MITSUBISHI CM1200HA-66H

MITSUBISHI HVIGBT MODULES
CM1200HA-66H
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
CM1200HA-66H
● IC ................................................................ 1200A
● VCES ....................................................... 3300V
● Insulated Type
● 1-element in a pack
APPLICATION
Inverters, Converters, DC choppers, Induction heating, DC to DC converters.
OUTLINE DRAWING & CIRCUIT DIAGRAM
190
171
57±0.25
6 - M8 NUTS
57±0.25
20
57±0.25
Dimensions in mm
C
C
40
124±0.25
140
C
E
CM
E
C
E
E
C
E
G
C
E
G
CIRCUIT DIAGRAM
20.25
8 - φ 7MOUNTING HOLES
41.25
79.4
15
61.5
61.5
40
13
28
5
38
5.2
LABEL
30
3 - M4 NUTS
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HA-66H
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS (Tj = 25°C)
Symbol
VCES
VGES
IC
ICM
IE (Note 2)
IEM (Note 2)
PC (Note 3)
Tj
Tstg
Viso
Item
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
Mounting torque
—
Mass
ELECTRICAL CHARACTERISTICS
ICES
VGE(th)
IGES
VCE(sat)
Cies
Coes
Cres
QG
td (on)
tr
td (off)
tf
VEC (Note 2)
trr (Note 2)
Qrr (Note 2)
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Note 1.
2.
3.
4.
VGE = 0V
VCE = 0V
DC, TC = 60°C
Pulse
Collector current
—
Symbol
Conditions
Collector-emitter voltage
Gate-emitter voltage
(Note 1)
—
—
Charged part to base plate, rms, sinusoidal, AC 60Hz 1min.
Main terminals screw M8
Mounting screw M6
Auxiliary terminals screw M4
Typical value
Unit
V
V
A
A
A
A
W
°C
°C
V
N·m
N·m
N·m
kg
(Tj = 25°C)
Collector cutoff current
Gate-emitter
threshold voltage
Gate-leakage current
Collector-emitter
saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Emitter-collector voltage
Reverse recovery time
Reverse recovery charge
Contact thermal resistance
(Note 1)
Pulse
TC = 25°C, IGBT part
Item
Thermal resistance
Ratings
3300
±20
1200
2400
1200
2400
10400
–40 ~ +150
–40 ~ +125
6000
6.67 ~ 13.00
2.84 ~ 6.00
0.88 ~ 2.00
2.2
Conditions
Limits
Typ
—
IC = 120mA, VCE = 10V
4.5
6.0
7.5
V
VGE = VGES, VCE = 0V
Tj = 25°C
IC = 1200A, VGE = 15V
Tj = 125°C
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.40
4.80
120
12.0
3.6
5.7
—
—
—
—
3.30
—
300
—
—
0.006
0.5
5.72
—
—
—
—
—
1.60
2.00
2.50
1.00
4.29
1.20
—
0.012
0.024
—
µA
VCE = 10V
VGE = 0V
VCC = 1650V, IC = 1200A, VGE = 15V
VCC = 1650V, IC = 1200A
VGE1 = VGE2 = 15V
RG = 2.5Ω
Resistive load switching operation
IE = 1200A, VGE = 0V
IE = 1200A
die / dt = –2400A / µs
Junction to case, IGBT part
Junction to case, FWDi part
Case to fin, conductive grease applied
(Note 4)
Max
15
Unit
VCE = VCES, VGE = 0V
Min
—
mA
V
nF
nF
nF
µC
µs
µs
µs
µs
V
µs
µC
K/W
K/W
K/W
Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.
Junction temperature (T j) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HA-66H
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
2400
2400
1600
VGE=20V
VGE=10V
800
VGE=9V
400
0
2
4
6
VGE=8V
VGE=7V
8
10
2000
1600
1200
800
400
0
Tj = 25°C
Tj = 125°C
0
4
8
12
16
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
8
VGE=15V
6
4
2
Tj = 25°C
Tj = 125°C
0
0
400
800
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
VGE=15V
1200
0
EMITTER-COLLECTOR VOLTAGE VEC (V)
VGE=13V
VGE=14V
COLLECTOR CURRENT IC (A)
2000
VCE=10V
VGE=12V
VGE=11V
8
IC = 2400A
6
IC = 1200A
4
IC = 480A
2
0
4
8
12
16
20
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
6
4
2
Tj = 25°C
Tj = 125°C
0
Tj = 25°C
COLLECTOR CURRENT IC (A)
8
0
10
0
1200 1600 2000 2400
400
800
1200 1600 2000 2400
EMITTER CURRENT IE (A)
CAPACITANCE Cies, Coes, Cres (nF)
COLLECTOR CURRENT IC (A)
Tj=25°C
103
7
5
3
2
102
7
5
3
2
101
7
5
3
2
VGE = 0V, Tj = 25°C
Cies, Coes : f = 100kHz
: f = 1MHz
Cres
Cies
Coes
Cres
100
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM1200HA-66H
td(off)
100
td(on)
7
5
tr
3
2
10–1
7
5
SWITCHING ENERGY (J/P)
REVERSE RECOVERY TIME trr (µs)
3
2
tf
VCC = 1650V, VGE = ±15V
RG = 2.5Ω, Tj = 125°C
Inductive load
5 7 102
5 7 103
2 3
2 3
5
trr
100
7
5
103
7
5
Irr
3
2
10–1
7
5
3
2
5 7 102
2 3
5 7 103
2 3
5
102
7
5
EMITTER CURRENT IE (A)
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
2.4
VCC = 1650V, VGE = ±15V,
RG = 2.5Ω, Tj = 125°C,
2.0 Inductive load
Eon
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
4
Eon
1.6
1.2
Eoff
0.8
Erec
0.4
0
0
400
800
1200
2
Eoff
1
VCC = 1650V, IC = 1200A,
VGE = ±15V, Tj = 125°C,
Inductive load
0
5
10
15
CURRENT (A)
GATE RESISTANCE (Ω)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
VCC = 1650V
IC = 1200A
16
12
8
4
0
3
0
1600
20
GATE-EMITTER VOLTAGE VGE (V)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
5
5
VCC = 1650V, Tj = 125°C
3 Inductive load
3
2 VGE = ±15V, RG = 2.5Ω
2
COLLECTOR CURRENT IC (A)
SWITCHING ENERGY (J/P)
SWITCHING TIMES (µs)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
5
0
2000
4000
6000
8000
GATE CHARGE QG (nC)
10000
REVERSE RECOVERY CURRENT Irr (A)
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
101
7
5
3
2
20
Single Pulse
TC = 25°C
Rth(j – c)Q = 0.012K/W
Rth(j – c)R = 0.024K/W
100
7
5
3
2
10–1
7
5
3
2
10–2
10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100
TIME (s)
Mar. 2003