MICREL SY89825UHY

®
Micrel, Inc.
Precision Edge
2.5/3.3V 1:22 HIGH-PERFORMANCE,
®
SY89825U
LOW-VOLTAGE PECL BUS CLOCK DRIVER Precision Edge
SY89825U
& TRANSLATOR w/ INTERNAL TERMINATION
FEATURES
■ LVPECL or LVDS input to 22 LVPECL outputs
Precision Edge®
■ 100K ECL compatible outputs
■ LVDS input includes 100Ω termination
DESCRIPTION
■ Guaranteed AC parameters over voltage:
■
■
■
■
• > 2GHz fMAX (toggle)
• < 35ps max. ch-ch skew
Low voltage operation: 2.5V, 3.3V
Temperature range: –40°C to +85°C
Output enable pin
Available in a 64-Pin EPAD-TQFP
The SY89825U is a High Performance Bus Clock Driver
with 22 differential LVPECL output pairs. This part is
designed for use in low voltage (2.5V, 3.3V) applications
which require a large number of outputs to drive precisely
aligned, ultra low skew signals to their destination. The
input is multiplexed from either LVDS or LVPECL by the
CLK_SEL pin. The LVDS input includes a 100Ω internal
termination, thus eliminating the need for external
termination. The Output Enable (OE) is synchronous so
that the outputs will only be enabled/disabled when they
are already in the LOW state. This eliminates any chance
of generating a runt clock pulse when the device is enabled/
disabled as can happen with an asynchronous control.
The SY89825U features low pin-to-pin skew (35ps max.)
—performance previously unachievable in a standard
product having such a high number of outputs. The
SY89825U is available in a single space saving package
which provides a lower overall cost solution. In addition, a
single chip solution improves timing budgets by eliminating
the multiple device solution with their corresponding large
part-to-part skew.
APPLICATIONS
■ High-performance PCs
■ Workstations
■ Parallel processor-based systems
■ Other high-performance computing
■ Communications
Precision Edge is a registered trademark of Micrel, Inc.
M9999-011907
[email protected] or (408) 955-1690
Rev.: D
1
Amendment: /0
Issue Date: January 2007
Precision Edge®
SY89825U
Micrel, Inc.
PACKAGE/ORDERING INFORMATION
VCCO
/Q6
Q6
/Q5
Q5
/Q4
Q4
/Q3
Q3
/Q2
Q2
/Q1
Q1
/Q0
Q0
VCCO
Ordering Information(1)
Package Operating
Type
Range
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VCCO
NC
NC
VCCI
LVDS_CLK
/LVDS_CLK
CLK_SEL
LVPECL_CLK
/LVPECL_CLK
GND
OE
NC
NC
/Q21
Q21
VCCO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
64-Pin
EPAD-TQFP
(Top View)
VCCO
/Q20
Q20
/Q19
Q19
/Q18
Q18
/Q17
Q17
/Q16
Q16
/Q15
Q15
/Q14
Q14
VCCO
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VCCO
Q7
/Q7
Q8
/Q8
Q9
/Q9
Q10
/Q10
Q11
/Q11
Q12
/Q12
Q13
/Q13
VCCO
Part Number
Package
Marking
Lead
Finish
SY89825UHI
H64-1
Industrial
SY89825UHI
Sn-Pb
SY89825UHITR(2)
H64-1
Industrial
SY89825UHI
SN-PB
SY89825UHY(3)
H64-1
Industrial
SY89825UHY with
Pb-Free
Pb-Free bar-line indicator Matte-Sn
SY89825UHYTR(2,3)
H64-1
Industrial
SY89825UHY with
Pb-Free
Pb-Free bar-line indicator Matte-Sn
Notes:
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.
64-Pin EPAD-TQFP (H64-1)
LOGIC SYMBOL
PIN NAMES
Pin
Function
CLK_SEL
LVDS_CLK,
/LVDS_CLK
Differential LVDS Inputs
(Internal 100Ω termination included)
LVDS_CLK
LVPECL_CLK,
/LVPECL_CLK
Differential LVPECL Inputs.
/LVDS_CLK
22
22
CLK_SEL
Input CLK Select (LVTTL)
OE
Output Enable (LVTTL)
LVPECL_CLK
Q0 – Q21, /Q0 – /Q21
Differential LVPECL Outputs.
Terminate with 50Ω to VCC-2V
/LVPECL_CLK
GND
Ground
VCCI
Power Supply. Connect to
VCC on PCB. VCCI and VCCO are not
internally connected
VCCO
Power Supply for Output Buffer.
Connect to VCCI on PCB. VCCI and
VCCO are not internally connected
M9999-011907
[email protected] or (408) 955-1690
0
1
LEN
Q
OE
2
D
Q0 - Q21
/Q0 - /Q21
Precision Edge®
SY89825U
Micrel, Inc.
TRUTH TABLE
SIGNAL GROUPS
OE(1)
CLK_SEL
Q0 – Q21
/Q0 – /Q21
0
0
LOW
HIGH
LVDS_CLK, /LVDS_CLK
0
1
LOW
HIGH
Q0 – Q21, /Q0 – /Q21
1
0
LVDS_CLK
/LVDS_CLK
1
1
LVPECL_CLK
/LVPECL_CLK
Signal
I/O
Input
Level
LVDS
Output
LVPECL
LVPECL_CLK, /LVPECL_CLK
Input
LVPECL
CLK_SEL, OE
Input
LVCMOS/LVTTL
NOTE:
1. The OE (output enable) signal is synchronized with the low level of the
LVDS_CLK and LVPECL_CLK signal.
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Rating
Value
Unit
V
VCCI / VCCO
VCC Pin Potential to Ground Pin
–0.5 to +4.0
VIN
Input Voltage
–0.5 to VCCI
V
IOUT
DC Output Current
–50
mA
Tstore
Storage Temperature
–65 to +150
°C
θJA
Package Thermal Resistance (Junction-to-Ambient)
With exposed pad soldered to GND
– Still-Air (multi-layer PCB)
– 200lfpm (multi-layer PCB)
– 500lfpm (multi-layer PCB)
23
18
15
°C/W
°C/W
°C/W
44
36
30
°C/W
°C/W
°C/W
4.3
°C/W
Exposed pad not soldered to GND
θJC
– Still-Air (multi-layer PCB)
– 200lfpm (multi-layer PCB)
– 500lfpm (multi-layer PCB)
Package Thermal Resistance
(Junction-to-Case)
NOTE:
1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not
implied at conditions other than those detailed in the operational sections of this data book. Exposure to ABSOLUTE MAXIMUM RATING conditions
for extended periods may affect device reliability.
M9999-011907
[email protected] or (408) 955-1690
3
Precision Edge®
SY89825U
Micrel, Inc.
DC ELECTRICAL CHARACTERISTICS
Power Supply
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
VCCI,
VCCO
Power
Supply(1)
2.37
—
3.6
2.37
—
3.8
2.37
—
3.6
V
ICC
Total Supply Current(2)
—
100
150
—
100
150
—
100
150
mA
Notes:
1. VCCI and VCCO must be connected together on the PCB such that they remain at the same potential. VCCI and VCCO are not internally connected on the die.
2. No load. Outputs floating.
LVDS Input (VCC = 2.37V to 3.6V, GND = 0V)
TA = –40°C
Symbol
Parameter
VIN
Input Voltage Range
VID
Differential Input Swing
Current(1)
IIL
Input Low
RIN
LVDS Differential Input Resistance
(LVDS_CLK to /LVDS_CLK)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
0
—
2.4
0
—
2.4
0
—
2.4
V
100
—
—
100
—
—
100
—
—
mV
–1.25
—
—
–1.25
—
—
–1.25
—
—
mA
80
100
120
80
100
120
80
100
120
Ω
Note:
1. For IIL, both LVDS inputs are grounded.
LVPECL Input/Output (VCC = 2.37V to 3.6V, GND = 0V)
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Max.
Min.
Max.
Min.
Max.
Unit
VIH
Input HIGH Voltage
(Single ended)
VCC – 1.165
VCC – 0.88
VCC – 1.165
VCC – 0.88
VCC – 1.165
VCC – 0.88
V
VIL
Input LOW Voltage
VCC – 1.945
VCC – 1.625 VCC – 1.945
VCC – 1.625
VCC – 1.945
VCC – 1.625
V
Swing(1)
VPP
Minimum Input
LVPECL_CLK
600
—
600
—
600
—
mV
VCMR
Common Mode Range(2)
LVPECL_CLK
–1.5
–0.4
–1.5
–0.4
–1.5
–0.4
V
VOH
Output HIGH Voltage(3)
VCCO – 1.085 VCCO – 0.880 VCCO – 1.025 VCCO – 0.880 VCCO – 1.025 VCCO – 0.880
VOL
Output LOW
Voltage(3)
VCCO – 1.830 VCCO – 1.555 VCCO – 1.810 VCCO – 1.620 VCCO – 1.810 VCCO – 1.620
IIH
Input HIGH Current
—
150
—
150
—
150
µA
IIL
Input LOW Current
0.5
—
0.5
—
0.5
—
µA
V
V
Notes:
1. The VPP (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay.
2. VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The numbers in the table are
referenced to VCCI. The VIL level must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to VPP (min.). The lower end of the
CMR range varies 1:1 with VCCI. The VCMR (min) will be fixed at 3.3V – |VCMR (min)|.
3. Outputs loaded with 50Ω to VCC -2V.
LVCMOS/LVTTL Control Inputs (OE, CLK_SEL) (VCC = 2.37V to 3.6V, GND = 0V)
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
VIH
Input HIGH Voltage
2.0
—
—
2.0
—
—
2.0
—
—
V
VIL
Input LOW Voltage
—
—
0.8
—
—
0.8
—
—
0.8
V
IIH
Input HIGH Current
+20
—
–250
+20
—
–250
+20
—
–250
µA
IIL
Input LOW Current
—
—
–600
—
—
–600
—
—
–600
µA
M9999-011907
[email protected] or (408) 955-1690
4
Precision Edge®
SY89825U
Micrel, Inc.
AC ELECTRICAL CHARACTERISTICS(1)
VCC = 2.37V to 3.6V, GND = 0V
TA = –40°C
Symbol
Parameter
Frequency(2)
fMAX
Max Toggle
tPHL
tPLH
Propagation Delay
(Differential)(3)
LVPECL IN
LVDS IN
tSKEW
Within-Device Skew(4)
Part-to-Part
Skew(5)
Time(6)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
2
—
—
2
—
—
2
—
—
GHz
0.600
0.800
—
—
1.2
1.4
0.600
0.800
0.900
1.1
1.2
1.4
0.600
0.800
—
—
1.2
1.4
—
—
35
—
20
35
—
—
35
ps
—
100
200
—
100
200
—
100
200
ps
ns
tS(OE)
OE Set-Up
1.0
—
—
1.0
—
—
1.0
—
—
ns
tH(OE)
OE Hold Time(6)
0.5
—
—
0.5
—
—
0.5
—
—
ns
Jitter(7)
—
—
1
—
—
1
—
—
1
ps(RMS)
—
—
1
—
—
1
—
—
1
ps(RMS)
—
—
10
—
—
10
—
—
10
ps(PP)
300
—
600
300
450
600
300
—
600
ps
—
—
1.2
—
—
1.2
—
—
1.2
ns
tJITTER
Random
Cycle-to-Cylce
Total
tr
tf
Jitter(8)
Jitter(9)
Output Rise/Fall Time
(20% – 80%)
t(switchover) Input Switchover
CLK_SEL-to-valid output
Notes:
1. Outputs loaded with 50Ω to VCC – 2V. Airflow ≥ 300lfpm.
2. fMAX is defined as the maximum toggle frequency measured. Measured with a 750mV input signal, all loading with 50Ω to VCC –2V.
3. Differential propagation delay is defined as the delay from the crossing point of the differential input signals to the crossing point of the differential
output signals.
4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device operating at the same
voltage and temperature.
5. The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same
voltage and temperature. Part-to-part skew is the total skew difference; pin-to-pin skew + part-to-part skew.
6. Set-up and hold time applies to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications,
set-up and hold time does not apply. OE set-up time is defined with respect to the rising edge of the clock. OE HIGH to LOW transition ensures
outputs remain disabled during the next clock cycle. OE LOW to HIGH transition enables normal operation of the next input clock.
7. Random jitter is measured using K28.7 pattern, measured at ≤ fMAX.
8. Cycle-to-cycle definition: the variation of periods between adjacent cycles, Tn–Tn-1 where T is the time between rising edges of the output signal.
9. Total jitter definition: with an ideal clock input of frequency ≤ fMAX, no more than one output edge in 1020 output edges will d eviate by more than the
specified peak-to-peak jitter value.
M9999-011907
[email protected] or (408) 955-1690
5
Precision Edge®
SY89825U
Micrel, Inc.
LVDS/LVPECL INPUTS
VCC
VCC
1.9k
1.9k
75k
LVPECL_CLK
1.9k
75k
75k
1.9k
VIN
100Ω
VIN
/LVPECL_CLK
GND
GND
LVPECL Input Stage
LVDS Input Stage
Figure 1. Simplified LVPECL & LVDS Input Stage
M9999-011907
[email protected] or (408) 955-1690
6
Precision Edge®
SY89825U
Micrel, Inc.
TYPICAL CHARACTERISTICS
Frequency Response
vs. Output Amplitude
Frequency Response
vs. Output Amplitude
900
4000
3500
3000
200
0
FREQUENCY (MHz)
FREQUENCY (MHz)
Frequency Response
vs. Output Amplitude @2.5V
M9999-011907
[email protected] or (408) 955-1690
300
100
4000
3500
3000
2500
2000
1500
0
100
1000
200
400
2500
300
500
2000
400
600
1500
500
700
1000
600
VSUP = 3.3V
VDIFFIN = 800mV
800
500
700
OUTPUT AMPLITUDE (mV)
VSUP = 2.5V
VDIFFIN = 800mV
800
500
OUTPUT AMPLITUDE (mV)
900
Frequency Response
vs. Output Amplitude @3.3V
7
Precision Edge®
SY89825U
Micrel, Inc.
LVPECL TERMINATION RECOMMENDATIONS
down resistor at the output of each driver. The emmiter follower
outputs requires a DC current path to GND. Unused outputs can be
left floating with minimal impact on skew and jitter.
Output Considerations
Be sure to properly terminate all outputs as shown below, or
equivalent. For AC coupled applications, be sure to include a pull
+3.3V
R1
130Ω
R1
130Ω
+3.3V
ZO = 50Ω
+3.3V
ZO = 50Ω
R2
82Ω
R2
82Ω
Vt = VCC —2V
Figure 1. Parallel Termination–Thevenin Equivalent
Notes:
1. For +2.5V systems:
R1 = 250Ω
R2 = 62.5Ω
+3.3V
+3.3V
Z = 50Ω
“source”
“destination”
Z = 50Ω
50Ω
46Ω to 49Ω
50Ω
Rb
Figure 2. Three-Resistor “Y–Termination”
Notes:
1. Power-saving alternative to Thevenin termination.
2. Place termination resistors as close to destination inputs as possible.
3. Rb resistor sets the DC bias voltage equal to Vt. For +3.3V systems Rb = 46Ω to 49Ω.
4. Precision, low-cost 3-Resistor networks are available from resistor manufacturers such as Thin Film Technology (www.thinfilm.com).
M9999-011907
[email protected] or (408) 955-1690
8
Precision Edge®
SY89825U
Micrel, Inc.
64-PIN EPAD-TQFP (DIE UP) (H64-1)
12.00 0.472 BSC SQ.
1.00 +0.05
–0.05
0.039 +0.002
–0.002
4
10.00 0.394 BSC SQ.
4.50
0.177
+0.05
–0.05
+0.012
–0.012
48
64
6
DETAIL "A"
0° MIN.
6 7
0.20 0.008
0.09 0.004
0.15 0.006
0.05 0.002
48
0°- 7°
4.50 +0.03
–0.03
0.177+0.012
–0.012
0.60 +0.15
–0.15
0.024 +0.006
–0.006
1.00 0.039 REF.
33
16
17
32
5
0.50 0.020
1.20 0.047 MAX
SEE DETAIL "A"
BSC
0.01 0.004
7
0.22 +0.05
–0.05
0.009 +0.002
–0.002
Rev. 03
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 474-1000
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.
M9999-011907
[email protected] or (408) 955-1690
9