RICOH R1224N332L

R1224N SERIES
PWM/VFM step-down DC/DC Converter
NO.EA-096-061102
OUTLINE
The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current.
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a
phase compensation circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable
circuit, resistors for output voltage detect, and input voltage detect circuit. A low ripple, high efficiency step-down
DC/DC converter can be easily composed of this IC with only several external components, or a power-transistor,
an inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjustable
types are without PWM/VFM alternative circuit).
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching
into the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several
types of the R1224Nxxx, which are without a PWM/VFM alternative circuit, are also available.
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The
protection circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat
this operation until maximum duty cycle condition is released. When the cause of large load current or something
else is removed, the operation is automatically released and returns to normal operation.
Further, built-in UVLO function works when the input voltage is equal or less than UVLO threshold, it makes
this IC be standby and suppresses the consumption current and avoid an unstable operation.
FEATURES
• Supply Current ................................................................ Typ. 20µA (R1224Nxx2E/F/M/L, R1224N102M)
Typ. 30µA (R1224Nxx2G, R1224N102G)
Typ. 40µA (R1224Nxx2H, R1224N102H)
• Standby Current .............................................................. Typ. 0µA
• Input Voltage Range ....................................................... 2.3V~18.5V
• Output Voltage Range..................................................... 1.2V to 6.0V (R1224Nxx2x)
1.0V to VIN (R1224N102x)
• Output Voltage Accuracy................................................. ±2.0%
• Oscillator Frequency ....................................................... Typ. 180kHz (R1224Nxx2M, R1224N102M)
Typ. 300kHz (R1224Nxx2E/G, R1224N102G)
Typ. 500kHz (R1224Nxx2F/H, R1224N102H)
• Efficiency......................................................................... Typ. 90%
• Low Temperature-Drift Coefficient of Output Voltage...... Typ. ±100ppm/°C
• Package .......................................................................... SOT-23-5
• Built-in Soft-start Function............................................... Typ. 10ms
• Built-in Current Limit Circuit
APPLICATIONS
• Power source for hand-held communication equipment, cameras, video instruments such as VCRs,
camcorders.
• Power source for battery-powered equipment.
• Power source for household electrical appliances.
1
R1224N
BLOCK DIAGRAM
*Fixed Output Voltage Type
VIN
5
EXT
4
OSC
3
VOUT
1
CE
3
VFB
1
CE
Amp
Vref
PWM/VFM
CONTROL
Soft Start
Chip Enable
Protection
Vref
UVLO
2
GND
*Adjustable Output Voltage Type
VIN
5
EXT
4
OSC
Amp
Vref
Soft Start
Protection
UVLO
2
GND
2
Chip Enable
Vref
R1224N
SELECTION GUIDE
In the R1224N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for
the ICs can be selected at the user's request.
The selection can be made with designating the part number as shown below;
R1224Nxx2x-xx-x ←Part Number
↑ ↑ ↑↑ ↑ ↑
a b cd e f
Code
a
b
c
d
e
f
Contents
Designation of Package Type;
N: SOT-23-5
Setting Output Voltage (VOUT):
Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible.
Adjustable type; a=10 means Reference Voltage=1.0V Optional Function is G/H/M.
2: fixed
Designation of Optional Function
E : 300kHz, with a PWM/VFM alternative circuit
F : 500kHz, with a PWM/VFM alternative circuit
G : 300kHz, without a PWM/VFM alternative circuit
H : 500kHz, without a PWM/VFM alternative circuit
L : 180kHz, with a PWM/VFM alternative circuit
M :180kHz, without a PWM/VFM alternative circuit
Designation of Taping Type;
(Refer to Taping Specification)"TR" is prescribed as a standard.
Designation of Composition of pin plating
-F: Lead free plating
3
R1224N
PIN CONFIGURATIO
•
SOT-23-5
5
4
(mark side)
1
2
3
PIN DESCRIPTION
Pin No
Symbol
1
CE
2
GND
3
VOUT (VFB)
4
EXT
5
VIN
Pin Description
Chip Enable Pin (“H” Active)
Ground Pin
Pin for Monitoring Output Voltage (Feedback Voltage)
External Transistor Drive Pin (CMOS Output)
Power Supply Pin
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
20
V
VIN
VIN Supply Voltage
VEXT
EXT Pin Output Voltage
−0.3 to VIN+0.3
V
VCE
CE Pin Input Voltage
−0.3 to VIN+0.3
V
VOUT
VOUT/VFB Pin Input Voltage
−0.3 to VIN+0.3
V
IEXT
EXT Pin Inductor Drive Output Current
± 50
A
PD
Power Dissipation (SOT-23-5)*
420
mW
Topt
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−55 to +125
°C
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
4
R1224N
ELECTRICAL CHARACTERISTICS
•
R1224Nxx2X (X=E/F/G/H/L/M) except R1224N102X
Symbol
VIN
Item
Conditions
Operating Input Voltage
Topt=25°C
Min.
Typ.
2.3
Max.
Unit
18.5
V
VSET
×1.02
V
VOUT
Step-down Output Voltage
VIN=VCE=VSET+1.5V, IOUT=−100mA
When VSET <
= 1.5V, VIN=VCE=3.0V
∆VOUT/
∆Topt
Step-down Output Voltage
Temperature Coefficient
−40°C <
= Topt <
= 85°C
Oscillator Frequency
VIN=VCE=VSET+1.5V, IOUT=−100mA
When VSET <
= 1.5, VIN=VCE=3.0V
L/M Version
E/G Version
F/H Version
Oscillator Frequency
Temperature Coefficient
−40°C <
= Topt <
= 85°C
±0.2
IDD1
Supply Current 1
VIN=VCE=VOUT=18.5V
E/F/L/M Version
G version
H version
20
30
40
50
60
80
µA
Istandby
Standby Current
VIN=18.5V, VCE=0V, VOUT=0V
0.0
0.5
µA
IEXTH
EXT “H” Output Current
VIN=8V, VEXT=7.9V, VOUT=8V,
VCE=8V
−17
−10
mA
IEXTL
EXT “L” Output Current
VIN=8V, VEXT=0.1V, VOUT=0V,
VCE=8V
ICEH
CE “H” Input Current
VIN=VCE=VOUT=18.5V
ICEL
CE “L” Input Current
VIN=VOUT=18.5V, VCE=0V
−0.5
VCEH
CE “H” Input Voltage
VIN=8V, VOUT=0V
1.5
VCEL
CE “L” Input Voltage
VIN=8V, VOUT=0V
Maxdty
Oscillator Maximum
Duty Cycle
VFMdty
VFM Duty Cycle
E/F/L Version
VUVLO1
UVLO Voltage
VIN=VCE=2.5V to 1.5V, VOUT=0V
VUVLO2
UVLO Release Voltage
VIN=VCE=1.5V to 2.5V, VOUT=0V
tstart
Delay Time by Soft-Start function
VIN=VSET+1.5V, IOUT=−10mA
VCE=0V→VSET+1.5V
tprot
Delay Time for protection circuit
VIN=VCE=VSET+1.5V
VOUT=VSET+1.5V→0V
fosc
∆fosc/
∆Topt
VSET
×0.98
VSET
±100
144
240
400
20
180
300
500
ppm/°C
216
360
600
%/°C
30
0.0
mA
0.5
µA
µA
0.0
V
0.3
100
V
%
35
1.8
kHz
%
2.0
2.2
V
VUVLO1
+0.1
2.3
V
5
10
20
ms
5
15
30
ms
5
R1224N
•
R1224N102X (X=G/H/M)
Symbol
Conditions
Min.
Typ.
Unit
18.5
V
1.02
V
Operating Input Voltage
VFB
Feedback Voltage
VIN=VCE=3.5V, IFB=−100mA
Feedback Voltage
Temperature Coefficient
−40°C <
= Topt <
= 85°C
Oscillator Frequency
VIN=VCE=3.5V, IFB=−100mA
M Version
G Version
H Version
Oscillator Frequency
Temperature Coefficient
−40°C <
= Topt <
= 85°C
IDD1
Supply Current 1
VIN=VCE=VFB=18.5V
M Version
G Version
H Version
20
30
40
50
60
80
µA
Istandby
Standby Current
VIN=18.5V, VCE=0V, VFB=0V
0.0
0.5
µA
IEXTH
EXT “H” Output Current
VIN=8V, VEXT=7.9V, VFB=8V,
VCE=8V
−17
−10
mA
IEXTL
EXT “L” Output Current
VIN=8V, VEXT=0.1V, VFB=0V,
VCE=8V
ICEH
CE “H” Input Current
VIN=VCE=VFB=18.5V
ICEL
CE “L” Input Current
VIN=VFB=18.5V, VCE=0V
−0.5
VCEH
CE “H” Input Voltage
VIN=8V, VFB=0V
1.5
VCEL
CE “L” Input Voltage
VIN=8V, VFB=0V
fosc
∆fosc/
∆Topt
2.3
Max.
VIN
∆VFB/
∆Topt
6
Item
Topt=25°C
Maxdty
Oscillator Maximum Duty Cycle
VUVLO1
UVLO Voltage
VIN=VCE=2.5V to 1.5V, VFB=0V
VUVLO2
UVLO Release Voltage
VIN=VCE=1.5V to 2.5V, VFB=0V
tstart
Delay Time by Soft-Start function
VIN=2.5V, IFB=−10mA
VCE=0V→2.5V
tprot
Delay Time for protection circuit
VIN=VCE=2.5V
VFB=2.5V→0V
0.98
1.00
±100
144
240
400
180
300
500
ppm/°C
216
360
600
±0.2
20
%/°C
30
0.0
mA
0.5
µA
µA
0.0
V
0.3
100
1.8
kHz
V
%
2.0
2.2
V
VUVLO1
+0.1
2.3
V
5
10
20
ms
5
15
30
ms
R1224N
TYPICAL APPLICATION AND APPLICATION HINTS
(1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M except xx=10)
L
PMOS
C1
4
R1
5
EXT
VIN
VOUT 3
R1224N
1 CE
C3
SD
GND
C2
LOAD
2
CE CONTROL
PMOS: HAT1044M (Hitachi)
SD1 : RB063L-30 (Rohm)
C1
: 10µF (Ceramic Type)
R1
: 10Ω
L : CR105-270MC (Sumida, 27µH)
C3 : 47µF (Tantalum Type)
C2 : 0.1µF (Ceramic Type)
(2) Adjustable Output Type (R1224N102G/H/M) Example: Output Voltage=3.2V
L
PMOS
C1
C4
R4
4
R1
5 VIN
EXT
R3
VFB 3
R1224N
1 CE
C2
GND
2
C3
SD
R2
LOAD
CE CONTROL
PMOS: HAT1044M (Hitachi)
L : CR105-270MC (Sumida, 27µH)
SD1 : RB063L-30 (Rohm)
C3 : 47µF (Tantalum Type)
C1
: 10µF (Ceramic Type)
C2 : 0.1µF (Ceramic Type) C4: 1000pF (Ceramic Type)
R1
: 10Ω, R2=22kΩ, R3=2.7kΩ, R4=33kΩ
7
R1224N
When you use these ICs, consider the following issues;
⋅As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do
not make its “H” level more than the voltage level of VIN pin.
⋅Set external components as close as possible to the IC and minimize the connection between the components
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make
sufficient ground and reinforce supplying. A large switching current could flow through the connection of power
supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the
voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation
of the IC.
⋅Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical
characteristics. Once after stopping the output voltage, output will restart with soft-start operation. If the
difference between input voltage and output voltage is small, the protection circuit may work.
⋅Use capacitors with a capacity of 22µF or more for VOUT pin, and with good high frequency characteristics such
as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is
generated by an inductor when an external transistor is on and off.
⋅Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the
absolute maximum rating at the maximum loading.
Use an inductor with appropriate inductance.
⋅Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.
⋅Do not use this IC under the condition with VIN voltage at equal or less than minimum operating voltage.
⋅When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is
small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this
case, the devise is reset with UVLO function that is different from the reset-protection function caused by
maximum duty cycle.
⋅With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1224N alters
from PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light
load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage
against input voltage is 35% or less, (ex. VIN>8.6V and VOUT=3.0V) even if the large current may be loaded, the
IC keeps its VFM mode. As a result, frequency might be decreased, and oscillation waveform might be unstable.
These phenomena are the typical characteristics of the IC with PWM/VFM alternative circuit.
ÌThe performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their
respected rated values.
8
R1224N
How to Adjust Output Voltage and about Phase Compensation
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 1.0V.
Output Voltage, VOUT is as following equation:
VOUT: R2+R4=VFB: R2
VOUT=VFB×(R2+R4)/R2
Thus, with changing the value of R2 and R4, output voltage can be set in the specified range.
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind
180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this,
phase margin should be secured with proceeding the phase. A pole is formed with external components L and
C3.
Fpole ~ 1/2π L × C3
A zero (signal back to zero) is formed with R4 and C4.
≅Fzero~1/(2π×R4×C4)
For example, if L=27µH, C3=47µF, the cut off frequency of the pole is approximately 4.5kHz.
To make the cut off frequency of the pole as much as 4.5kHz, set R4=33kΩ and C4=1000pF.
If VOUT is set at 2.5V, R2=22kΩ is appropriate.
R3 prevents feedback of the noise to VFB pin, about 2.7kΩ is appropriate value.
L
PMOS
C1
C4
R4
4
R1
5 VIN
EXT
R3
VFB 3
R1224N
1 CE
C2
GND
2
C3
SD
R2
LOAD
CE CONTROL
9
R1224N
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits>
<Current through L>
i1
IL
ILmax
IOUT
VIN
Lx Tr
SD
VOUT
L
ILmin
topen
i2
CL
GND
ton
toff
T=1/fosc
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases
from ILmin. (=0) to reach ILmax. in proportion to the on-time period (ton) of Lx Tr.
Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL
(=i2) flows.
Step 3: IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in
the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this
case, IL value is from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with
the oscillator frequency (fosc) being maintained constant.
Discontinuous Conduction Mode and Continuous Conduction Mode
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the
same as those when Lx Tr. is ON and when it is OFF.
The difference between ILmax and ILmin, which is represented by ∆I;
∆I=ILmax-ILmin=VOUT×topen/L=(VIN-VOUT)×ton/L ................................... Equation 1
wherein, T=1/fosc=ton+toff
duty (%)=ton/T×100=ton×fosc×100
topen <
= toff
In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L are respectively shown the change of the current at ON, and
the change of the current at OFF.
When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time
period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.
10
R1224N
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,
tonc=T×VOUT/VIN ..................................................................................... Equation 2
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is ON:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of Lx Tr. is described as Rp the direct
current of the inductor is described as RL.)
VIN=VOUT+(Rp+RL)×IOUT+L×IRP/ton .................................................Equation 3
When Lx Tr. is OFF:
L×IRP/toff=VF+VOUT+RL×IOUT ............................................................ Equation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,
DON=(VOUT+VF+RL×IOUT)/(VIN+VF−Rp×IOUT) ......................................Equation 5
Ripple Current is as follows;
IRP=(VIN−VOUT−Rp×IOUT−RL×IOUT)×DON/f/L........................................Equation 6
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;
ILmax=IOUT+IRP/2............................................................................ Equation 7
Consider ILmax, condition of input and output and select external components.
Ì The above explanation is directed to the calculation in an ideal case in continuous mode.
11
R1224N
External Components
1.
Inductor
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,
magnetic saturation occurs and make transform efficiency worse.
When the load current is definite, the smaller value of L, the larger the ripple current.
Provided that the allowable current is large in that case and DC current is small, therefore, for large output
current, efficiency is better than using an inductor with a large value of L and vice versa.
2.
Diode
Use a diode with low VF (Schottky type is recommended.) and high switching speed.
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.
3.
Capacitors
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for
stable operation.
COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is
recommended.
4.
Lx Transistor
Pch Power MOSFET is required for this IC.
Its breakdown voltage between gate and source should be a few V higher than Input Voltage.
In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold
voltage is effective.
If a large load current is necessary for your application and important, choose a MOSFET with low ON
resistance for good efficiency.
If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for
good efficiency.
Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.
12
R1224N
TIMING CHART
VOUT Set Output Voltage
VIN
UVLO Voltage
Input Voltage
Rising Time
UVLO Reset
VOUT Set Output Voltage
CE
Protection Circuit Delay Time
VOUT Set Output
Voltage
EXT
Reset Protection
VOUT
VOUT Set Output
Voltage
Stable
Operation
Soft Start
Stable
Operation
Soft Start
Soft Start
Stable
Operation
Soft Start
The timing chart shown above describes the changing process of input voltage rising, stable operating,
operating with large current, stable operating, input voltage falling, input voltage recovering, and stable
operating.
First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of
pre-standby.
Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start
operation finishes, the operation becomes stable.
If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during
the delay time of protection circuit. (The current value depends on the circuit.)
After the delay time passes, reset protection works, or EXT signal will be “H”, then output will turn off, then
soft-start operation starts. After the soft-start operation, EXT signal will be “L”, but if the large current is still
flowing, after the delay time of protection circuit passes, reset protection circuit will work again, the operation will
be continuously repeated unless the cause of large current flowing is not removed.
Once the cause of the large current flowing is removed, within the delay time, the operation will be back to the
stable one.
If the timing for release the large current is in the protection process, the operation will be back to the normal
one after the soft-start operation.
If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection
circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be “H”.
Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function.
After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of
spre-standby.
Then after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation
finishes, the operation becomes stable.
13
R1224N
TEST CIRCUITS
Output Voltage, Oscillator Frequency, CE “H” Input Voltage, CE “L” Input Voltage, Soft-start time
L1
PMOS
D1
EXT
4
Oscilloscope
2 GND
VIN 5
R1224N
OUT
3 V
(VFB)
C2
CE 1
C1
V
Supply Current 1
Standby Current
A
VIN 5
2 GND
2 GND
R1224N
OUT
3 V
(VFB)
EXT “H” Output Current
R1224N
VOUT
3 (V
FB)
4 EXT
A
OUT
3 V
(VFB)
CE 1
PMOS : HAT1044M (Hitachi)
SD1 : RB491D (Rohm)
C1
: 47µF (Tantalum Type)
14
4 EXT
Oscilloscope
R1224N
R1224N
CE 1
Output Delay Time for Protection Circuit
VIN 5
2 GND
2 GND
VIN 5
VOUT
3 (V
FB)
CE 1
CE “H” Input Current, CE “L” Input Current
CE 1
EXT “L” Output Current
VIN 5
2 GND
A
R1224N
OUT
3 V
(VFB)
CE 1
4 EXT
A
VIN 5
2 GND
OUT
3 V
(VFB)
A
L : CD104-270MC (Sumida, 27µH)
C2 : 47µF (Tantalum Type)
VIN 5
R1224N
CE 1
C2
R1224N
TYPICAL CHARACTERISTICS
1)Output Voltage vs. Output Current (*Note)
R1224N182E
L=10µH
R1224N182F
1.830
1.810
1.790
VIN3.3V
1.770
1.750
0.1
VIN5V
1
10
100
1000
1.830
1.810
1.790
VIN3.3V
1.770
1.750
0.1
10000
Output Current lOUT(mA)
R1224N182G
L=10µH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
10
R1224N182H
100
1000
10000
L=10µH
1.810
1.790
VIN3.3V
VIN5V
1.770
VIN12V
1
10
100
1000
1.830
1.810
1.790
R1224N182L
VIN5V
VIN12V
1.750
0.1
10000
VIN3.3V
1.770
Output Current lOUT(mA)
1
10
100
1000
10000
Output Current lOUT(mA)
L=27µH
R1224N182M
L=27µH
1.850
Output Voltage VOUT(V)
1.850
Output Voltage VOUT(V)
1
1.850
1.830
1.830
1.810
1.790
VIN3.3V
1.770
1.750
0.1
VIN5V
Output Current IOUT(mA)
1.850
1.750
0.1
L=10µH
1.850
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.850
VIN5V
1
10
100
1000
Output Current lOUT(mA)
10000
1.830
1.810
1.790
VIN3.3V
VIN5V
1.770
VIN12V
1.750
0.1
1
10
100
1000
10000
Output Current lOUT(mA)
15
R1224N
L=10µH
R1224N332F
3.400
3.38
3.380
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N332E
3.40
3.36
3.34
3.32
3.30
3.28
3.26
VIN4.8V
3.24
VIN7V
3.22
3.20
0.1
3.360
3.340
3.320
3.300
3.280
3.260
VIN4.8V
3.240
VIN7V
3.220
1
10
100
1000
3.200
0.1
10000
Output Current lOUT(mA)
R1224N332G
L=10µH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3.360
1000
10000
3.340
3.320
3.300
3.280
VIN4.8V
3.260
VIN12V
3.240
VIN15V
1
10
100
1000
3.34
3.33
3.32
3.31
3.30
0.1
10000
Output Current lOUT(mA)
1
10
100
1000
10000
Output Current lOUT(mA)
R1224N332G (VIN=16V)
R1224N332H
3.35
L=10µH
Output Voltage VOUT(V)
3.400
3.34
3.33
3.32
3.31
3.380
3.360
3.340
3.320
3.300
3.280
VIN4.8V
3.260
VIN12V
3.240
VIN15V
3.220
1
10
100
1000
Output Current lOUT(mA)
16
100
R1224N332G (VIN=10V)
3.380
3.30
0.1
10
3.35
3.220
Output Voltage VOUT(V)
1
Output Current lOUT(mA)
3.400
3.200
0.1
L=10µH
10000
3.200
0.1
1
10
100
1000
Output Current lOUT(mA)
10000
R1224N
L=27µH
R1224N332M
3.400
3.380
3.380
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N332L
3.400
3.360
3.340
3.320
3.300
3.280
3.260
VIN4.8V
3.240
VIN7V
3.220
3.360
3.340
3.320
3.300
3.280
VIN4.8V
3.260
VIN12V
3.240
VIN15V
3.220
3.200
0.1
1
10
100
1000
3.200
0.1
10000
Output Current lOUT(mA)
R1224N332M (VIN=5V)
10
100
1000
10000
R1224N332M (VIN=10V)
3.35
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1
Output Current lOUT(mA)
3.35
3.34
3.33
3.32
3.31
3.30
3.34
3.33
3.32
3.31
3.30
0
1
2
3
4
5
1
0
Output Current lOUT(A)
2
3
4
5
Output Current lOUT(A)
R1224N332M (VIN=18V)
R1224N502E
L=10µH
5.100
Output Voltage VOUT(V)
3.35
Output Voltage VOUT(V)
L=27µH
3.34
3.33
3.32
3.31
5.080
5.060
VIN6.5V
5.040
VIN10V
5.020
5.000
4.980
4.960
4.940
4.920
3.30
4.900
0
1
2
3
Output Current lOUT(A)
4
0.1
1
10
100
1000
10000
Output Current lOUT(mA)
17
R1224N
L=10µH
R1224N502G
5.100
5.080
5.080
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N502F
5.100
5.060
5.040
5.020
5.000
4.980
4.960
VIN6.5V
4.940
VIN10V
5.040
VIN12V
5.020
VIN15V
5.000
4.980
4.960
4.940
4.920
4.900
0.1
4.900
0.1
10
100
1000
10000
Output Current lOUT(mA)
R1224N502G (VIN=10V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5.03
5.02
5.01
1
10
R1224N502H
100
1000
1000
10000
5.04
5.03
5.02
5.01
5.00
0.1
10000
L=10µH
5.100
5.080
5.080
5.060
5.040
5.020
5.000
VIN6.5V
4.960
VIN12V
4.940
VIN15V
4.920
1
10
10
R1224N502L
5.100
4.980
1
100
1000
10000
Output Current lOUT(mA)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
100
R1224N502G (VIN=16V)
Output Current lOUT(mA)
L=27µH
5.060
5.040
5.020
5.000
4.980
4.960
VIN6.5V
4.940
VIN10V
4.920
100
1000
Output Current lOUT(mA)
18
10
5.05
5.04
4.900
0.1
1
Output Current lOUT(mA)
5.05
5.00
0.1
VIN6.5V
5.060
4.920
1
L=10µH
10000
4.900
0.1
1
10
100
1000
Output Current lOUT(mA)
10000
R1224N
R1224N502M
L=27µH
Output Voltage VOUT(V)
5.100
5.080
*Note: Typical characteristics 1) are obtained with using
the following components;
PMOS : IRF7406 (IR)
L
: CDRH127-100MC (Sumida: 10µH)
SD
: RB083L-20 (Rohm)
C1
: 25SC47 (Sanyo/OS-con: 47µF/25V)×2
C2
: 0.1µF (Ceramic Type)
C3
: 10SA220 (Sanyo/OS-con: 220µF/10V)
R1
: 10Ω
VIN6.5V
5.060
5.040
VIN12V
5.020
VIN15V
5.000
4.980
4.960
4.940
4.920
4.900
0.1
1
10
100
1000
10000
Output Current lOUT(mA)
2) Efficiency vs. Output Current (*Note)
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N182F (VIN=5.0V)
Efficiency η(%)
Efficiency η(%)
R1224N182F (VIN=3.3V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
CDRH127-10µH
10
100
1000
Output Current lOUT(mA)
10
100
1000
10000
Output Current lOUT(mA)
R1224N182G (VIN=5.0V)
Efficiency η(%)
Efficiency η(%)
R1224N182G (VIN=3.3V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
19
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N182H (VIN=3.3V)
Efficiency η(%)
Efficiency η(%)
R1224N182G (VIN=12V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
R1224N182H (VIN=12V)
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
CDRH127-27µH
10
100
1000
Output Current lOUT(mA)
20
100
1000
10000
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
R1224N182L (VIN=5.0V)
Efficiency η(%)
Efficiency η(%)
R1224N182L (VIN=3.3V)
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N182H (VIN=5.0V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-27µH
100
1000
Output Current lOUT(mA)
10000
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-27µH
R1224N182M (VIN=5.0V)
Efficiency η(%)
Efficiency η(%)
R1224N182M (VIN=3.3V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-27µH
100
1000
R1224N332E (VIN=7.0V)
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
CDRH127-10µH
10
100
1000
Output Current lOUT(mA)
100
1000
10000
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
R1224N332F (VIN=7.0V)
Efficiency η(%)
Efficiency η(%)
R1224N332E (VIN=4.8V)
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N182M (VIN=12V)
1
CDRH127-27µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
21
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N332G (VIN=12V)
Efficiency η(%)
Efficiency η(%)
R1224N332F (VIN=4.8V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
10000
10
100
1000
Efficiency η(%)
22
1
10
R1224N332G (VIN=15V)
Efficiency η(%)
1
1000
10000
100
1000
10000
Output Current lOUT(mA)
R1224N332G (VIN=16V)
Output Current lOUT(mA)
100
R1224N332G (VIN=10V)
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N332G (VIN=4.8V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
Output Current lOUT(mA)
10000
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N332H (VIN=4.8V)
Efficiency η(%)
Efficiency η(%)
R1224N332H (VIN=12V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
R1224N332L (VIN=7.0V)
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-27µH
1
10
100
1000
Output Current lOUT(mA)
100
1000
10000
1
10
CDRH127-27µH
100
1000
10000
Output Current lOUT(mA)
R1224N332M (VIN=12V)
Efficiency η(%)
Efficiency η(%)
R1224N332L (VIN=4.8V)
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N332H (VIN=15V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-27µH
100
1000
10000
Output Current lOUT(mA)
23
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-27µH
R1224N332M (VIN=5V)
Efficiency η(%)
Efficiency η(%)
R1224N332M (VIN=4.8V)
1
10
100
1000
100
98
96
94
92
90
88
86
84
82
80
10000
0
1
1
2
3
4
5
0
CDRH127-27µH
1
10
100
1000
Output Current lOUT(mA)
24
5
1
2
3
4
Output Current lOUT(A)
R1224N502E (VIN=6.5V)
Efficiency η(%)
Efficiency η(%)
100
90
80
70
60
50
40
30
20
10
0
0.1
4
100
98
96
94
92
90
88
86
84
82
80
Output Current lOUT(A)
R1224N332M (VIN=15V)
3
R1224N332M (VIN=18V)
Efficiency η(%)
Efficiency η(%)
R1224N332M (VIN=10V)
100
98
96
94
92
90
88
86
84
82
80
0
2
Output Current lOUT(A)
Output Current lOUT(mA)
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
Output Current lOUT(mA)
10000
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N502F (VIN=6.5V)
Efficiency η(%)
Efficiency η(%)
R1224N502E (VIN=10V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
10000
10
100
1000
Efficiency η(%)
1
10
R1224N502G (VIN=6.5V)
Efficiency η(%)
1
1000
10000
100
1000
10000
Output Current lOUT(mA)
R1224N502G (VIN=16V)
Output Current lOUT(mA)
100
R1224N502G (VIN=10V)
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N502F (VIN=10V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
25
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-10µH
R1224N502G (VIN=15V)
Efficiency η(%)
Efficiency η(%)
R1224N502G (VIN=12V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-10µH
100
1000
R1224N502H (VIN=12V)
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
CDRH127-10µH
10
100
1000
Output Current lOUT(mA)
26
100
1000
10000
1
10
CDRH127-10µH
100
1000
10000
Output Current lOUT(mA)
R1224N502L (VIN=6.5V)
Efficiency η(%)
Efficiency η(%)
R1224N502H (VIN=15V)
10
Output Current lOUT(mA)
Efficiency η(%)
Efficiency η(%)
R1224N502H (VIN=6.5V)
1
CDRH127-10µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-27µH
100
1000
Output Current lOUT(mA)
10000
R1224N
100
90
80
70
60
50
40
30
20
10
0
0.1
CDRH127-27µH
R1224N502M (VIN=6.5V)
Efficiency η(%)
Efficiency η(%)
R1224N502L (VIN=10V)
1
10
100
1000
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
Output Current lOUT(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
1
CDRH127-27µH
10
100
1000
Output Current lOUT(mA)
10
100
1000
10000
Output Current lOUT(mA)
R1224N502M (VIN=15V)
Efficiency η(%)
Efficiency η(%)
R1224N502M (VIN=12V)
1
CDRH127-27µH
10000
100
90
80
70
60
50
40
30
20
10
0
0.1
1
10
CDRH127-27µH
100
1000
10000
Output Current lOUT(mA)
*Note: Typical characteristics 2) are obtained with using the following components;
PMOS : IRF7406 (IR)
L
: CDRH127-100MC (Sumida: 10µH)
C2 : 0.1µF (Ceramic Type)
SD
: RB083L-20 (Rohm)
C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)
C1
: 25SC47 (Sanyo/OS-con: 47µF/25V)×2
R1 : 10Ω
27
R1224N
3) Ripple Voltage vs. Output Current
R1224N182E
L=10µH
R1224N182F
60
VIN3.3V
50
VIN5V
40
30
20
10
0
0.1
1
10
100
1000
60
VIN3.3V
50
30
20
10
0
0.1
10000
R1224N182G
L=10µH
R1224N182H
VIN3.3V
50
VIN5V
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
60
VIN12V
40
30
20
10
1
10
100
1000
60
VIN3.3V
50
VIN5V
100
1000
10000
L=10µH
R1224N182L
VIN12V
40
30
20
10
0
0.1
10000
1
10
100
1000
10000
Output Current IOUT(mA)
L=27µH
R1224N182M
70
L=27µH
70
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
10
70
Output Current IOUT(mA)
60
VIN3.3V
50
VIN5V
40
30
20
10
1
10
100
1000
Output Current IOUT(mA)
28
1
Output Current IOUT(mA)
70
0
0.1
VIN5V
40
Output Current IOUT(mA)
0
0.1
L=10µH
70
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
70
10000
60
VIN3.3V
50
VIN5V
VIN12V
40
30
20
10
0
0.1
1
10
100
1000
Output Current IOUT(mA)
10000
R1224N
R1224N332E
L=10µH
R1224N332F
60
VIN4.8V
50
VIN7V
40
30
20
10
0
0.1
1
10
100
1000
60
VIN4.8V
50
30
20
10
0
0.1
10000
R1224N332G
L=10µH
R1224N332H
60
VIN4.8V
50
VIN12V
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
10
100
1000
10000
L=10µH
70
VIN15V
40
30
20
10
1
10
100
1000
60
VIN4.8V
50
VIN12V
30
20
10
0
0.1
10000
R1224N332L
VIN15V
40
Output Current lOUT(mA)
1
10
100
1000
10000
Output Current lOUT(mA)
L=27µH
R1224N332M
70
L=27µH
70
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
1
Output Current IOUT(mA)
70
60
VIN4.8V
50
VIN7V
40
30
20
10
0
0.1
VIN7V
40
Output Current IOUT(mA)
0
0.1
L=10µH
70
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
70
1
10
100
1000
Output Current lOUT(mA)
10000
60
VIN4.8V
50
VIN12V
VIN15V
40
30
20
10
0
0.1
1
10
100
1000
10000
Output Current lOUT(mA)
29
R1224N
R1224N502E
L=10µH
R1224N502F
60
VIN6.5V
50
VIN10V
40
30
20
10
0
0.1
1
10
100
1000
60
VIN6.5V
50
30
20
10
0
0.1
10000
R1224N502G
L=10µH
R1224N502H
VIN6.5V
50
VIN12V
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
60
VIN15V
40
30
20
10
1
10
100
1000
60
VIN6.5V
50
VIN12V
100
1000
10000
L=10µH
R1224N502L
VIN15V
40
30
20
10
0
0.1
10000
1
10
100
1000
10000
Output Current IOUT(mA)
L=27µH
R1224N502M
L=27µH
70
Ripple Voltage Vrpp(mV)
70
Ripple Voltage Vrpp(mV)
10
70
Output Current IOUT(mA)
60
VIN6.5V
50
VIN10V
40
30
20
10
1
10
100
1000
Output Current IOUT(mA)
30
1
Output Current lOUT(mA)
70
0
0.1
VIN10V
40
Output Current lOUT(mA)
0
0.1
L=10µH
70
Ripple Voltage Vrpp(mV)
Ripple Voltage Vrpp(mV)
70
10000
60
VIN6.5V
50
VIN12V
VIN15V
40
30
20
10
0
0.1
1
10
100
1000
Output Current IOUT(mA)
10000
R1224N
4) Output Voltage vs. Input Voltage
L=10µH
R1224N182F
2.00
1.95
1.95
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N182E
2.00
1.90
1.85
1.80
1.75
1.70
1mA
500mA
1.65
1.60
1.90
1.85
1.80
1.75
1.70
1mA
500mA
1.65
1.60
0
5
10
15
20
0
Input Voltage VIN(V)
L=10µH
2.00
1.95
1.95
1.90
1.85
1.80
1.75
-1mA
-500mA
1.65
10
R1224N182H
2.00
1.70
5
15
20
Input Voltage VIN(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N182G
1.60
L=10µH
1.90
1.85
1.80
1.75
1.70
-1mA
-500mA
1.65
1.60
0
5
10
15
20
0
Input Voltage VIN(V)
R1224N182L
L=27µH
2.00
1.95
1.95
1.90
1.85
1.80
1.75
1mA
500mA
1.65
10
R1224N182M
2.00
1.70
5
15
20
Input Voltage VIN(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
L=10µH
1.60
L=27µH
1.90
1.85
1.80
1.75
1.70
1mA
500mA
1.65
1.60
0
5
10
15
Input Voltage VIN(V)
20
0
5
10
15
20
Input Voltage VIN(V)
31
R1224N
L=10µH
R1224N332F
3.40
3.38
3.38
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N332E
3.40
3.36
3.34
3.32
3.30
3.28
3.26
1mA
500mA
3.24
3.22
3.20
3.36
3.34
3.32
3.30
3.28
3.26
1mA
500mA
3.24
3.22
3.20
0
5
10
15
20
0
Input Voltage VIN(V)
L=10µH
3.40
3.38
3.38
3.36
3.34
3.32
3.30
3.28
3.26
-1mA
-500mA
3.22
3.20
15
20
L=10µH
3.36
3.34
3.32
3.30
3.28
3.26
-1mA
-500mA
3.24
3.22
3.20
0
5
10
15
20
0
Input Voltage VIN(V)
R1224N332L
L=27µH
3.40
3.38
3.38
3.36
3.34
3.32
3.30
3.28
3.26
1mA
500mA
3.22
10
R1224N332M
3.40
3.24
5
15
20
Input Voltage VIN(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
10
R1224N332H
3.40
3.24
5
Input Voltage VIN(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N332G
3.20
L=27µH
3.36
3.34
3.32
3.30
3.28
3.26
1mA
500mA
3.24
3.22
3.20
0
5
10
15
Input Voltage VIN(V)
32
L=10µH
20
0
5
10
15
Input Voltage VIN(V)
20
R1224N
L=10µH
R1224N502F
5.20
5.15
5.15
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1224N502E
5.20
5.10
5.05
5.00
4.95
4.90
1mA
500mA
4.85
4.80
5.10
5.05
5.00
4.95
4.90
1mA
500mA
4.85
4.80
0
5
10
15
20
0
Input Voltage VIN(V)
R1224N502G
L=10µH
10
15
20
R1224N502H
L=10µH
5.20
5.15
-1mA
-500mA
5.10
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5
Input Voltage VIN(V)
5.20
5.05
5.00
4.95
4.90
4.85
5.15
5.10
5.05
5.00
4.95
4.90
-1mA
-500mA
4.85
4.80
4.80
0
5
10
15
0
20
R1224N502L
L=27µH
5.15
5.15
Output Voltage VOUT(V)
5.20
5.10
5.05
5.00
4.95
1mA
500mA
4.85
10
R1224N502M
5.20
4.90
5
15
20
Input Voltage VIN(V)
Input Voltage VIN(V)
Output Voltage VOUT(V)
L=10µH
4.80
L=27µH
5.10
5.05
5.00
4.95
4.90
1mA
500mA
4.85
4.80
0
5
10
15
Input Voltage VIN(V)
20
0
5
10
15
20
Input Voltage VIN(V)
33
R1224N
5) Output Voltage vs. Temperature
R1224N332E
R1224N122F
1.210
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3.33
3.32
3.31
3.30
3.29
3.28
3.27
-40
-15
10
35
60
1.205
1.200
1.195
1.190
-40
85
Temperature Topt(˚C)
R1224N602L
35
60
85
R1224N102G
1.010
Output Voltage VOUT(V)
Output Voltage VOUT(V)
10
Temperature Topt(˚C)
6.10
6.05
6.00
5.95
5.90
-40
-15
-15
10
35
60
1.005
1.000
0.995
0.990
-40
85
Temperature Topt(˚C)
-15
10
35
60
85
Temperature Topt(˚C)
6) Oscillator Frequency vs. Temperature
R1224N102H
Oscillator Frequency fosc(kHz)
Oscillator Frequency fosc(kHz)
R1224N102G
360
330
300
270
240
-40
-15
10
35
60
Temperature Topt(˚C)
34
85
600
550
500
450
400
-40
-15
10
35
60
Temperature Topt(˚C)
85
R1224N
Oscillator Frequency fosc(kHz)
R1224N102M
216
198
180
162
144
-40
-15
10
35
60
85
Temperature Topt(˚C)
7) Supply Current vs. Temperature
R1224N332E
R1224N602L
25
Supply Current1 Iss1(µA)
Supply Current1 Iss1(µA)
25
20
15
10
5
0
-40
-15
10
35
60
20
15
10
5
0
-40
85
Temperature Topt(˚C)
R1224N602F
35
60
85
R1224N102G
40
Supply Current1 Iss1(µA)
Supply Current1 Iss1(µA)
10
Temperature Topt(˚C)
25
20
15
10
5
0
-40
-15
-15
10
35
60
Temperature Topt(˚C)
85
30
20
10
0
-40
-15
10
35
60
85
Temperature Topt(˚C)
35
R1224N
R1224N102H
R1224N102M
40
Supply Current1 Iss1(µA)
Supply Current1 Iss1(µA)
60
50
40
30
20
10
0
-40
-15
10
35
60
30
20
10
0
-40
85
Temperature Topt(˚C)
-15
10
35
60
Temperature Topt(˚C)
8) Soft-start time vs. Temperature
R1224N102G
Soft-start time Tsoft(ms)
15
10
5
-40
-15
10
35
60
85
Temperature Topt(˚C)
9) Delay Time for Protection vs. Temperature
Delay Time for Protection Tprot(ms)
R1224N332E
30
25
20
15
10
-40
-15
10
35
Temperature Topt(˚C)
36
60
85
85
R1224N
10) EXT “H” Output Current vs. Temperature
EXT "H" Output Current IEXTH(mA)
R1224N332E
-10
-15
-20
-25
-40
-15
10
35
60
85
Temperature Topt(˚C)
11) EXT “L” Output Current vs. Temperature
EXT "L" Output Current IEXTL(mA)
R1224N332E
50
40
30
20
-40
-15
10
35
60
85
Temperature Topt(˚C)
12) Load Transient Response
R1224N332G
L=10µH VIN=4.8V
3.50
2000
3.40
1800
3.45
1800
3.30
3.20
1600
1400
3.40
3.35
1600
1400
3.10
1200
3.30
1200
3.00
1000
3.25
1000
2.90
2.80
800
600
3.20
3.15
800
600
2.70
400
3.10
400
2.60
2.50
200
0
1E-04 2E-04 3E-04 4E-04
-0
-0
0
Time(sec)
Output Voltage VOUT(V)
2000
3.05
3.00
-0.04 -0.02
0
0.02
0.04
0.06
200
0
0.08
Output Current IOUT(mA)
L=10µH VIN=4.8V
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1224N332G
3.50
Time(sec)
37
R1224N
R1224N332G
2000
3.40
1800
3.45
1800
3.30
3.20
1600
1400
3.40
3.35
1600
1400
3.10
1200
3.30
1200
3.00
1000
3.25
1000
2.90
2.80
800
600
3.20
3.15
800
600
2.70
400
3.10
400
Output Voltage VOUT(V)
3.50
2.60
200
2.50
0
-0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
3.05
3.00
-0.04 -0.02
0
0.06
L=10µH VIN=4.8V
R1224N332H
L=10µH VIN=4.8V
2000
3.50
2000
3.40
1800
3.45
1800
3.30
3.20
1600
1400
3.40
3.35
1600
1400
3.10
1200
3.30
1200
3.00
1000
3.25
1000
2.90
2.80
800
600
3.20
3.15
800
600
2.70
400
3.10
400
200
0
1E-04 2E-04 3E-04 4E-04
3.05
3.00
-0.04 -0.02
0
Time(sec)
R1224N332H
0.02
0.04
0.06
200
0
0.08
Time(sec)
L=10µH VIN=10V
R1224N332H
L=10µH VIN=10V
3.50
2000
3.40
1800
3.40
1800
3.30
3.20
1600
1400
3.30
3.20
1600
1400
3.10
1200
3.10
1200
3.00
1000
3.00
1000
2.90
2.80
800
600
2.90
2.80
800
600
2.70
400
2.70
400
2.60
2.50
-2E-04 -1E-04
0
200
0
1E-04 2E-04 3E-04 4E-04
Time(sec)
Output Voltage VOUT(V)
2000
Output Current IOUT(mA)
3.50
2.60
2.50
-2E-04 -1E-04
0
200
0
0.0001 0.0002 0.0003 0.0004
Time(sec)
Output Current IOUT(mA)
0
Output Voltage VOUT(V)
3.50
2.60
2.50
-2E-04 -1E-04
Output Voltage VOUT(V)
0.04
Time(sec)
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1224N332H
0.02
200
0
0.08
Output Current IOUT(mA)
Time(sec)
38
L=10µH VIN=10V
2000
Output Current IOUT(mA)
L=10µH VIN=10V
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1224N332G
3.50
R1224N
R1224N332M
2000
3.40
1800
3.45
1800
3.30
3.20
1600
1400
3.40
3.35
1600
1400
3.10
1200
3.30
1200
3.00
1000
3.25
1000
2.90
2.80
800
600
3.20
3.15
800
600
2.70
400
3.10
400
200
0
0.0001 0.0002 0.0003 0.0004
3.05
3.00
-0.04 -0.02
0
Time(sec)
R1224N332M
0.02
0.04
0.06
200
0
0.08
Time(sec)
L=27µH VIN=10V
R1224N332M
L=27µH VIN=10V
3.50
2000
3.40
1800
3.45
1800
3.30
3.20
1600
1400
3.40
3.35
1600
1400
3.10
1200
3.30
1200
3.00
1000
3.25
1000
2.90
2.80
800
600
3.20
3.15
800
600
2.70
400
3.10
400
2.60
2.50
-2E-04 -1E-04
0
200
0
1E-04 2E-04 3E-04 4E-04
Output Voltage VOUT(V)
2000
Output Current IOUT(mA)
3.50
3.05
3.00
-0.04 -0.02
Time(sec)
0
0.02
0.04
0.06
200
0
0.08
Output Current IOUT(mA)
0
Output Voltage VOUT(V)
3.50
2.60
2.50
-2E-04 -1E-04
Output Voltage VOUT(V)
L=27µH VIN=4.8V
2000
Output Current IOUT(mA)
L=27µH VIN=4.8V
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1224N332M
3.50
Time(sec)
12) UVLO Voltage vs. Temperature
R1224N332E
UVLO Voltage VUVLO(V)
2.20
2.15
2.10
2.05
2.00
1.95
1.90
-40
-15
10
35
60
85
Temperature Topt(˚C)
39
PACKAGE INFORMATION
•
PE-SOT-23-5-0610
SOT-23-5 (SC-74A)
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
+0.2
1.1 −0.1
1.9±0.2
(0.95)
(0.95)
2
0 to 0.1
3
+0.1
0.15 −0.05
0.4±0.1
0.2 Min.
1
2.8±0.3
4
+0.2
1.6 −0.1
5
0.8±0.1
3.2
3.5±0.05
2.0±0.05
8.0±0.3
4.0±0.1
+0.1
φ1.5 0
0.3±0.1
1.75±0.1
TAPING SPECIFICATION
3.3
4.0±0.1
2.0Max.
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
REUSE REEL (EIAJ-RRM-08Bc)
(1reel=3000pcs)
2±0.5
21±0.8
∅60 +1
0
∅180 0
−1.5
∅ 13±0.2
11.4±1.0
9.0±0.3
PACKAGE INFORMATION
PE-SOT-23-5-0610
POWER DISSIPATION (SOT-23-5)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
420mW
250mW
Thermal Resistance
θja=(125−25°C)/0.42W=263°C/W
400°C/W
500
40
On Board
420
400
Free Air
300
250
40
Power Dissipation PD(mW)
600
200
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.7 MAX.
1.0
2.4
0.95 0.95
1.9
(Unit: mm)
MARK INFORMATION
ME-R1224N-0612
R1224N SERIES MARK SPECIFICATION
• SOT-23-5 (SC-74A)
1
•
2
3
4
1
,
2
4
,
5
,
3
: Product Code (refer to Part Number vs. Product Code)
: Lot Number
5
Part Number vs. Product Code
Part Number
Product Code
1
2
3
R1224N102G
G
1
0
R1224N122G
G
1
2
R1224N152G
G
1
R1224N182G
G
R1224N252G
G
R1224N302G
Part Number
Product Code
1
2
3
R1224N102H
H
1
0
R1224N122H
H
1
2
5
R1224N132H
H
1
1
8
R1224N152H
H
2
5
R1224N182H
H
G
3
0
R1224N252H
R1224N332G
G
3
3
R1224N362G
G
3
6
R1224N402G
G
4
R1224N502G
G
R1224N552G
R1224N602G
Part Number
Product Code
1
2
3
R1224N102M
M
1
0
R1224N122M
M
1
2
3
R1224N152M
M
1
5
1
5
R1224N182M
M
1
8
1
8
R1224N252M
M
2
5
H
2
5
R1224N302M
M
3
0
R1224N302H
H
3
0
R1224N312M
M
3
1
R1224N332H
H
3
3
R1224N332M
M
3
3
0
R1224N362H
H
3
6
R1224N502M
M
5
0
5
0
R1224N402H
H
4
0
R1224N552M
M
5
5
G
5
5
R1224N462H
H
4
6
R1224N602M
M
6
0
G
6
0
R1224N472H
H
4
7
R1224N122 L
L
1
2
R1224N122E
E
1
2
R1224N502H
H
5
0
R1224N152 L
L
1
5
R1224N152E
E
1
5
R1224N552H
H
5
5
R1224N182 L
L
1
8
R1224N182E
E
1
8
R1224N602H
H
6
0
R1224N252 L
L
2
5
R1224N222E
E
2
2
R1224N122F
F
1
2
R1224N302 L
L
3
0
R1224N252E
E
2
5
R1224N152F
F
1
5
R1224N312 L
L
3
1
R1224N262E
E
2
6
R1224N182F
F
1
8
R1224N332 L
L
3
3
R1224N272E
E
2
7
R1224N252F
F
2
5
R1224N502 L
L
5
0
R1224N302E
E
3
0
R1224N262F
F
2
6
R1224N552 L
L
5
5
R1224N332E
E
3
3
R1224N302F
F
3
0
R1224N602 L
L
6
0
R1224N502E
E
5
0
R1224N322F
F
3
2
R1224N552E
E
5
5
R1224N332F
F
3
3
R1224N602E
E
6
0
R1224N362F
F
3
6
R1224N502F
F
5
0
R1224N552F
F
5
5
R1224N602F
F
6
0