LATTICE ISPLSI1016E80LT44

LeadFree
Package
Options
Available!
ispLSI 1016E
®
In-System Programmable High Density PLD
Features
Functional Block Diagram
• HIGH-DENSITY PROGRAMMABLE LOGIC
— 2000 PLD Gates
— 32 I/O Pins, Four Dedicated Inputs
• HIGH-PERFORMANCE E2CMOS® TECHNOLOGY
— fmax = 125 MHz Maximum Operating Frequency
— tpd = 7.5 ns Propagation Delay
Logic
A3
Array
— Unused Product Term Shutdown Saves Power
B1
A6
Global Routing Pool (GRP)
B0
CLK
0139C1-isp
N
Description
• IN-SYSTEM PROGRAMMABLE
— In-System Programmable (ISP™) 5V Only
R
The ispLSI 1016E is a High Density Programmable Logic
Device containing 96 Registers, 32 Universal I/O pins,
four Dedicated Input pins, three Dedicated Clock Input
pins, one Global OE input pin and a Global Routing Pool
(GRP). The GRP provides complete interconnectivity
between all of these elements. The ispLSI 1016E offers
5V non-volatile in-system programmability of the logic, as
well as the interconnect to provide truly reconfigurable
systems. A functional superset of the ispLSI 1016
architecture, the ispLSI 1016E device adds a new global
output enable pin.
FO
— Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality
B4
B2
A5
EW
— 100% Tested at Time of Manufacture
D Q
GLB
D Q
A7
— Non-Volatile
B5
D Q
B3
A4
— TTL Compatible Inputs and Outputs
— Electrically Erasable and Reprogrammable
B6
ES
IG
N
— Small Logic Block Size for Random Logic
A2
D
Output Routing Pool
— Wide Input Gating for Fast Counters, State
Machines, Address Decoders, etc.
D Q
A1
Output Routing Pool
B7
A0
— High-Speed Global Interconnect
S
— 96 Registers
— Reprogram Soldered Device for Faster Prototyping
I1
01
6E
A
• OFFERS THE EASE OF USE AND FAST SYSTEM
SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY
OF FIELD PROGRAMMABLE GATE ARRAYS
— Complete Programmable Device Can Combine Glue
Logic and Structured Designs
— Enhanced Pin Locking Capability
— Three Dedicated Clock Input Pins
The basic unit of logic on the ispLSI 1016E device is the
Generic Logic Block (GLB). The GLBs are labeled A0,
A1...B7 (see Figure 1). There are a total of 16 GLBs in the
ispLSI 1016E device. Each GLB has 18 inputs, a
programmable AND/OR/Exclusive OR array, and four
outputs which can be configured to be either combinatorial
or registered. Inputs to the GLB come from the GRP and
dedicated inputs. All of the GLB outputs are brought back
into the GRP so that they can be connected to the inputs
of any other GLB on the device.
— Synchronous and Asynchronous Clocks
LS
— Programmable Output Slew Rate Control to
Minimize Switching Noise
— Flexible Pin Placement
is
p
— Optimized Global Routing Pool Provides Global
Interconnectivity
U
SE
— Lead-Free Package Options
Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
1016e_09
1
August 2006
Specifications ispLSI 1016E
Functional Block Diagram
Figure 1. ispLSI 1016E Functional Block Diagram
D
ES
IG
N
S
Generic
Logic Blocks
(GLBs)
GOE 0/IN 3
MODE/IN 2
Output Routing Pool (ORP)
B5
A2
B4
EW
Global
Routing
Pool
(GRP)
A3
B3
A4
B2
I/O 12
I/O 13
I/O 14
I/O 15
N
A5
A6
R
I/O 8
I/O 9
I/O 10
I/O 11
B6
A1
Input Bus
I/O 4
I/O 5
I/O 6
I/O 7
A0
FO
A7
B0
Clock
Distribution
Network
Megablock
Y0
Y1/RESET*
SCLK/Y2
16
ispEN
10
*Note: Y1 and RESET are multiplexed on the same pin
I/O 27
I/O 26
I/O 25
I/O 24
I/O 23
I/O 22
I/O 21
I/O 20
I/O 19
I/O 18
I/O 17
I/O 16
B1
EA
SDI/IN 0
SDO/IN 1
lnput Bus
I/O 0
I/O 1
I/O 2
I/O 3
I/O 31
I/O 30
I/O 29
I/O 28
Output Routing Pool (ORP)
B7
CLK 0
CLK 1
CLK 2
IOCLK 0
IOCLK 1
0139B(1a)-isp
The GRP has, as its inputs, the outputs from all of the
GLBs and all of the inputs from the bi-directional I/O cells.
All of these signals are made available to the inputs of the
GLBs. Delays through the GRP have been equalized to
minimize timing skew.
is
pL
SI
The device also has 32 I/O cells, each of which is directly
connected to an I/O pin. Each I/O cell can be individually
programmed to be a combinatorial input, registered input, latched input, output or bi-directional
I/O pin with 3-state control. The signal levels are TTL
compatible voltages and the output drivers can source
4 mA or sink 8 mA. Each output can be programmed
independently for fast or slow output slew rate to minimize overall output switching noise.
U
SE
Clocks in the ispLSI 1016E device are selected using the
Clock Distribution Network. Three dedicated clock pins
(Y0, Y1 and Y2) are brought into the distribution network,
and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0
and IOCLK 1) are provided to route clocks to the GLBs
and I/O cells. The Clock Distribution Network can also be
driven from a special clock GLB (B0 on the ispLSI 1016E
device). The logic of this GLB allows the user to create an
internal clock from a combination of internal signals
within the device.
Eight GLBs, 16 I/O cells, two dedicated inputs and one
ORP are connected together to make a Megablock (see
Figure 1). The outputs of the eight GLBs are connected
to a set of 16 universal I/O cells by the ORP. Each ispLSI
1016E device contains two Megablocks.
2
Specifications ispLSI 1016E
Absolute Maximum Ratings 1
Supply Voltage VCC ................................. -0.5 to +7.0V
Input Voltage Applied ........................ -2.5 to VCC +1.0V
Off-State Output Voltage Applied ..... -2.5 to VCC +1.0V
S
Storage Temperature ................................ -65 to 150°C
D
ES
IG
N
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
EW
DC Recommended Operating Conditions
PARAMETER
Supply Voltage
VIL
VIH
Input Low Voltage
MAX.
UNITS
5.25
V
TA = 0°C to + 70°C
4.75
Industrial
TA = -40°C to + 85°C
4.5
5.5
V
0
0.8
V
2.0
EA
Vcc+1
V
Table 2-0005/1016E
FO
Input High Voltage
Capacitance (TA=25oC, f=1.0 MHz)
MIN.
Commercial
N
VCC
R
SYMBOL
TYPICAL
UNITS
C1
Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance
(Commercial/Industrial)
8
pf
VCC = 5.0V, VPIN = 2.0V
C2
Y0 Clock Capacitance
12
pf
VCC = 5.0V, VPIN = 2.0V
16
PARAMETER
TEST CONDITIONS
Table 2-0006/1016E
10
SYMBOL
SI
Data Retention Specifications
PARAMETER
is
pL
Data Retention
MAXIMUM
UNITS
20
–
Years
10000
–
Cycles
Table 2-0008/1016E
U
SE
Erase/Reprogram Cycles
MINIMUM
3
Specifications ispLSI 1016E
Switching Test Conditions
Figure 2. Test Load
GND to 3.0V
-125
≤ 2 ns
-100, -80
≤ 3 ns
Input Timing Reference Levels
1.5V
Output Timing Reference Levels
1.5V
Output Load
+ 5V
R1
Device
Output
See Figure 2
Table 2-0003/1016E
3-state levels are measured 0.5V from
steady-state active level.
S
Input Rise and Fall Time
10% to 90%
Test
Point
D
ES
IG
N
Input Pulse Levels
R2
Output Load Conditions (see Figure 2)
R2
CL
470Ω
390Ω
35pF
Active High
∞
390Ω
35pF
Active Low
470Ω
390Ω
35pF
Active High to Z
at VOH -0.5V
∞
390Ω
5pF
Active Low to Z
at VOL +0.5V
470Ω
390Ω
5pF
A
B
C
*CL includes Test Fixture and Probe Capacitance.
0213a
EW
R1
N
TEST CONDITION
CL*
FO
R
Table 2-0004/1016E
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
VOL
VOH
IIL
IIH
IIL-isp
IIL-PU
IOS1
Output Low Voltage
ICC2, 4
Operating Power Supply Current
3
MIN.
TYP.
IOL= 8 mA
–
–
IOH = -4 mA
MAX. UNITS
0.4
V
–
–
V
0V ≤ VIN ≤ VIL (Max.)
–
–
-10
μA
Input or I/O High Leakage Current
3.5V ≤ VIN ≤ VCC
–
–
10
μA
ispEN Input Low Leakage Current
0V ≤ VIN ≤ VIL
–
–
-150
μA
I/O Active Pull-Up Current
0V ≤ VIN ≤ VIL
–
–
-150
μA
Output Short Circuit Current
VCC = 5V, VOUT = 0.5V
–
–
-200
mA
VIL = 0.5V, VIH = 3.0V
Commercial
–
90
–
mA
fCLOCK = 1 MHz
Industrial
–
90
–
mA
SI
10
16
2.4
Input or I/O Low Leakage Current
is
pL
Output High Voltage
CONDITION
EA
PARAMETER
Table 2-0007/1016E
U
SE
1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems
by tester ground degradation. Characterized but not 100% tested.
2. Measured using four 16-bit counters.
3. Typical values are at VCC = 5V and TA= 25°C.
4. Maximum I CC varies widely with specific device configuration and operating frequency. Refer to the Power Consumption
section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate
maximum ICC .
4
Specifications ispLSI 1016E
External Timing Parameters
Over Recommended Operating Conditions
4
-80
-100
-125
1
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
1 Data Prop. Delay, 4PT Bypass, ORP Bypass
–
7.5
–
10.0
–
15.0
ns
A
2 Data Prop. Delay, Worst Case Path
–
10.0
–
13.0
–
18.5
ns
125
–
100
–
84.0
–
100
–
–
3 Clk. Frequency with Int. Feedback
4 Clk. Frequency with Ext. Feedback(
1
tsu2 + tco1
1
twh + tw1
)
–
5 Clk. Frequency, Max. Toggle(
–
6 GLB Reg. Setup Time before Clk., 4 PT Bypass
A
–
167
–
5.0
–
7 GLB Reg. Clk. to Output Delay, ORP Bypass
–
4.5
8 GLB Reg. Hold Time after Clk., 4 PT Bypass
0.0
–
9 GLB Reg. Setup Time before Clk.
–
10 GLB Reg. Clk. to Output Delay
–
11 GLB Reg. Hold Time after Clk.
C
15 Input to Output Disable
–
MHz
–
57.0
–
MHz
125
–
100
–
MHz
7.0
–
8.5
–
ns
–
5.0
–
8.0
ns
0.0
–
0.0
–
ns
8.0
–
9.5
–
ns
–
6.0
–
9.5
ns
0.0
–
0.0
–
ns
13.5
–
17.0
ns
77.0
10.0
–
5.0
–
6.5
–
ns
12.0
–
15.0
10.0
–
–
–
20.0
ns
–
12.0
–
15.0
–
20.0
ns
–
7.0
–
9.0
–
10.5
ns
–
7.0
–
9.0
–
10.5
ns
N
13 Ext. Reset Pulse Duration
14 Input to Output Enable
5.5
–
R
–
–
–
0.0
12 Ext. Reset Pin to Output Delay
B
5.5
EW
–
A
)
D
ES
IG
N
A
3
S
A
16 Global OE Output Enable
17 Global OE Output Disable
–
18 Ext. Sync. Clk. Pulse Duration, High
3.0
–
4.0
–
5.0
–
ns
–
19 Ext. Sync. Clk. Pulse Duration, Low
3.0
–
4.0
–
5.0
–
ns
–
20 I/O Reg. Setup Time before Ext. Sync. Clk. (Y2, Y3) 3.0
–
3.5
–
4.5
–
ns
–
0.0
–
ns
–
FO
B
C
21 I/O Reg. Hold Time after Ext. Sync. Clk. (Y2, Y3)
0.0
–
10
Unless noted otherwise, all parameters use the GRP, 20 PTXOR path, ORP and Y0 clock.
Refer to Timing Model in this data sheet for further details.
Standard 16-bit counter using GRP feedback.
Reference Switching Test Conditions Section.
U
SE
is
pL
SI
1.
2.
3.
4.
DESCRIPTION
16
tpd1
tpd2
fmax
fmax (Ext.)
fmax (Tog.)
tsu1
tco1
th1
tsu2
tco2
th2
tr1
trw1
tptoeen
tptoedis
tgoeen
tgoedis
twh
twl
tsu3
th3
TEST
2
#
COND.
EA
PARAMETER
5
0.0
Table 2-0030-16/125,100, 80
Specifications ispLSI 1016E
Internal Timing Parameters1
PARAMETER
2
#
-125
DESCRIPTION
-100
-80
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
Inputs
–
0.3
–
0.4
–
0.6
ns
23 I/O Latch Delay
–
1.8
–
2.4
–
3.6
ns
24 I/O Register Setup Time before Clock
3.0
–
25 I/O Register Hold Time after Clock
-0.3
–
–
4.0
26 I/O Register Clock to Out Delay
27 I/O Register Reset to Out Delay
5.0
7.5
ns
5.0
–
7.5
ns
–
2.6
–
3.9
ns
–
1.9
–
2.9
ns
–
ns
29 GRP Delay, 1 GLB Load
–
1.8
30 GRP Delay, 4 GLB Loads
–
1.9
–
2.2
–
3.3
ns
–
2.1
–
2.5
–
3.8
ns
–
2.4
–
3.1
–
4.7
ns
–
3.9
–
5.7
–
8.1
ns
35 4 Product Term Bypass Path Delay (Registered)
–
3.9
–
5.6
–
7.3
ns
–
4.4
–
6.1
–
7.1
ns
–
4.4
–
6.1
–
8.2
ns
–
4.4
–
6.6
–
8.3
ns
–
1.0
–
1.6
–
1.9
ns
40 GLB Register Setup Time before Clock
0.2
–
0.2
–
-0.6
–
ns
41 GLB Register Hold Time after Clock
1.5
–
2.5
–
4.3
–
ns
42 GLB Register Clock to Output Delay
–
1.8
–
1.9
–
2.9
ns
43 GLB Register Reset to Output Delay
–
4.4
–
6.3
–
7.0
ns
44 GLB Product Term Reset to Register Delay
–
3.5
–
5.1
–
7.2
ns
EW
32 GRP Delay, 16 GLB Loads
R
34 4 Product Term Bypass Path Delay (Combinatorial)
36 1 Product Term/XOR Path Delay
37 20 Product Term/XOR Path Delay
EA
38 XOR Adjacent Path Delay 3
10
16
39 GLB Register Bypass Delay
–
5.5
–
7.1
–
9.7
ns
3.2
3.5
4.8
5.3
6.8
7.5
ns
47 ORP Delay
–
1.0
–
1.0
–
1.5
ns
48 ORP Bypass Delay
–
0.0
–
0.0
–
0.0
ns
SI
45 GLB Product Term Output Enable to I/O Cell Delay
46 GLB Product Term Clock Delay
is
pL
torp
torpbp
ns
2.2
GLB
ORP
–
–
-0.6
–
–
31 GRP Delay, 8 GLB Loads
t4ptbpc
t4ptbpr
t1ptxor
t20ptxor
txoradj
tgbp
tgsu
tgh
tgco
tgro
tptre
tptoe
tptck
4.5
–
28 Dedicated Input Delay
GRP
tgrp1
tgrp4
tgrp8
tgrp16
–
-0.4
N
4.0
3.5
–
FO
–
S
22 I/O Register Bypass
D
ES
IG
N
tiobp
tiolat
tiosu
tioh
tioco
tior
tdin
U
SE
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR Adjacent path can only be used by Lattice hard macros.
6
Table 2-0036-16/125,100, 80
Specifications ispLSI 1016E
Internal Timing Parameters1
PARAMETER
#2
-125
DESCRIPTION
-80
-100
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
Outputs
–
1.4
–
1.7
–
3.0
ns
50 Output Slew Limited Delay Adder
–
10.0
–
10.0
–
10.0
ns
51 I/O Cell OE to Output Enabled
–
4.3
–
5.3
–
6.4
ns
52 I/O Cell OE to Output Disabled
–
4.3
–
5.3
–
6.4
ns
53 Global Output Enable
–
2.7
–
3.7
–
4.1
ns
54 Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)
1.3
1.3
1.4
1.4
2.1
2.1
ns
55 Clock Delay, Y1 or Y2 to Global GLB Clock Line
2.3
2.7
2.4
2.9
3.6
4.4
ns
56 Clock Delay, Clock GLB to Global GLB Clock Line
0.8
1.8
0.8
1.8
1.2
2.7
ns
57 Clock Delay, Y1 or Y2 to I/O Cell Global Clock Line
0.0
0.3
0.0
0.4
0.0
0.6
ns
0.8
1.8
0.8
1.8
1.2
2.7
ns
–
3.2
–
4.5
–
5.5
ns
tgy0
tgy1/2
tgcp
tioy1/2
tiocp
58 Clock Delay, Clock GLB to I/O Cell Global Clock Line
tgr
59 Global Reset to GLB and I/O Registers
U
SE
is
pL
SI
10
16
EA
FO
R
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
N
Global Reset
7
EW
Clocks
S
49 Output Buffer Delay
D
ES
IG
N
tob
tsl
toen
todis
tgoe
Table 2-0037-16/125,100,80
Specifications ispLSI 1016E
ispLSI 1016E Timing Model
I/O Cell
GRP
GLB
ORP
I/O Cell
Feedback
Comb 4 PT Bypass #34
Reg 4 PT Bypass
GLB Reg Bypass
ORP Bypass
#35
#39
#48
GRP
Loading
Delay
20 PT
XOR Delays
GLB Reg
Delay
ORP
Delay
#29, 31, 32
#36-38
I/O Reg Bypass
I/O Pin
(Input)
#22
#30
Input
D Register Q
RST
#23 - 27
#59
D
Q
#59
Clock
Distribution
Y1,2
#40-43
Control RE
PTs
OE
#44-46 CK
#55-58
EW
#54
Y0
#53
N
GOE 0
Derivations of tsu, th and tco from the Product Term Clock 1
=
=
=
1.4 ns =
Logic + Reg su - Clock (min)
(tiobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min))
(#22 + #30 + #37) + (#40) - (#22 + #30 + #46)
(0.3 + 1.9 + 4.4) + (0.2) - (0.3 + 1.9 + 3.2)
th
=
=
=
0.6 ns =
Clock (max) + Reg h - Logic
(tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(#22 + #30 + #46) + (#41) - (#22 + #30 + #37)
(0.3 + 1.9 + 3.5) + (1.5) - (0.3 + 1.9 + 4.4)
tco
=
=
=
9.9 ns =
Clock (max) + Reg co + Output
(tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob)
(#22 + #30 + #46) + (#42) + (#47 + #49)
(0.3 + 1.9 + 3.5) + (1.8) + (1.0 + 1.4)
10
16
EA
FO
R
tsu
Logic + Reg su - Clock (min)
(tiobp + tgrp4 + t20ptxor) + (tgsu) - (tgy0(min) + tgco + tgcp(min))
(#22 + #30 + #37) + (#40) - (#54 + #42 + #56)
(0.3 + 1.9 + 4.4) + (0.2) - (1.3 + 1.8 + 0.8)
=
=
=
-0.2 ns =
Clock (max) + Reg h - Logic
(tgy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(#54 + #42 + #56) + (#41) - (#22 + #30 + #37)
(1.3 + 1.8 + 1.8) + (1.5) - (0.3 + 1.9 + 4.4)
is
pL
=
=
=
2.9 ns =
U
SE
th
SI
Derivations of tsu, th and tco from the Clock GLB 1
tsu
tco
=
=
=
9.1 ns =
Clock (max) + Reg co + Output
(tgy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob)
(#54 + #42 + #56) + (#42) + (#47 + #49)
(1.3 + 1.8 + 1.8) + (1.8) + (1.0 + 1.4)
Table 2-0042-16
1. Calculations are based upon timing specifications for the ispLSI 1016E-125
8
#51, 52
I/O Pin
(Output)
#47
RST
Reset
#49, 50
S
#28
D
ES
IG
N
Ded. In
0491-16
Specifications ispLSI 1016E
Maximum GRP Delay vs GLB Loads
ispLSI 1016E-80
3
ispLSI 1016E-125
1
1
8
4
16
12
GLB Load
16E GRP/GLB.eps
EW
Power Consumption
N
Figure 3 shows the relationship between power and
operating speed.
Power consumption in the ispLSI 1016E device depends
on two primary factors: the speed at which the device is
operating and the number of Product Terms used.
R
Figure 3. Typical Device Power Consumption vs fmax
FO
130
ispLSI 1016E
120
EA
100
10
80
16
ICC (mA)
110
90
SI
0
is
pL
S
2
D
ES
IG
N
GRP Delay (ns)
ispLSI 1016E-100
20
40
60
80
100 120 140
fmax (MHz)
Notes: Configuration of four 16-bit counters
Typical current at 5V, 25°C
ICC can be estimated for the ispLSI 1016E using the following equation:
U
SE
ICC(mA) = 23 + (# of PTs * 0.52) + (# of nets * max freq * 0.004)
Where:
# of PTs = Number of product terms used in design
# of nets = Number of signals used in device
Max freq = Highest clock frequency to the device (in MHz)
The ICC estimate is based on typical conditions (VCC = 5.0V, room temperature) and an assumption of four GLB loads
on average exists and the device is filled with four 16-bit counters. These values are for estimates only. Since the
value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified.
0127B-16-80-isp/1016
9
Specifications ispLSI 1016E
Pin Description
PLCC
PIN NUMBERS
NAME
16,
20,
26,
30,
38,
42,
4,
8,
17,
21,
27,
31,
39,
43,
5,
9,
18,
22,
28,
32,
40,
44,
6,
10
TQFP
PIN NUMBERS
10,
14,
20,
24,
32,
36,
42,
2,
9,
13,
19,
23,
31,
35,
41,
1,
11,
15,
21,
25,
33,
37,
43,
3,
12,
16,
22,
26,
34,
38,
44,
4
DESCRIPTION
I/O 0 - I/O 3
I/O 4 - I/O 7
I/O 8 - I/O 11
I/O 12 - I/O 15
I/O 16 - I/O 19
I/O 20 - I/O 23
I/O 24 - I/O 27
I/O 28 - I/O 31
15,
19,
25,
29,
37,
41,
3,
7,
GOE 0/IN 32
2
40
This is a dual function pin. It can be used either as Global Output Enable for
all I/O cells or it can be used as a dedicated input pin.
ispEN
13
7
Input - Dedicated in-system programming enable input pin. This pin is
brought low to enable the programming mode. The MODE, SDI, SDO and
SCLK controls become active.
SDI/IN 01
14
8
Input - This pin performs two functions. When ispEN is logic low, it functions
as an input pin to load programming data into the device. It is a dedicated
input pin when ispEN is logic high.SDI/IN0 also is used as one of the two
control pins for the isp state machine.
MODE/IN 21
36
30
Input - This pin performs two functions. When ispEN is logic low, it functions
as a pin to control the operation of the isp state machine. It is a dedicated
input pin when ispEN is logic high.
SDO/IN 11
24
18
Output/Input - This pin performs two functions. When ispEN is logic low, it
functions as an output pin to read serial shift register data. It is a dedicated
input pin when ispEN is logic high.
SCLK/Y21
33
27
Input - This pin performs two functions. When ispEN is logic low, it
functions as a clock pin for the Serial Shift Register. It is a dedicated clock
input when ispEN is logic high. This clock input is brought into the Clock
Distribution Network, and can optionally be routed to any GLB and/or I/O
cell on the device.
Y0
11
5
Dedicated Clock input. This clock input is connected to one of the clock
inputs of all the GLBs on the device.
Y1/RESET
35
29
GND
1,
VCC
12, 34
10
16
EA
FO
R
N
EW
D
ES
IG
N
S
Input/Output Pins - These are the general purpose I/O pins used by the logic
array.
17, 39
23
28
Ground (GND)
Vcc
SI
6,
This pin performs two functions:
- Dedicated clock input. This clock input is brought into the Clock
Distribution Network, and can optionally be routed to any GLB and/or
I/O cell on the device.
- Active Low (0) Reset pin which resets all of the GLB and I/O registers
in the device.
Table 2-0002C-16-isp
U
SE
is
pL
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
10
Specifications ispLSI 1016E
Pin Configurations
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0/IN 32
I/O 24
I/O 26
I/O 25
I/O 27
ispLSI 1016E 44-Pin PLCC Pinout Diagram
I/O 29
I/O 30
I/O 31
Y0
VCC
7
8
9
10
11
39
I/O 18
38
37
I/O 17
I/O 16
36
MODE/IN 21
D
ES
IG
N
I/O 28
S
6 5 4 3 2 1 44 43 42 41 40
12
ispLSI 1016E
35
34
Y1/RESET
VCC
Top View
13
33
SCLK/Y21
14
32
I/O 15
I/O 0
I/O 1
I/O 2
15
16
17
31
30
29
I/O 14
I/O 13
I/O 12
EW
ispEN
SDI/IN 0
1
R
N
I/O 9
I/O 10
I/O 11
I/O 8
1
GND
1SDO/IN
I/O 7
I/O 6
I/O 4
I/O 5
I/O 3
18 19 20 21 22 23 24 25 26 27 28
FO
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
EA
0123A-isp1016
10
SI
I/O 28
I/O 31
Y0
VCC
ispEN
1SDI/IN
0
I/O 0
I/O 1
I/O 2
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0/IN 32
I/O 24
44 43 42 41 40 39 38 37 36 35 34
1
2
33
I/O 18
32
31
I/O 17
I/O 16
30
MODE/IN 21
29
28
Y1/RESET
VCC
27
SCLK/Y21
8
26
I/O 15
9
10
11
25
24
I/O 14
I/O 13
I/O 12
3
4
5
ispLSI 1016E
6
Top View
7
23
I/O 9
I/O 10
I/O 11
I/O 8
GND
1
1SDO/IN
I/O 7
I/O 6
I/O 4
I/O 5
12 13 14 15 16 17 18 19 20 21 22
I/O 3
U
SE
is
pL
I/O 29
I/O 30
I/O 26
I/O 25
I/O 27
16
ispLSI 1016E 44-Pin TQFP Pinout Diagram
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
0851-16E/TQFP
11
Specifications ispLSI 1016E
Part Number Description
ispLSI 1016E – XXX
X
XXX
X
Grade
Blank = Commercial
I = Industrial
Device Family
Device Number
S
Package
J = PLCC
T44 = TQFP
JN = Lead-Free PLCC
TN44 = Lead-Free TQFP
D
ES
IG
N
Speed
125 = 125 MHz fmax
100 = 100 MHz fmax
80 = 84 MHz fmax
Power
L = Low
EW
ispLSI 1016E Ordering Information
Conventional Packaging
COMMERCIAL
ORDERING NUMBER
PACKAGE
125
7.5
ispLSI 1016E-125LJ
44-Pin PLCC
125
7.5
ispLSI 1016E-125LT44
44-Pin TQFP
10
10
84
15
84
15
R
100
100
N
tpd (ns)
ispLSI 1016E-100LJ
44-Pin PLCC
ispLSI 1016E-100LT44
44-Pin TQFP
ispLSI 1016E-80LJ
44-Pin PLCC
ispLSI 1016E-80LT44
44-Pin TQFP
FO
ispLSI
fmax (MHz)
EA
FAMILY
ispLSI
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
84
15
ispLSI 1016E-80LJI
44-Pin PLCC
ispLSI 1016E-80LT44I
44-Pin TQFP
84
15
FAMILY
ispLSI
COMMERCIAL
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
125
7.5
ispLSI 1016E-125LJN
Lead-Free 44-Pin PLCC
125
7.5
ispLSI 1016E-125LTN44
Lead-Free 44-Pin TQFP
100
10
ispLSI 1016E-100LJN
Lead-Free 44-Pin PLCC
100
10
ispLSI 1016E-100LTN44
Lead-Free 44-Pin TQFP
84
15
ispLSI 1016E-80LJN
Lead-Free 44-Pin PLCC
15
ispLSI 1016E-80LTN44
Lead-Free 44-Pin TQFP
is
pL
U
SE
ispLSI
SI
Lead-Free Packaging
FAMILY
10
FAMILY
16
INDUSTRIAL
84
INDUSTRIAL
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
84
15
ispLSI 1016E-80LJNI
Lead-Free 44-Pin PLCC
84
15
ispLSI 1016E-80LTN44I
Lead-Free 44-Pin TQFP
12
Specifications ispLSI 1016E
Revision History
Version
Change Summary
—
08
Previous Lattice release.
August 2006
09
Updated for lead-free package options.
U
SE
is
pL
SI
10
16
EA
FO
R
N
EW
D
ES
IG
N
S
Date
13