1
−80
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Pout, IS−95 OUTPUT POWER (dBm)
Figure 18. Single - Carrier N - CDMA ACPR,
ALT1 and ALT2 versus Output Power
1.E+09
−20
_
−30
TC = −30_C
25_C
−40
85_C
−50
−60
0
1
10
100
Pout, OUTPUT POWER (WATTS) CW
Figure 19. Insertion Phase versus Output Power
MTTF FACTOR (HOURS X AMPS2)
−10
0
100
10
Figure 15. Power Gain versus Frequency
Pout, OUTPUT POWER (WATTS) AVG.
INSERTION PHASE ( )
25_C
Pout, OUTPUT POWER (WATTS) AVG.
−65
−80
30
f, FREQUENCY (MHz)
VDD = 27 Vdc
IDQ1 = 160 mA
IDQ2 = 230 mA
f = 1960 MHz
EDGE Modulation
−55
85_C
1
−45
−50
6
40
ηD
VDD = 27 Vdc
IDQ1 = 160 mA
IDQ2 = 230 mA
f = 1960 MHz
ηD, DRAIN EFFICIENCY (%)
TC = −30_C
8
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ALT 1 & 2, ALTERNATE 1 & 2 CHANNEL POWER RATIO (dBc)
G ps , POWER GAIN (dB)
26
EVM, ERROR VECTOR MAGNITUDE (% rms)
27
2nd Stage
1.E+08
1.E+07
1st Stage
1.E+06
90
100
110
120
130
140
150
160
170
180 190
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 20. MTTF Factor versus Junction Temperature
MW5IC2030NBR1 MW5IC2030GNBR1
8
RF Device Data
Freescale Semiconductor
f = 1800 MHz
Zload*
f = 1800 MHz
f = 2200 MHz
f = 2200 MHz
Zin
Zo = 50 Ω
VDD = 27 V, IDQ1 = 160 mA, IDQ2 = 230 mA
Zin
f
MHz
Zin
Ω
Zload
Ω
1800
49.7 - j9.3
6.9 - j0.3
1850
47.7 - j9.8
6.9 - j0.3
1930
44.8 - j8.5
6.7 - j0.1
1960
44.0 - j7.3
6.6 - j0.0
1990
44.6 - j5.6
6.6 + j0.1
2050
45.7 - j8.6
6.4 + j0.4
2100
42.5 - j8.3
6.2 + j0.8
2150
40.6 - j6.8
6.1 + j1.1
2200
39.3 - j5.0
6.0 + j1.6
= Device input impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 21. Series Equivalent Input and Load Impedance
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
9
DRIVER APPLICATION PERFORMANCE
Z10
VD1
+
C19
C9
C6
VRD2
C12
1
16
2
NC 15
Z9
3
VBIAS R2
R3
R6
RF
INPUT
C5
4
C13
C8
+
VD2
C20
Z8
RF
OUTPUT
5
Z1
Z3
Z2
6
C2 C3
Z6
7
VRG1/VGS1
C14
VBIAS1
C11
R4
C15
+
VBIAS2
C10
Z1
Z2
Z3
Z4
Z5
Z6
+
8
9
C18
Z11
R2
Z5
C1
C7
VRD1
R1
Z4
14
Quiescent Current
Temperature
Compensation
NC 10 NC
NC 13
11
R5
C16
0.465″
0.518″
0.282″
0.221″
0.489″
0.471″
x 0.041″ Microstrip
x 0.041″ Microstrip
x 0.235″ Microstrip
x 0.081″ Microstrip
x 0.041″ Microstrip
x 0.025″ Microstrip
C4
Z7
12
C17
Z7
Z8
Z9
Z10
Z11
PCB
0.200″ x 0.025″ Microstrip
0.274″ x 0.050″ Microstrip
0.615″ x 0.050″ Microstrip
0.450″ x 0.025″ Microstrip
0.340″ x 0.014″ Microstrip
Rogers 4350, 0.020″, εr = 3.5
Figure 22. MW5IC2030NBR1(GNBR1) Test Circuit Schematic for Driver Application Tests
Table 7. MW5IC2030NBR1(GNBR1) Test Circuit Component Designations and Values
for Driver Application Tests
Part
Description
Part Number
Manufacturer
C1
2.2 pF High Q Chip Capacitor (0603)
600S2R2AT - 250 - T
ATC
C2
1.8 pF High Q Chip Capacitor (0603)
600S1R8AT - 250 - T
ATC
C3
3.9 pF High Q Chip Capacitor (0603)
600S3R9AT - 250 - T
ATC
C4
6.8 pF High Q Chip Capacitor (0805)
600S6R8AT - 250 - T
ATC
C5, C6
100 pF Class 1 NPO Chip Capacitors (0805)
GRM215CB1H101CZ01D
Murata
C7
4.7 pF Class 1 NPO Chip Capacitor (0805)
GRM215CB1H4R7CZ01D
Murata
C8, C9, C10, C11
0.1 μF X7R Chip Capacitors (1206)
C1206C104K5RACT
Kemet
C12, C13, C14, C15, C16
0.01 μF Class 2 X7R Chip Capacitors (0805)
C0805C103K5RACT
Kemet
C17, C18
22 μF, 35 V Electrolytic Capacitors
ECE - 1AVKS220
Panasonic
C19, C20
330 μF, 50 V Electrolytic Capacitors
ECA - 1HM331
Panasonic
R1, R3
1 kW, 5% Chip Resistors (0805)
R2
499 W, 1% Chip Resistor (0805)
R4, R5, R6
100 kW, 5% Chip Resistors (0805)
MW5IC2030NBR1 MW5IC2030GNBR1
10
RF Device Data
Freescale Semiconductor
DRIVER APPLICATION PERFORMANCE
RD2
C19
VD1
VD2
MW5IC2030M
Rev 3
C20
RG2
C9
R3
C8
C6
C12
C5
R6
C13
C3
CUTOUT AREA
C7
C17
C18
C2
C1
C15
C16
C14
C4
R5
R4
C10
RD1
R2
C11
R1
VG2
NC
VG1RG1
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 23. MW5IC2030NBR1(GNBR1) Test Circuit Component Layout
for Driver Application Tests
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
11
TYPICAL DRIVER APPLICATION CHARACTERISTICS
−60
−61
−62
ACPR (dBc)
−63
VDD = 27 Vdc, IDQ1 = 220 mA, IDQ2 = 240 mA
f1 = 1957.5 MHz, f2 = 1960 MHz, 2−Carrier N−CDMA
2.5 MHz Carrier Spacing, 1.2288 MHz Channel Bandwidth
PAR = 9.8 dB @ 0.01% Probability (CCDF)
−64
−65
−66
−67
−68
−69
−70
20
21
22
23
24
25
26
27
28
29
30
Pout, OUTPUT POWER (dBm)
Figure 24. 2 - Carrier N - CDMA ACPR versus Output Power
MW5IC2030NBR1 MW5IC2030GNBR1
12
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 2200 MHz
f = 1800 MHz
f = 2200 MHz
Zload
Zin
f = 1800 MHz
VDD = 27 V, IDQ1 = 220 mA, IDQ2 = 240 mA
Zin
f
MHz
Zin
Ω
Zload
Ω
1800
49.7 - j9.3
9.8 - j7.0
1850
47.7 - j9.8
8.9 - j6.3
1930
44.8 - j8.5
7.2 - j4.6
1960
44.0 - j7.3
6.8 - j3.9
1990
44.6 - j5.6
6.5 - j3.4
2050
45.7 - j8.6
5.9 - j2.3
2100
42.5 - j8.3
5.6 - j1.5
2150
40.6 - j6.8
5.4 - j0.7
2200
39.3 - j5.0
5.2 + j0.1
= Device input impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 25. Series Equivalent Input and Load Impedance for Driver Application
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
MW5IC2030NBR1 MW5IC2030GNBR1
14
RF Device Data
Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
15
MW5IC2030NBR1 MW5IC2030GNBR1
16
RF Device Data
Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
17
MW5IC2030NBR1 MW5IC2030GNBR1
18
RF Device Data
Freescale Semiconductor
MW5IC2030NBR1 MW5IC2030GNBR1
RF Device Data
Freescale Semiconductor
19
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further
information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MW5IC2030NBR1 MW5IC2030GNBR1
Document Number: MW5IC2030N
Rev. 8, 5/2006
20
RF Device Data
Freescale Semiconductor